Supplementary Information

The myosin V motor requires the Rab GTPases Ypt31/32 for its cellular localization. Lipatova *et al.*

A. Strams			
Strain	Alias	Genotype	Source*
NSY468	PJ69-4A	MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4 Δ gal80 Δ gal2-ade2 lys2::gal1-his3 met2::gal7-lacZ	(James et al., 1996)
NSY752	PJ69-4α	MATα trp1-901 leu2-3,112 ura3-52 his3-200 gal4Δ gal80Δ gal2-ade2 lys2::gal1-his3 met2::gal7-lacZ	(James et al., 1996)
NSY125	DBY1034	MATa his4-539 lys2-801 ura3-52	(Jedd et al., 1997)
NSY348	Ypt31∆/32ts	NSY125 ypt31A::HIS3 ypt32-A141D	(Jedd et al., 1997)
NSY160		MATα lys2-801 ura3-52 his4-539	(Jedd et al., 1995)
NSY161	Ypt1ts	NSY160 <i>ypt1-A136D</i>	(Jedd et al., 1995)
NY786	Sec15ts	MATa, ura3-52 his4-619 sec15-1	(Gimeno et al., 1995)
NSY1175	LWY2947	MATa ura3-52 leu2-3,112 his3-Δ200 trp1-901 lys2-801 suc2-Δ9 myo2Δ::TRP1, pMYO2	(Catlett and Weisman, 1998)
NSY1168	LWY3225	LWY2947+pRS413- <i>MYO2</i>	(Catlett and Weisman, 1998)
NSY1169	LWY7488	LWY2947+pRS413- <i>MYO2-Y1415E</i>	(Pashkova <i>et al.</i> , 2006)
NSY1171	LWY7522	LWY2947+pRS413- <i>MYO2-K1444A</i>	(Pashkova et al., 2006)
NSY1172	LWY7523	LWY2947+pRS413- <i>MYO2-L1331S</i>	(Pashkova et al., 2006)
NSY1173	LWY7524	LWY2947+pRS413- <i>MYO2-Q1447R</i>	(Pashkova et al., 2006)
NSY1174	LWY7540	LWY2947+pRS413- <i>MYO2-L1411S</i>	(Pashkova et al., 2006)
NSY1268		LWY2947+pRS413- <i>MYO2</i> -HA	(Pashkova et al., 2006)
NSY1269		LWY2947+pRS413- <i>MYO2-Y1415E</i> -HA	(Pashkova et al., 2006)
		LWY2947+pRS413- <i>MYO2-Y1415R</i>	
		LWY2947+pRS413- <i>MYO2-YPT32</i>	

Table S1. Yeast strains and plasmids used in this study

LWY2947+pRS413-*MYO2-Y1415R-YPT32*

D	DI	• 1
в.	Ы	asmids
~ •		

Plasmid	Alias	Genotype	Source*
pNS196	pACT2	2μ , <i>LEU2</i> , Amp ^r	Clontech, CA
pNS1019		pACT2-MYO2-GTD	
pNS1024		pACT2- <i>MYO2-K1444A</i> -GTD	
pNS1022		pACT2-MYO2-L1331S-GTD	
pNS1023		pACT2-MYO2-L1411S-GTD	
pNS1021		pACT2-MYO2-Q1447R-GTD	
pNS1020		pACT2-MYO2-Y1415E-GTD	
pNS459		pACT2- <i>YPT32-Q72L</i>	
pNS462		pACT2-YPT32-Q72L-SS	
pNS1078		pACT2- <i>YPT31</i>	
pNS1079		pACT2- <i>YPT31-Q72L</i>	
pNS1080		pACT2-YPT31-S27N	
pNS1081		pACT-YPT31-D129N	
pNS738		pACT2-YPT31-SS	
pNS448	pAS1	2µ, TRP1, Amp ^r	(Durfee et al., 1993)
pNS657		pAS1-YPT1	(Calero and Collins, 2002)
pNS653		pAS1-YPT6	(Calero and Collins, 2002)
pNS645		pAS1-YPT31	(Calero and Collins, 2002)
pNS647		pAS1-YPT32	(Calero and Collins, 2002)
pNS206	pGBDU-C2	2μ, URA3, Amp ^r	(James et al., 1996)
pNS288		pGBDU-C2-YPT32-SS	(Chen et al., 2005)
pNS289		pGBDU-C2-YPT32-Q72L-SS	(Chen et al., 2005)
pNS290		pGBDU-C2-YPT32-S27N-SS	(Chen et al., 2005)
pNS291		pGBDU-C2-YPT32-D129N-SS	

pNS1027		pGBDU-C2-MYO2-GTD	
pNS255	pGEX-KG	Amp ^r , GST	(Guan and Dixon, 1991)
pNS296		pGEX-KG-YPT32	(Jones et al., 2000)
pNS734	pGEX-4T-1-	Amp ^r , GST-MYO2-GTD	(Pashkova et al., 2005)
pNS1082	pQE9-YPT1	Amp ^r , HIS ₆ -YPT1	(Lupashin and Waters, 1997)
pNS619	pTrcHisA- <i>YPT31</i>	Amp ^r , HIS ₆ - <i>YPT31</i>	
PNS620	pTrcHisA-	Amp ^r , HIS ₆ -YPT32	
pNS563	pRS426	2µ, URA3	(Christianson et al., 1992)
pNS940		pRS426- <i>MYO2</i>	
pNS1085		pRS426-MYO2-L1411S	
pNS1086		pRS426-MYO2-Q1447R	
pNS1087		pRS426-MYO2-Y1415E	
pNS274	Yep24	2µ, URA3	(Botstein et al., 1979)
pNS489		Yep24-YPT1	(Morozova et al., 2006)
pNS229		Yep24- <i>YPT31</i>	(Jones et al., 1999)
pNS1088	pRS413	CEN, HIS3, Amp ^r	(Sikorski and Hieter, 1989)
pNS1070		pRS413- <i>MYO2</i> -HA	(Pashkova et al., 2006)
pNS1071		pRS413-MYO2-Y1415E-HA	(Pashkova et al., 2006)
		pRS413-MYO2-Y1415R	(Pashkova et al., 2006)
		pRS413-MYO2-YPT32	
		pRS413-MYO2-Y1415R-YPT32	
		GFP-SEC4	(Calero et al., 2003)

*All strains and plasmids, if not marked otherwise, were constructed in this study.

Figure S1: Prenylation of Ypt31/32 is not required for their interaction with Myo2-GTD. A. Ypt31 prenylation is not required for its interaction with Myo2-GTD. Replacing the two terminal cysteines (C222, C223) required for prenylation, Ypt31-CC, with serines, Ypt31-SS, does not abolish two-hybid interaction with Myo2-GTD. The experiment was done as described in Figure 1B. **B.** Ypt32 prenylation is not required for the interaction with Myo2-GTD. Replacing the two terminal cysteines (C221, C222) required for prenylation, Ypt32-GTP-CC, with serines, Ypt32-GTP-SS, does not abolish two-hybid interaction with two-hybid interaction with Myo2-GTD. The experiment was done as described in Figure 1C. Results shown in this figure represent at least two experiments.

Figure S2. Direct physical interaction of bacterially expressed Ypt32 and Myo2-GTD. Bacterially expressed GST-tagged Myo2-GTD or GST, as a negative control, were bound to glutathione sepharose beads and mixed with purified bacterially expressed Ypt32 protein (in buffer B, see Methods). After incubation of the interaction mix (left), the GST-Myo2-GTD and GST were precipitated (right) and their presence was detected using immuno-blot analysis and anti-GST antibodies (bottom). Co-precipitation of Ypt32 was detected using immuno-blot analysis and anti-Ypt31/32 antibodies (top). Ypt32 co-precipitates with GST-Myo2-GTD, but not with GST. Results shown in this figure represent two independent experiments.

Figure S3. Ypt31 over-expression suppression effect on *myo2* mutant cells is specific to *myo2* alleles compromised in Ypt31-interaction. The experiment was done as explained in Figure 5C legend, except that different *MYO2* alleles were used. For each myo2 mutant strain, the empty vector control (Botstein *et al.*) is shown on the left, and the over-expression of Ypt31 is shown on the right. The growth phenotype of Myo2 alleles that do not disrupt the Ypt31-Myo2-GTD yeast-two-hybrid interaction (Figure 3B) cannot be suppressed by over-expression of Ypt31. In contrast, alleles that compromise the interaction can be suppressed by over-expression of Ypt31. Results shown in this figure represent at least two experiments.

Figure S4. The protein level of Myo2 does not change in *ypt31\Delta/32ts* mutant cells. Cells were grown as described in the legend for Figure 6A and cell lysates were prepared as described in Methods. The level of Myo2, EMP47 (as a loading control) and Ypt32 was determined using immuno-blot analysis and specific antibodies. In *ypt31\Delta/32ts* mutant cells the level of Myo2 does not change, whereas the level of Ypt32 is reduced.

References:

Botstein, D., Falco, S.C., Stewart, S.E., Brennan, M., Scherer, S., Stinchcomb, D.T., Struhl, K., and Davis, R.W. (1979). Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene *8*, 17-24.

Calero, M., Chen, C.Z., Zhu, W., Winand, N., Havas, K.A., Gilbert, P.M., Burd, C.G., and Collins, R.N. (2003). Dual prenylation is required for Rab protein localization and function. Molecular biology of the cell *14*, 1852-1867.

Calero, M., and Collins, R.N. (2002). Saccharomyces cerevisiae Pra1p/Yip3p interacts with Yip1p and Rab proteins. Biochemical and biophysical research communications 290, 676-681.

Catlett, N.L., and Weisman, L.S. (1998). The terminal tail region of a yeast myosin-V mediates its attachment to vacuole membranes and sites of polarized growth. Proceedings of the National Academy of Sciences of the United States of America *95*, 14799-14804.

Chen, S.H., Chen, S., Tokarev, A.A., Liu, F., Jedd, G., and Segev, N. (2005). Ypt31/32 GTPases and their novel F-box effector protein Rcy1 regulate protein recycling. Molecular biology of the cell *16*, 178-192.

Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H., and Hieter, P. (1992). Multifunctional yeast high-copy-number shuttle vectors. Gene *110*, 119-122.

Durfee, T., Becherer, K., Chen, P.L., Yeh, S.H., Yang, Y., Kilburn, A.E., Lee, W.H., and Elledge, S.J. (1993). The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes & development 7, 555-569.

Gimeno, R.E., Espenshade, P., and Kaiser, C.A. (1995). SED4 encodes a yeast endoplasmic reticulum protein that binds Sec16p and participates in vesicle formation. The Journal of cell biology 131, 325-338.

Guan, K.L., and Dixon, J.E. (1991). Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Analytical biochemistry *192*, 262-267.

James, P., Halladay, J., and Craig, E.A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics *144*, 1425-1436.

Jedd, G., Mulholland, J., and Segev, N. (1997). Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. The Journal of cell biology 137, 563-580.

Jedd, G., Richardson, C., Litt, R., and Segev, N. (1995). The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway. The Journal of cell biology *131*, 583-590.

Jones, S., Jedd, G., Kahn, R.A., Franzusoff, A., Bartolini, F., and Segev, N. (1999). Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers. Genetics *152*, 1543-1556.

Jones, S., Newman, C., Liu, F., and Segev, N. (2000). The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32. Molecular biology of the cell *11*, 4403-4411.

Lupashin, V.V., and Waters, M.G. (1997). t-SNARE activation through transient interaction with a rab-like guanosine triphosphatase. Science (New York, N.Y 276, 1255-1258.

Morozova, N., Liang, Y., Tokarev, A.A., Chen, S.H., Cox, R., Andrejic, J., Lipatova, Z., Sciorra, V.A., Emr, S.D., and Segev, N. (2006). TRAPPII subunits are required for the specificity switch of a Ypt-Rab GEF. Nature cell biology *8*, 1263-1269.

Pashkova, N., Catlett, N.L., Novak, J.L., Wu, G., Lu, R., Cohen, R.E., and Weisman, L.S. (2005). Myosin V attachment to cargo requires the tight association of two functional subdomains. The Journal of cell biology *168*, 359-364.

Pashkova, N., Jin, Y., Ramaswamy, S., and Weisman, L.S. (2006). Structural basis for myosin V discrimination between distinct cargoes. The EMBO journal 25, 693-700.

Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics *122*, 19-27.