
Supplementary Methods for:  

A Probabilistic Generative Model for GO Enrichment Analysis 

 
Examples for the likelihood function used by our model 
To illustrate the likelihood function we are using (Equation 1) consider as an example the 
set of genes identified in an experiment arresting cells at the S phase of the cell cycle. 
Both the ‘S phase’ and the ‘Cell cycle’ categories would be enriched with such genes. 
However, since ‘S phase’ is more specific and fully captures the condition, we would like 
our GO analysis tool to return ‘S phase’ rather than the more general ‘Cell cycle’. This is 
exactly the idea captured in the likelihood term of Equation 1. If we select ‘Cell cycle’ 
then (assuming low noise) most of the selected gene nodes (Ag) would be accounted for. 
However, many cell cycle genes participate in other cell cycle phases and so Sg would 
also be large which will reduce the likelihood (when p ≥ 0.5). In contrast, selecting ‘S 
phase’ would still lead to large value for Ag but a much smaller value for Sg resulting in a 
higher likelihood. Note that selecting a category that does not reflect the condition (for 
example, ‘Metabolism’) would lead to small values for Ag and large values for Sg and An, 
again reducing the likelihood function (since p >> q).  
 
Below we present another example which uses concrete numerical values to illustrate the 
differences between the results of our method and the results of the classic 
hypergeometric p-value calculation. 
Assume the total number of genes is 10,000. We consider four categories, C1 and its 
three direct decendents: C2, C3, and C4 (see figure below). The number of genes 
annotated to each category is as follows |C1| = 100, |C2| = 10, |C3| = 10, |C4| = 80 
 

 
 
Assume that under certain experimental condition, 50 genes are determined to be active.  
Among these genes, 20 are in category C1, 9 in C2, 9 in C3, and 2 in C4.  Intuitively, in 
this experiment the active biological processes are the functions encoded by C2 and C3 
because most genes in both categories are active.  On the other hand, the category C1 is 
probably not active since otherwise we would expect all its descendents, including C4, to 
contain active genes. 
Analysis of this example using the classic method and GenGO leads to different 
conclusions.  If we use the classic method and compute p-values based on the 
hypergeometric distribution, three categories, C1 (p-value=5*10^-28), C2 (p-value=10^-
20), and C3 (p-value=10^-20), will be determined to be significantly enriched.  C4 is not 
significantly enriched (p-value=0.06).  C1 is the most significant category with the 
smallest p-value. 
The answer is different if we use GenGO.  Specifically, we look at the log-likelihood for 
the following three cases: 



 
1) C1, C2, and C3 are active, C4 is inactive.  In this case, |Ag| = 20, |An| = 30, |Sg| = 

82, |Sn| = 78. The log-likelihood achieves its maximum at -123.3 when p=0.20 
and q=0.28. 

2) C2 and C3 are active, C1 and C4 are inactive.  In this case, |Ag| = 18, |An| = 32, 
|Sg| = 2, |Sn| = 158.  The log-likelihood achieves its maximum at -98.6 when 
p=0.90 and q=0.17. 

3) Only C1 is active.  In this case, |Ag| = 20, |An| = 30, |Sg| = 80, |Sn| = 80.  The log-
likelihood achieves its maximum at -117.5 when p=0.20 and q=0.27. 
 

The likelihood for case 2 is the highest.  As a result, the GenGO algorithm will correctly 
determine that only C2 and C3 are active. 

 
Finding the optimal set of GO terms is NP hard 
Here we show that the task of finding the optimal set of active GO nodes (that is, a set 
that will maximize the likelihood of our target function specified in Equation 1) is a NP 
hard problem. To prove this we reduce the Minimum Set Covering (MSC) problem to our 
problem. Given an MSC instance {U,F}, where U is a set and F is a family of subsets of 
U, we construct an activation graph as follows: For each element Uu! , we add a gene 
node 

u
g to the graph; for each subset Ff ! , we add a GO node fg and connect it with 

gene nodes 
u
g  if and only if fu! . In addition, we include all gene nodes in the active 

set, and let p=1, q=0, and 1=! . In other words each gene node has to be explained by at 
least one GO node (q does not matter in this case since all genes are ‘active’). 
Maximizing the log likelihood for this graph is equivalent to finding a minimal set C of 
GO nodes such that every gene node in the graph is connected to at least one node in C. 
The requirement for a minimal set is achieved via the penalty term ||C! . If we can find 
the solution C, we can recover the solution to the original MSC instance by taking the 
subsets in F that correspond to a node in C. 
 
Finding the best GO set by learning parameters p and q 
 
These two parameters can also be optimized by maximizing the log likelihood defined in 
Equation 1. The algorithm is as follows: 

 

Algorithm 2 (Find the best GO set by learning parameters p and q) 
(1) Initialization. Set p0=0.5, q0=|G|/|R|, where G is the set of active genes, and R is the 

reference set . 
(2) Carry out steps in Algorithm 1, using pi and qi. 



(3) Based the solution found in the previous step, we compute the maximum likelihood 
estimation of p and q:  
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(4) if !"## ++ |)||,max(| 11 iiii
qqpp , go to step 2, otherwise stop. (!  is a small 

positive number to control convergence.) 
 
Because both steps in Algorithm 1 and 2 only increase the likelihood, the algorithm 
above is guaranteed to converge to a local maximum. 
 


