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A DNA copy of influenza B/Singapore/222/79 viral RNA segment 5, containing
the gene coding for the nucleoprotein (NP), has been cloned in Escherichia coli
plasmid pBR322, and its nucleotide sequence has been determined. The influenza
B NP gene contains 1,839 nucleotides and codes for a protein of 560 amino acids
with a molecular weight of 61,593. Comparison of the influenza B NP amino acid
sequence with that of influenza A NP (A/PR/8/34) reveals 37% direct homology in
the aligned regions, indicating a common ancestor. However, influenza B NP has
an additional 50 amino acids at its N-terminal end. As is the case with influenza A
NP, influenza B NP is a basic protein, with its charged residues relatively evenly
distributed rather than clustered. The structural homology suggests functional
similarity between the NP of influenza A and B viruses.

Influenza viruses are classified into type A,
type B, or type C viruses based on the lack of
serological cross-reactivity between their inter-
nal components, particularly nucleoprotein (NP)
and matrix (M) proteins (39). All virus isolates
belonging to a single type possess the cross-
reactive M and NP proteins, although their
surface antigens, hemagglutinin (HA) and neur-
aminidase (NA), may vary drastically. In addi-
tion, there are major differences in the epidemi-
ology and host range among these three types.
For example, only type A viruses, although
species specific, can infect and produce disease
both in humans and in various animal species in
nature. Type B and type C viruses, on the other
hand, are primarily restricted to humans (see
reference 21), although occasionally they have
been isolated from animal hosts (41). Type A
viruses are known to undergo both antigenic
shift and drift, whereas B and C viruses are
subject only to antigenic drift. Furthermore, the
antigenic variation observed among type A vi-
ruses is more pronounced than that observed in
type B viruses, which in turn undergo more
variation than type C viruses (20, 21). Addition-
ally, genetic exchange yielding stable viruses of
mixed genotypes has not been observed to occur
between viruses of different types (14).

The molecular basis of these biological differ-
ences between the three types remains unde-
fined. Clearly, an understanding of the structure
of the genes as well as the structure and function
of the gene products of all three types of viruses
will be required before their differences in epide-
miology and species specificity can be under-
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stood. Recently, cDNA cloning and DNA se-
quencing have permitted the determination of
complete nucleotide sequences and predicted
amino acid sequences of protein products of all
eight RNA segments from one or more type A
strains (see reference 34). Similarly, sequences
of the HA, NA, M, and nonstructural (NS)
genes of type B viruses have been determined
3, 4, 16, 28, 35). However, little is known about
the structure or function of the influenza B NP
(B NP), although the primary structure of the
NP gene of two influenza A strains has been
determined (12, 33, 36).

In both A and B types, NP appears to have a
multifunctional role. First, it is the major com-
ponent of the helical ribonucleoprotein (RNP)
core (24), and it has been suggested that each
influenza A NP (A NP) molecule may bind to ca.
20 bases (b) of RNA (5). Second, the RNP
complexes in association with the polymerase
proteins are active in transcription (2, 26). Tem-
perature-sensitive mutants of influenza A virus
defective in the NP gene fail to synthesize
mRNA or virion RNA (vRNA) in infected cells
at nonpermissive temperatures (15, 30, 31).
Also, monoclonal antibodies to A NP inhibit
viral transcription in vitro, suggesting that NP
may be involved in the process of transcription
(40). Furthermore, NP may be important in
binding the RNP complex to M protein and thus,
may have an important role in the process of
budding and virion assembly (23). Evidence of
intracistronic complementation between tem-
perature-sensitive mutants defective in the NP
gene also supports its multifunctional character
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FIG. 1. Endonuclease restriction enzyme cleavage map and strategy used for sequencing of the cloned B/Sing
NP DNA. The insert DNA was characterized by multiple restriction endonuclease digestions, mapping the sites
relative to one another. DNA sequencing was carried out by using 5’ singly end-labeled fragments by the
methods of Maxam and Gilbert (18, 19). Approximately 85 to 90% of both strands were sequenced, and all
restriction sites used in sequencing were sequenced through an intact DNA segment cut at a different position.
The sequence at the 5’ end of the viral RNA segment was determined by using a primer extension procedure (11).
Total influenza B vRNA was hybridized to a 5’ singly end-labeled DN A fragment of clone B1-28. This primer was
extended by reverse transcriptase, and the resulting cDNA was purified and sequenced. The solid line along the
top shows the cloned insert, with the broken line representing sequences from pBR322. Listed along the left side
are the restriction endonuclease sites which were used for labeling with T4 polynucleotide kinase, as indicated by
vertical bars, and sequenced in the direction of the arrows. Both strands are also represented showing their
overlapping sequenced regions. The asterisk shows the HinF I to Taql fragment used in the primer extension.

(31). In this report, we present the complete
nucleotide sequence of the NP gene and the
predicted amino acid sequence of the NP poly-
peptide of a type B influenza virus (B/Singa-
pore/222/79 [B/Sing]) and a comparison of the
sequence homology and diversity with type A
NP.

Virus from the strain B/Sing was obtained
from Alan Kendal, Centers for Disease Control,
and grown in 10-day-old embryonated chicken
eggs. Virus-specific genomic RNA was isolated
from purified virions, enriched for specific RNA
segments by fractionation in sucrose velocity
gradients, and used for cDNA cloning (7).

The genes of influenza B/Sing were cloned
into the Pstl restriction site of pPBR322 by proce-
dures previously described (7, 13). Briefly, the
vRNA enriched in the 4th and Sth largest seg-
ments was reverse transcribed by using a syn-
thetic dodecanucleotide primer (5'-dAGCA-
GAAGCAGA-3') complementary to the
common 3’ ends of influenza B vRNA segments
(9). Full length cDNA copies were isolated on
1.4% alkaline agarose gels and converted into
double-stranded DNA by using the foldback
loop at the 3’ end as a self-primer. The double-
stranded DNA fragments were treated with S1
nuclease, size fractionated on neutral agarose
gels, and cloned into the PstI site of pBR322
with deoxyguanine:deoxycytosine tailing. Esch-

erichia coli 294 was transformed with the recom-
binant plasmids and screened for tetracycline
resistance and ampicillin sensitivity.

Cloned DN As were grouped by insert size and
restriction enzyme analyses (7). Groups were
identified by hybridization to specific VRNA
segments. Clone B1-28, containing an insert of
ca. 1.8 kilobases (kb), was identified as a clone
of the B NP gene on the following basis. (i) It
hybridized exclusively to segment 4 vRNA
which has been shown to code for NP (22); (ii)
segment 5 VRNA, on the other hand, known to
code for the HA gene (22, 32) hybridized exclu-
sively to DNA of clones B1-61 and B2-6 and not
to the B1-28 DNA; and (iii) neither B1-28, B1-61,
nor B2-6 hybridized to the vRNAs of segments
1, 2, 3 (polymerase genes), or 6, known to code
for the NA gene (22, 32). Additionally, the
nucleotide sequence of B1-61 insert DNA (un-
published data) is over 90% homologous to the
reported sequence of the HA gene of influenza
B/Lee/40 (16).

A partial restriction endonuclease cleavage
map of the cloned B NP gene was determined
experimentally and is shown in Fig. 1. This
served as the basis for preparing 5’ end-labeled
fragments used in DNA sequencing.

The complete nucleotide sequence of the
mRNA sense strand of the B NP gene is shown
in Fig. 2. The first four nucleotides from the
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FIG. 2

synthetic dodecanucleotide primer used to re- obtained from the insert of clone B1-28, which
verse transcribe the virus-specific RNA were represents the complete coding region for the
missing from the cloned DNA, presumably lost NP polypeptide. The sequence from nucleotides
during manipulation of the transcribed DNA. 1,737 to 1,839 was obtained by the primer exten-
The sequence from nucleotides 5 to 1,756 was  sion of a DNA fragment (nucleotides 1,664 to
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FIG. 2—Continued

FIG. 2. Complete nucleotide sequence of the NP gene (plus-sense strand) and the deduced amino acid
sequence of the NP polypeptide of influenza B/Sing. The first 12 nucleotides represent the synthetic primer used
to reverse transcribe the virus-specific RNA. Nucleotides are numbered from the 5’ end of the plus-strand. Also
shown in alignment with B NP is the amino acid sequence of A/PR/8/34 NP (36). Boxes are drawn to show
regions of direct amino acid homology. Dashes indicate where deletions were placed to bring the two sequences
into maximum alignment. The precise location of substitution, addition, or deletion of nucleotides is not known,
therefore, amino acid deletions were placed in regions only to satisfy the criteria of maximum amino acid
homology. Both amino acid sequences are numbered starting from their N-terminal end.

Asn
498

1,732) labeled at the 5' end. The B NP gene
segment contains 1,839 nucleotides and has an
open reading frame from the first initiation co-
don (AUG) at position 60 to 62 to a termination
codon (UAA) at position 1,740 to 1,742. This
open reading frame of 1,680 nucleotides could
code for a polypeptide of 560 amino acids,
leaving 97 and 59 noncoding nucleotides at the 3’
and 5' ends, respectively, of the plus-sense
DNA strand. There are no other open reading
frames in either strand which could code for
more than 125 amino acids. A tract of five

adenine residues at position 1,819 to 1,823 prob-
ably represents the polyadenylation site for the
virus mRNAs as has been reported for influenza
A viruses (25). The B NP gene has a calculated
base composition of 35.2% uridine, 22.3% ade-
nine, 22.9% cytosine and 19.6% guanine, reflect-
ing the fact that adenine is more commonly used
in the third codon positions than guanine. The
frequency of the cytosine-guanine dinucleotide
as well as the use of cytosine-guanine-containing
codons is low, as is commonly seen in other
virus and eukaryotic genes (29).
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TABLE 1. Amino acid composition of A and B NP

Frequency (%)

Amino
acids . " Av
B/Sing (%)  A/PR/8/34 (%) proteing(% v

Ala 46 (8.2) 39 (7.8) 8.6)
Arg 31 (5.5) 49 (9.8) 4.9)
Asn 27 (4.8) 25 (5.0) 4.3)
Asp 34 (6.1) 23 (4.6) (5.5
Cys 5(0.9) 6(1.2) (2.9
Gln 18 3.2) 21 4.2) (6.0)
Glu 29 (5.2) 36 (7.2) (3.9
Gly 45 (8.0) 41 (8.2) 8.4)
His 5(0.9) 6(1.2) 2.0)
Ile 38 (6.8) 26 (5.2) 4.5)
Leu 38 (6.8) 32 (6.4) (7.4)
Lys 50 (8.9) 21 (4.2) (6.6)
Met 27 (4.8) 25 (5.0) 1.7
Phe 22 3.9) 18 (3.6) (3.6)
Pro 25 (4.5) 17 3.4) (5.2)
Ser 38 (6.8) 39 (7.8) (7.0)
Thr 35(6.3) 29 (5.8) (6.1)
Trp 1(0.2) 6(1.2) 1.3)
Tyr 13 (2.3) 15 (3.0) (3.4)
Val 33 (5.9) 24 (4.8) (6.6)

Total 560 (100) 498 (100) (100)

“ Amino acid compositions of A/PR/8/34 NP and an
average protein were obtained from Winter and Fields
(36) and Dayhoff et al. (8), respectively.

The B/Sing NP gene is 274 nucleotides longer
than the A NP gene (1,839 versus 1,565; see
reference 36). These extra nucleotides are pre-
sent in both the 5’ noncoding (97 b versus 45 b)
and the 3’ noncoding (59 b versus 26 b) regions
as well as in the coding region (1,680 b versus
1,494 b) of the B NP gene. The sequence data
show that RNA segments of influenza B virus,
excluding the three unstudied polymerase RNA
segments, are all larger than the corresponding
RNA segments of influenza A virus. However,

TABLE 2. Amino acid homology between regions
of B NP and A/PR/8 NP*

Amino acid region

% Homology to

of B NP A/PR/8 NP
S1-150. .o 315
151-250. ..o 45.8
251-350. . .o 46.0
351450, . ... 38.0
451-550. .. ..o 25.8

“ The sequence homology was determined for every
100 amino acids beginning with amino acid residue 51
(Fig. 2). Since amino acids corresponding to the N-
terminal 50 amino acids of B/Sing NP are not present
in A/PR/8 NP, they are not included in the calculation.
Also unused were amino acids corresponding to areas
of addition or deletion created to obtain optimum
alignment of the two amino acid sequences.

J. VIROL.

since these extra sequences are present in most
cases in both coding and noncoding regions,
their significance remains unclear. These data
also show that the segment 4 RNA of B/Sing
encodes the NP gene and, therefore, agree with
the gene assignment of three other influenza B
strains, namely B/Lee/40, B/Mass/1/71, and
B/Md/59 (24). Furthermore, our data also show
that the B/Sing NP gene (1,839 nucleotides) is
smaller than the B/Lee HA gene (1,882 nucleo-
tides) as was predicted by the migration pattern
of glyoxalated RNAs (22).

The predicted B/Sing NP polypeptide is 560
amino acids in length (Fig. 2), with a calculated
M, of 61,593, which is slightly less than the
66,000 estimated in gels (22). Of the 560 amino
acids of B NP, 86 residues are basic (Arg, 31;
Lys, 50; His, S) and 63 residues are acidic (Asp,
34; Glu, 29; Table 1). B NP is a basic protein
with a net charge of +20.5 at pH 7.0, assuming a
charge of +1 for each arginine and lysine, —1 for
each glutamic acid and aspartic acid, and +0.5
for each histidine, and, therefore, possesses a
greater net positive charge than A NP, with a
charge of +14 (36). The amino acid composition
(Table 1) shows that B NP is remarkably rich in
lysine and methionine but poor in histidine,
cysteine, and tryptophan when compared with
that of a statistically average protein (8). When
compared with A/PR/8/34 NP (36), the B NP
polypeptide is 62 amino acids longer than A NP
(Fig. 2). Seven regions of deletion or addition or
both of amino acids were required for optimum
alignment of the two sequences, leaving influen-
za B NP with an extra three residues at its C-
terminal end and S0 residues at its N-terminal
end. The amino acid composition (Table 1)
shows that both A and B NP are rich in basic
amino acids and in methionine but low in cyste-
ine as expected for soluble globular proteins.
Only one of the cysteine residues appears con-
served between B NP (amino acid 389) and A
NP (amino acid 333), supporting the finding of
Selimova et al. that disulfide bonds are not
important in the formation of the secondary
structure of NP (27). This is in sharp contrast to
the conservation of cysteine residues between
influenza A and B viruses in the HA and NA
proteins (A. R. Davis, T.J. Bos, and D. P.

- Nayak, Proc. Natl. Acad. Sci., in press; 16, 28).

The distribution and composition of basic amino
acids are different between A and B NP. For
example, B NP is rich in lysine and low in
arginine, whereas the reverse is true for A NP.
Both A and B NPs are low in histidine, and B NP
contains only one tryptophan residue. It remains
to be seen whether this divergence in the compo-
sition of basic amino acids between B and A NP
has any structural or functional significance or
provides the basis for any differences in biologi-
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cal specificity. As with A NP, B NP does not
possess large clusters of charged residues. Rath-
er, these are evenly distributed along the length
of the polypeptide, suggesting multiple contact
points between each NP molecule and the viral
RNA. Since B NP has a greater net positive
charge than A NP, it may bind more tightly to
the negatively charged VRNA. Relative nuclease
sensitivity of B RNP versus A RNP may deter-
mine whether the greater positive charge in B
NP provides an increased protection of viral
RNA segments by B NP.

Comparison of the amino acid sequence ho-
mology between B and A NP shows that some
parts of the sequence are remarkably conserved,
whereas other areas are quite divergent. The
conservation of sequence is most striking in the
central region of the protein (amino acid 150 to
350) which contains nearly 50% direct homology
(Table 2). This region also contains a direct 10
amino acid residue homology (amino acid 230 to
239; B NP) between A and B NPs. This homolo-
gy is remarkable because such a large stretch of
homology is not present even in the highly
conserved hydrophobic region at the N terminus
of HA 2 of A and B HAs (16, 37). This region
then may provide some critical structure for the
function of both A and B NP, such as a nucle-
ation point in RNP formation or a critical con-
tact with RNA or with M or polymerase (P)
proteins. The entire aligned region (amino acids
51 to 557) contains 37% direct homology
(184/492 residues). Since 43% of the differences
(133/308 residues) are of conservative nature,
i.e., basic, acidic, polar, or nonpolar amino acid
replaced by similar residue, the combined struc-
tural homology between A and B NP is 64%.
The most remarkable difference in the primary
structure of A and B NP is the presence of 50
additional amino acids at the N terminus (Fig.
2), making it unique in that respect among the
influenza virus proteins, except for influenza B
NS1, which is 51 amino acids longer than influ-
enza A NS1 (1, 38). Whether these extra se-
quences are involved in providing functional
type specificity remains to be seen.

The proteins coded by the five genes (HA,
NP, NA, M, and NS) of influenza B virus that
have been completely sequenced show that in-
fluenza B proteins possess structural features
similar to those of influenza A viral proteins,
attesting for their functional similarity. Among
these viral proteins, NP shows the greatest
amino acid homology between the types. How-
ever, diversity in the sequence between influen-
za A and B proteins is far greater than that
observed among the corresponding proteins of
influenza A virus strains, suggesting that influ-
enza A and B viruses have undergone similar but
independent evolutionary pathways and that
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none of these five RNA segments have been
recently acquired by reassortment between in-
fluenza A and B viruses. Since stable recombi-
nants between A and B viruses have not been
observed even under laboratory conditions (14),
it is likely that these viral proteins are function-
ally incompatible with the genes and gene prod-
ucts of another type. Furthermore, since enve-
lope proteins can form pseudotypes with
divergent viruses (6), the functional type speci-
ficity is likely to be provided by the internal
components such as polymerases and NPs, etc.
Since active influenza proteins, including NPs,
now can be expressed from cloned cDNAs in
eukaryotic cells (17), the function of these pro-
teins as well as chimeric proteins (constructed
by joining two or more DN As) can now be tested
by intertype complementation and should pro-
vide insight into their functional specificity and
incompatibility with each other.
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