Supporting Information

Synthesis of Potent Bicyclic Bis-Arylimidazole c-Jun N-Terminal Kinase Inhibitors by Catalytic C-H Bond Activation

Jason C. Rech, Michihisa Yato, Derek Duckett, Brian Ember, Philip V. LoGrasso, Robert G. Bergman, and Jonathan A. Ellman

Table of Contents

I.	Full Author List	S3
II.	General Methods	S3
II.	Inhibitor Syntheses	S3
III.	Biological Data	S17
IV.	Spectral Data	S22

Full Author List for the References from the Article:

1. Graczyk, P. P.; Khan, A.; Bhatia, G.; Palmer, V.; Medland, D.; Numata, H.; Oinuma, H.; Catchick, J.; Dunne, A.; Ellis, M.; Smales, C.; Whitfield, J.; Neame, S. J.; Shah, B.; Wilton, D.; Morgan, L.; Patel, T.; Chung, R.; Desmond, H.; Staddon, J. M.; Sato, N.; Inoue, A. Bioorg. & Med. Chem. Lett. 2005, 15, 4666-4670.

General Experimental. Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Toluene was dried over alumina under a nitrogen atmosphere, degassed by purging with nitrogen for 5 minutes, and stored in a nitrogen-filled Vacuum Atmosphere inert atmosphere box. Tertahydrofuran (THF), dichloromethane (CH₂Cl₂), and diethyl ether (Et₂O) were dried over alumina under a nitrogen atmosphere. All reactions, unless otherwise stated, were performed under inert atmosphere using syringe and cannula techniques. Flame-dried glassware was used in all cases. All ¹H, ¹³C and ¹⁹F NMR spectra were measured with a Bruker AVB-400, AVQ-400 or AV300 spectrometer in CDCl₃. NMR chemical shifts are reported in ppm relative to CHCl₃ (7.27 ppm for ¹H, 77.00 ppm for ¹³C and -138.9 (1,2difluorobenzene) for ¹⁹F NMR). IR spectra were recorded on a Nicolet Avatar 360 FTIR spectrometer equipped with an attenuated total reflectance accessor, and only partial data are listed. Elemental analyses and mass spectrometry (HRMS) were carried out by the University of California at Berkeley Mass Spectrometry Facility.

Synthesis of 5:

To a solution of *tert*-butyldimethylsiloxyacetaldehyde (4.50 g, 25.8 mmol) in CH₂Cl₂ (50 mL) was added CuSO₄ (12.4 g, 77.7 mmol) followed by the addition of (S_S) -tertbutanesulfinamide (6.75g, 38.7 mmol). The reaction mixture was stirred at rt for 12 hours, filtered through a pad of Celite that was then washed with CH₂Cl₂ (20 mL), concentrated under reduced pressure and purified by flash chromatography (20% EtOAc in hexanes) to provide 5 (6.14 g, 86%). Spectral data was identical to literature compound. $[\alpha]^{23}_{D}$ +188 (c 1.00, CHCl₃).²

Synthesis of 6:

To a solution of 5 (3.93 g, 14.2 mmol) in CH₂Cl₂ (65 mL) cooled to -78 °C was added dropwise vinylmagnesium bromide (1.0 M in THF, 21.2 mL, 21.2 mmol). The reaction mixture was stirred at -78 °C for 5 hours, slowly warmed to rt, and stirred at rt for 8 hours. Saturated

aqueous NH₄Cl (20 mL) was added, and the resulting mixture was extracted with CH_2Cl_2 (3 x 10 mL). The organic phases were combined, washed with brine (10 mL), dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (20% EtOAc in hexanes) to provide the major diastereomer, (S₈,S) 2methylpropane-2-sulfinic acid [1-(*tert*-butyldimethylsilanyloxymethyl)-allyl]-amide (2.96 g, 69%) ¹H NMR (300 MHz, CDCl₃) δ 5.68-5.56 (m, 1H, C3-H), 5.35 (d, *J* = 16.8 Hz, 1H, C4-H), 5.24 (d, *J* = 10.2 Hz, 1H, C4-H), 3.98-3.92 (m, 2H, C2-H, N-H), 3.70 (dd, *J* = 9.6, 3.9 Hz, 1H, C1-H), 3.52 (dd, *J* = 9.9, 8.1 Hz, 1H, C1-H), 1.23 (s, 9H, S-C(CH₃)₃), 0.90 (s, 9H, Si-C(CH₃)₃), 0.08 (s, 3H, Si-CH₃), 0.07 (s, 3H, Si-CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 135.5 (C1), 119.0 (C4), 66.0 (C1), 58.4 (C2), 55.2 (-SOtBu), 25.8 (-SOtBu), 22.6 (-OTBS), 18.1 (-OTBS), -5.4 (-OTBS), -5.5 (-OTBS); IR (thin film) 1077, 1108, 2955 cm⁻¹; HRMS (EI) calcd for C₁₃H₃₂NO₂SSi (M+H) 306.192490, found 306.192305; [α]²³_D+93.8 (*c* 1.00, CHCl₃).

То 2-methylpropane-2-sulfinic acid а solution of (S_S,S) [1-(*tert*butyldimethylsilanyloxymethyl)-allyl]-amide (1.03 g, 3.38 mmol) in methanol (10 mL) at 0 °C was added 4N HCl in dioxane (4.2 mL, 16.8 mmol). The reaction mixture was warmed to rt and stirred for 2 hours, concentrated under reduced pressure and the resulting oil was washed with ether revealing a yellow solid. The solid was washed with ether (2 x 30 mL) and residual solvent was removed under reduced pressure providing 6 (0.41 g, 99%) as a white solid that was used without further purification. $\left[\alpha\right]_{D}^{23} + 10.0$ (c 0.53, CH₃OH) The spectroscopic data for 6 were fully consistent with those previously reported.³

Synthesis of 7:

To a solution of **6** (0.375 g, 2.96 mmol) in DMF (12 mL) was added glyoxylic acid monohydrate (0.222 g, 2.36 mmol) followed by K_2CO_3 (1.03 g, 7.44 mmol). The reaction mixture was stirred at rt for 3.5 hours and 4-fluorophenyl tosylmethyl isonitrile⁴ (0.559 g, 1.93 mmol) was added, and the reaction mixture was stirred at rt for 8 hours. The reaction was guenched with the addition of H₂O (10 mL) and the

resulting mixture was extracted with EtOAc (4 x 10 mL). The organic phases were combined, washed with H₂O (2 x 10 mL) and brine (2 x 10 mL), dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (2.0% \rightarrow 3.5% methanol in CH₂Cl₂ to provide (S)-2-[4-(4-fluorophenyl)-imidazolyl]-but-3-enol (0.414 g, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.55 (m, 2H, aryl-H), 7.48 (s, 1H, imid.), 7.04 (s, 1H, imid.) 7.06-7.01 (m, 2H, aryl-H), 6.03-5.94 (m, 1H, C7-H), 5.36 (d, *J* = 10.4 Hz, 1H, C8-H), 5.23 (d, *J* = 17.6 Hz, 1H, C8-H), 4.70-4.65 (m, 1H, C6-H), 4.17 (bs, 1H, O-H), 3.97 (dd, *J* = 12.0, 4.0 Hz, 1H, C6-CH), 3.90 (dd, *J* = 12.0, 8.0 Hz, 1H, C6-CH); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, *J*_{C-F} = 244 Hz, aryl), 140.6 (imid.), 136.8 (C7), 133.0 (imid.), 129.8 (aryl), 126.1 (d, *J*_{C-F} = 7 Hz, aryl), 119.3 (imid.), 115.2 (d, *J*_{C-F} = 22 Hz, aryl), 112.8 (C8), 64.7 (C6-C), 62.7 (C6); ¹⁹F (377 MHz, CDCl₃) δ - 116.2; IR (thin film) 3137, 2929, 1558, 1495, 1219 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₄FN₂O (M+H) 233.1086, found 233.1090; [α]²³_D -51.4° (*c* 0.56, CHCl₃).

To a solution of (S)-2-[4-(4-fluorophenyl)-imidazolyl]-but-3-enol (0.457 g, 1.97 mmol) in CH_2Cl_2 (9 mL) was added *i*Pr₂NEt (0.563 g, 4.35 mmol) followed by *tert*-butylchlorodiphenylsilane (1.21 g, 4.31 mmol) and a catalytic amount of 4-dimethylaminopyridine. The reaction mixture was stirred at rt for 8 hours, H₂O (5 mL) was added, and the reaction mixture was extracted with CH_2Cl_2 (2 x 10 mL). The

organic layers were combined, washed with brine (2 x 5 mL), dried with Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography (25% EtOAc in hexanes) to provide **7** (0.905 g, 98%, >99% ee). The enantiomeric excess was determined by chiral HPLC [CHIRALPAKTM AD column, detection at 254 nm, flow rate 1.0 mL/min, 85:15 hexane:*i*PrOH → 75:25 hexane:*i*PrOH, T_r(R) 6.7 min. and T_r(S) 9.3 min.] providing the enantiomeric ratio: 6R:6S = 99.9:0.1 (99.8% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.67 (m, 2H, aryl), 7.61-7.56 (m, 3H, aryl, imid.), 7.51-7.49 (m, 2H, aryl), 7.51-7.31 (m, 6H, aryl), 7.16 (s, 1H, imid.), 7.08-7.04 (m, 2H, aryl), 6.06-5.99 (m, 1H, C7-H), 5.33 (d, *J* = 10.4 Hz, 1H, C8-H), 5.20 (d, *J* = 17.6 Hz, 1H, C8-H), 4.70-4.66 (m, 1H, C6-H), 3.97 (dd, *J* = 10.4, 4.0 Hz, 1H, C6-CH), 3.88 (dd, *J* = 10.8, 7.2 Hz, 1H, C6-CH), 1.07 (s, 9H, OTBDPS); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, *J*_{C-F} = 243 Hz, aryl), 141.1 (imid.), 137.0 (C7), 135.6 (aryl), 135.5 (aryl), 133.3 (imid.), 132.7 (aryl), 132.4 (aryl), 130.5 (aryl), 129.9 (aryl), 129.9 (aryl), 127.9 (aryl), 127.8 (aryl), 126.2 (d, *J*_{C-F} = 8.0 Hz, aryl)), 119.2 (imid.), 115.4 (d, *J*_{C-F} = 21 Hz, aryl), 113.4 (C8), 66.0 (C6-C), 61.0 (C6), 26.7 (OTBDPS), 19.1 (OTBDPS); ¹⁹F NMR (377 MHz, CDCl₃) δ -116.2; IR (thin film) 2931, 2857, 1720, 1557, 1491, 1113 cm⁻¹; HRMS (EI) calcd for C₂₉H₃₂FN₂OSi (M+H) 471.227020, found 471.226796; [α]²³_D-17.9 (*c* 1.01, CHCl₃).

Synthesis of 8:

To a solution of 7 (0.268 g, 0.569 mmol) in toluene (8 mL) in a glove box was added [RhCl(coe)₂]₂ (21.4 mg, 0.030 mmol), tricyclohexylphosphine (26.7 mg, 0.095 mmol) and MgBr₂ (5.3 mg, 0.030 mmol). The reaction mixture was heated to 180 °C in a sealed high pressure flask for 5.5 hours, cooled to rt, concentrated and purified by flash silica gel chromatography (25% \rightarrow 50% EtOAc in hexanes) to provide 8 (128 mg, 50%). The enantiomeric purity was evaluated by chiral HPLC [Daicel ChiracelTM OD column, detection at 254 nm, flow rate 1.0 mL/min, 90:10 hexane:*i*PrOH \rightarrow 75:25 hexane:*i*PrOH, $T_r(R)$ 6.3 and $T_r(S)$ 36.5] providing the enantiomeric ratio: 6R:6S = 4.0:96.0 (92% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.57 (m, 6H, arvl), 7.44-7.33 (m, 6H, arvl), 7.21 (s, 1H, imid.), 7.07-7.02 (m, 2H, aryl), 4.38-4.35 (m, 1H, C6-H), 3.94 (dd, J = 10.8, 4.0 Hz, 1H, C6-CH₂-O), 3.75 (dd, J = 10.8, 6.8 Hz, 1H, C6-CH₂-O), 2.96-2.86 (m, 2H, C8-H), 2.67-2.59 (m, 1H, C7-H), 2.34-2.27 (m, 1H, C7-H), 1.06 (s, 9H, OTBDPS); ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, J_{C-F} = 247 Hz, aryl), 154.5 (imid.), 145.2 (imid.), 135.6 (aryl), 135.5 (aryl), 132.8 (aryl), 132.6 (aryl), 131.2 (aryl), 130.0 (aryl), 129.9 (aryl), 127.9 (aryl), 127.9 (aryl), 126.0 (d, $J_{C-F} = 8$ Hz, aryl), 115.3 (d, $J_{C-F} = 21$ Hz, aryl), 110.1 (imid.), 66.4 (C6-C), 58.6 (C6), 28.8 (C8), 26.7 (OTBDPS), 22.9 (C7), 19.1 (OTBDPS); ¹⁹F NMR (377 MHz, CDCl₃) δ -115.7; IR (thin film) 2931, 2858, 1547, 1492, 1428, 1112 cm⁻¹; HRMS (EI) calcd for C₂₉H₃₂FN₂OSi (M+H) 471.226796, found 471.227910; $[\alpha]^{23}$ _D -25.6 (c 0.62 CHCl₃).

Synthesis of 9:

To a solution of **8** (33.3 mg, 0.071 mmol) in CH_2Cl_2 (1.5 mL) at -78 °C was added dropwise a cooled solution of Br_2 (11.9 mg, 0.075 mmol) in CH_2Cl_2 (0.5 mL). The reaction mixture was stirred for 15 minutes at -78 °C, and a saturated aqueous solution of NaHCO₃ (5 mL) was added. The reaction mixture was warmed to rt and extracted

with CH₂Cl₂ (2 x 5 mL). The organic phases were combined, washed with brine, dried with Na₂SO₄, filtered, and concentrated under reduced pressure to provide (S)-5-bromo-9-(*tert*-butyldiphenylsilanyloxymethyl)-4-(4-fluorophenyl)-7,8-dihydro-5H-pyrrolo[1,2a]imidazole (36.7 mg, 94%) as a colorless foam that was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.89 (m, 2H, aryl), 7.62-7.60 (m, 2H, aryl), 7.46-7.36 (m, 6H, aryl), 7.31-7.26 (m, 2H, aryl), 7.12-7.07 (m, 2H, aryl), 4.38-4.34 (m, 1H, C6-H), 4.00 (dd, *J* = 10.8, 3.6 Hz, 1H, C6-CH₂), 3.83 (dd, *J* = 10.8, 2.4 Hz, 1H, C6-CH₂), 3.20-3.11 (m, 1H, C8-H), 2.95-2.88 (m, 1H, C8-H), 2.83-2.53 (m, 2H, C7-H), 0.98 (s, 9H, OTBDPS); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, *J_{C-F}* = 247 Hz, aryl), 155.1 (imid.), 141.4 (imid.), 135.5 (aryl), 135.5 (aryl), 132.9 (aryl), 132.3 (aryl), 130.0 (d, *J_{C-F}* = 3 Hz, aryl), 129.9 (aryl), 129.8 (aryl), 128.0 (d, *J_{C-F}* = 8 Hz, aryl), 127.8 (aryl), 127.8 (aryl), 115.2 (d, *J_{C-F}* = 21 Hz, aryl), 93.0 (imid), 64.7 (C6-C), 58.6 (C6), 29.5 (C8), 26.6 (OTBDPS), 24.2 (C7), 19.1 (OTBDPS); ¹⁹F NMR (377 MHz, CDCl₃) δ -115.9; IR (thin film) 2956, 1538, 1426, 1112 cm⁻¹; HRMS (EI) calcd for C₂₉H₃₁BrFN₂OSi (M+H) 549.137307, found 549.136560; [α]²³_D -35.1° (*c* 1.09, CHCl₃).

To a solution of (S)-5-bromo-9-(*tert*-butyldiphenylsilanyloxymethyl)-4-(4-fluorophenyl)-7,9-dihydro-5H-pyrrolo[1,2-a]imidazole (0.187 g, 0.340 mmol) in dioxane (6 mL) was 2-methylsulfanyl-4-trimethylstannanylpyrimidine⁵ (0.216)added 0.750). g, Pd₂(dba)₂•CHCl₃ (55.0 mg, 0.034 mmol), triphenylphosphine (17.8 mg, 0.068 mmol), LiCl (50.4 mg, 1.19 mmol), and CuI (33.7 mg, 0.177 mmol). The reaction mixture was heated to 170 °C for 5.5 hours, cooled to rt, filtered through a pad of celite, concentrated under reduced pressure, and purified by flash chromatography (20% EtOAc in hexanes) to provide **9** (0.173 g, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 5.6 Hz, 1H, pyrim.), 7.53-7.50 (m, 4H, aryl), 7.50-7.27 (m, 6H, aryl), 7.19-7.07 (m, 4H, aryl), 6.71 (d, J = 5.2 Hz, 1H, pyrim.), 5.14 (app d, J = 7.2 Hz, 1H, C6-H), 3.80-3.73 (m, 2H, C6-CH₂), 3.20-3.13 (m, 1H, C8-H), 2.97-2.85 (m, 2H, C8-H, C7-H), 2.71-2.66 (m, 1H, C7-H), 2.44 (s, 3H, S-CH₃), 0.93 (s, 9H, OTBDPS); ¹³C NMR (100 MHz, CDCl₃) δ 172.4 (pyrim.), 164.7 (pyrim.), 163.1 (d, J_{C-F} = 247 Hz, aryl), 158.13 (pyrim.), 156.6 (imid.), 156.2 (imid.), 135.4 (aryl), 135.3 (aryl), 132.9 (aryl), 132.3 (aryl), 131.4 (aryl), 130.6 (d, $J_{C-F} =$ 8 Hz, aryl), 129.8 (aryl), 129.7 (aryl), 127.8 (aryl), 127.6 (aryl), 122.0 (imid.), 115.8 (d, J_{C-F} = 22 Hz, aryl), 112.7 (pyrim.), 65.6 (C6-C), 60.4 (C6), 30.1 (C8), 26.5 (OTBDPS), 23.7 (C7), 19.0 (OTBDPS), 14.0 (S-C); ¹⁹F NMR (377 MHz, CDCl₃) δ -113.8; IR (thin film) 2928, 1426, 1345, 1209, 1112 cm⁻¹; HRMS (EI) calcd for C₃₄H₃₆FN₄O₃SSi (M+H) 595.2363, found 595.2360.7; $[\alpha]^{23}$ -150.9° (*c* 1.80, CHCl₃).

Synthesis of 1:

To a solution of **9** (96 mg, 0.16 mmol) in THF (2 mL) and H₂O (4 mL) at rt was added OXONE[®] (0.39 g, 0.64 mmol). The reaction mixture was stirred at rt for 5 hours and diluted with EtOAc (6 mL). The reaction mixture was washed with 1 N NaOH (3 mL) and brine (2 x 5 mL), dried with Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography (70% EtOAc in hexanes) to provide (S)-9-(*tert*-

butyldiphenylsilanyloxymethyl)-4-(4-fluorophenyl)-5-(3-methanesulfonylphenyl)-7,8-

dihydro-5H-pyrrolo[1,2-a]imidazole (79 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 5.6 Hz, 1H, pyrim.), 7.55-7.47 (m, 4H, aryl), 7.40-7.23 (m, 6H, aryl), 7.19-7.09 (m, 5H, aryl, pyrim.), 5.24 (app d, J = 7.6 Hz, 1H, C6-H), 3.96 (dd, J = 11.2, 2.0 Hz, 1H, C6-CH₂), 3.87 (dd, J = 11.2, 1.6 Hz, 1H, C6-CH₂), 3.27-3.12 (m, 1H, C8-H), 3.09 (s, 3H, S-CH₃), 2.98-2.87 (m, 2H, C8-H, C7-H), 2.51-2.46 (m, 1H, C7-H), 0.94 (s, 9H, OTBDPS); ¹³C NMR (100 MHz, CDCl₃) δ 165.5 (pyrim.), 163.1 (d, $J_{C-F} = 247$ Hz, aryl), 160.1 (pyrim.), 157.9 (imid.), 156.7 (pyrim.), 151.5 (imid.), 135.3 (aryl), 132.8 (aryl), 132.5 (aryl), 131.1 (aryl), 130.6 (d, $J_{C-F} = 8$ Hz, aryl), 129.8 (aryl), 129.7 (aryl), 127.7 (aryl), 127.4 (aryl), 121.3 (imid.), 118.2 (pyrim.), 116.1 (d, $J_{C-F} = 22$ Hz, aryl), 65.9 (C6-C), 61.2 (C6), 39.1 (SO₂-C), 30.3 (C8), 26.6 (OTBDPS), 20.7 (C7), 18.9 (OTBDPS); ¹⁹F NMR (377 MHz, CDCl₃) δ -111.3; IR (thin film) 2913, 1573, 1490, 1428, 1321, 1137, 1112 cm⁻¹; HRMS (EI) calcd for C₃₄H₃₆FN₄O₃SSi (M+H) 627.2261, found 627.2266; [α]²³_D -194.3° (c 1.30, CHCl₃).

(S)-9-(*tert*-butyldiphenylsilanyloxymethyl)-4-(4-fluorophenyl)-5-(3-methanesulfonylphenyl)-7,8-dihydro-5H-pyrrolo[1,2a]imidazole (76 mg, 0.12 mmol) was dissolved in propylamine (2 mL) and stirred for 8 hours at rt, concentrated under reduced pressure, and purified by flash chromatography (100% EtOAc) to provide (S)-9-(*tert*-butyldiphenylsilanyloxymethyl)-4-(4fluorophenyl)-5-(2-methylsulfanylpyrimidin-4-yl)-7,8-dihydro-5H-

pyrrolo[1,2-a]imidazole (57 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 5.2 Hz, 1H, pyrim.), 7.57-7.54 (m, 4H, aryl), 7.44-7.26 (m, 6H, aryl), 7.21-7.14 (m, 2H, aryl), 7.10-7.05 (m, 2H, aryl), 6.38 (d, J = 5.2 Hz, 1H, pyrim.), 5.15-5.05 (m, 2H, C6-H. N-H), 3.88-3.84 (m, 1H, C6-CH₂), 3.73 (dd, J = 10.4, 1.6 Hz, 1H, C6-CH₂), 3.22-3.09 (m, 3H, C8-H, N-Pr), 2.95-2.80 (m, 2H, C8-H, C7-H), 2.71-2.65 (m, 1H, C7-H), 1.55-1.45 (m, 2H, N-Pr), 0.94 (s, 9H, OTBDPS), 0.88 (t, J = 7.2 Hz, 3H, N-Pr); ¹³C NMR (CDCl₃, 100 MHz) δ 162.5 (d, $J_{C-F} = 246$ Hz, aryl), 162.2 (pyrim.), 157.4 (pyrim.), 157.3 (imid.), 157.2 (imid.), 147.7 (pyrim.), 135.3 (aryl), 135.3 (aryl), 133.0 (aryl), 132.3 (aryl), 131.8 (aryl), 130.6 (d, $J_{C-F} = 8$ Hz, aryl), 129.7 (aryl), 129.6 (aryl), 127.7 (aryl), 127.6 (aryl), 122.7 (imid), 115.3 (d, $J_{C-F} = 21$ Hz, aryl), 107.7 (pyrim.), 65.7 (C6-C), 60.0 (C6), 43.1 (N-Pr), 30.0 (C8), 26.5 (OTBDPS), 23.6 (N-Pr), 22.7 (C7), 19.0 (OTBDPS), 11.4 (N-Pr); ¹⁹F NMR (377 MHz, CDCl₃) δ -114.7; IR (thin film) 3264, 3071, 2959, 2858, 1572, 1529, 1492, 1112 cm⁻¹; HRMS (EI) calcd for C₃₆H₄₁FN₅OSi (M+H) 606.3064, found 606.3072; [α]²³_D -173.0° (*c* 1.00, CHCl₃).

To a solution of (S)-9-(*tert*-butyldiphenylsilanyloxymethyl)-4-(4-fluorophenyl)-5-(2methylsulfanylpyrimidin-4-yl)-7,8-dihydro-5H-pyrrolo[1,2-a]imidazole (45 mg, 0.07 mmol) in THF (2 mL) was added tetrabutylammonium fluoride (70 mg, 0.22 mmol) and the reaction mixture was stirred at rt for 2 hours. H₂O (4 mL) was added and the reaction mixture was extracted with EtOAc (3 x 5 mL). The organic phases were combined, washed with brine (5 mL), dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (2% *i*PrOH in EtOAc) to provide **1** (27 mg, 100%). ¹H NMR (377 MHz, CDCl₃) δ 8.05 (d, *J* = 4.8 Hz, 1H, aryl), 7.54 (dd, *J* = 8.4, 6.0 Hz, 2H, aryl), 7.06 (app t, *J* = 8.8 Hz, 2H, aryl), 6.41 (d, *J* = 5.2 Hz, 1H, aryl), 5.16-5.10 (m, 1H, N-H), 4.93 (bs, 1H, C6-H), 3.95 (dd, *J* = 11.2, 3.6 Hz, 1H, C6-CH₂), 3.84-3.79 (m, 1H, C6-CH₂), 3.39 (dd, J = 13.2, 5.6 Hz, 2H, N-Pr), 3.10-3.01 (m, 1H, C8-H), 2.91-2.75 (m, 2H, C8-H, C7-H), 2.43-2.36 (m, 1H, C7-H), 1.66 (q, J = 7.2 Hz, 2H, N-Pr), 1.60 (bs, 1H, O-H) 1.01 (t, J = 7.2 Hz, 3H, N-Pr); ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, $J_{C-F} = 246$ Hz, aryl), 161.8 (pyrim.), 158.0 (pyrim.), 157.0 (imid.), 156.5 (imid.), 147.5 (pyrim.), 131.2 (aryl), 130.6 (d, $J_{C-F} = 8$ Hz, aryl), 122.9 (imid.), 115.4 (d, $J_{C-F} = 21$ Hz, aryl), 108.2 (pyrim.), 65.3 (C6-C), 60.6 (C6), 43.3 (N-Pr), 30.6 (C8), 23.0 (N-Pr), 22.8 (C7), 11.4 (N-Pr); ¹⁹F NMR (377 MHz, CDCl₃) δ -114.2; IR (thin film) 3261, 2962, 2872, 1570, 1493, 1221 cm⁻¹; HRMS (EI) calcd for C₂₀H₂₃FN₅O (M+H) 368.1887, found 368.1897; [α]²³ D = -166.5° (c = 0.37, MeOH).

Synthesis of 10:

To a solution of **5** (5.00 g, 18.0 mmol) in CH_2Cl_2 (100 mL) cooled to - 78 °C was added dropwise isopropenylmagnesium bromide (0.6 M in ether, 60.0 mL, 36.0 mmol). The reaction mixture was stirred at -78 °C for 5 hours, slowly warmed to rt and stirred for 8 hours. Saturated

aqueous NH₄Cl (20 mL) was added and the resulting mixture was extracted with CH₂Cl₂ (3 x 10 mL). The organic phases were combined, washed with brine, dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (15% EtOAc in hexanes) to provide (S_S,S)-2-methylpropane-2-sulfinic acid [1-(*tert*-butyldimethylsilanyloxymethyl)-2-methylallyl]-amide (5.16 g, 90%) as a single diastereomer. ¹H NMR (400 MHz, CDCl₃) δ 5.09 (s, 1H, C4-H), 5.00 (s, 1H, C4-H), 3.98-3.94 (m, 2H, C2-H, N-H), 3.73 (dd, *J* = 9.6, 4.0 Hz, 1H, C1-H), 3.58 (dd, *J* = 9.6, 8.4 Hz, 1H, C1-H), 1.78 (s, 3H, C3-CH₃), 1.24 (s, 9H, S-C(CH₃)₃), 0.90 (s, 9H, OTBS), 0.08 (s, 3H, OTBS); ¹³C NMR (400 MHz, CDCl₃) 141.7 (C3), 115.6 (C4), 65.2 (C1), 60.8 (C2), 55.2 (SOtBu), 25.8 (SOtBu), 22.7 (OTBS), 18.6 (C3-C), 18.1 (OTBS), -5.4 (OTBS), -5.5 (OTBS); IR (thin film) 3450, 3282, 3203, 2955, 1650, 1472, 1363, 1256, 1078 cm⁻¹; HRMS (EI) calcd for C₁₅H₃₄FNO₂Si (M+H) 320.2080, found 320.2079; (S_SS) [α]²³_D+89.5° (*c* 1.05, CHCl₃), (R_S,R) [α]²⁵_D -85.5° (*c* 1.10, CHCl₃).

То solution $(S_{S}, 6S)$ -2-methylpropane-2-sulfinic а of acid [1-(*tert*butyldimethylsilanyloxymethyl)-2-methylallyl]-amide (0.28 g, 0.88 mmol) in methanol (5 mL) was added 4N HCl in dioxane (2.2 mL, 8.80 mmol). The reaction mixture was stirred at rt for 2 hours, concentrated under reduced pressure and the resulting oil was washed with ether revealing a yellow solid. The solid was washed with ether (2 x 15 mL) and the residual solvent was removed under reduced pressure providing 10 (0.12 g, 96%) as a white solid that was used without further purification; ¹H NMR (400 MHz, CD₃OD) δ 5.15 (d, J = 1.6 Hz, 1H, C4-H), 5.08 (s, 1H, C4-H), 3.80 (dd, J = 11.2, 4.0 Hz, 1H, C1-H), 3.76-3.73 (m, 1H, C2-H), 3.64 (dd, J = 11.2, 4.7 Hz, 1H, C1-H), 1.85 (s, 3H, C3-CH₃); ¹³C NMR (100 MHz, CD₃OD) δ 140.2 (C3), 115.7 (C4), 62.1 (C1), 58.9 (C2), 20.2 (C3-C); (S) $[\alpha]^{23}_{D}$ +2.94° (c 1.02, CH₃OH), (R) $[\alpha]^{23}_{D}$ -2.79° (c 1.04, CH₃OH).

Synthesis of 11:

To a solution of **10** (93 mg, 0.68 mmol) in DMF (3.5 mL) was added glyoxylic acid monohydrate (53 mg, 0.58 mmol) followed by K_2CO_3

(0.253 g, 1.84 mmol). The reaction mixture was stirred at rt for 3.5 hours and 4fluorophenyl tosylmethyl isonitrile⁴ (0.140 g, 0.48 mmol) was added and the reaction mixture was stirred at rt for 8 hours. The reaction was quenched with the addition of H₂O (5 mL), and the resulting mixture was extracted with EtOAc (4 x 5 mL). The organic phases were combined, washed with H_2O (2 x 5 mL), brine (2 x 5 mL), dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (2.0% \rightarrow 3.5% methanol in CH₂Cl₂ to provide (6S)-2-[4-(4fluorophenyl)-imidazol-1-yl]-3-methylbut-3-en-1-ol containing residual DMF. The mixture was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, J = 8.8, 5.6 Hz, 2H, aryl), 7.39 (d, J = 1.2 Hz, 1H, imid), 7.02 (app t, J = 6.8 Hz, 2H, aryl), 6.91 (d, J = 1.2 Hz, 1H, imid.), 5.55 (bs, 1H, O-H), 5.04 (s, 1H, C8-H), 4.90 (s, 1H, C8-H), 4.45 (dd, J = 8.4, 3.2 Hz, 1H, C6-H), 4.05 (dd, J = 12.0, 3.6 Hz, 1H, C6-CH₂), 3.96 $(dd, J = 12.0, 8.8 \text{ Hz}, 1\text{H}, C6\text{-}CH_2), 1.65 (s, 3\text{H}, C7\text{-}CH_3);$ ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, J_{C-F} = 244 Hz, aryl), 140.6 (imid.), 140.6 (C7), 137.2 (imid.) 129.8 (aryl), 126.1 (d, $J_{C-F} = 8$ Hz, aryl), 115.2 (d, $J_{C-F} = 22$ Hz, aryl), 114.3 (C8), 112.8 (imid.), 64.9 (C6-C), 63.0 (C6), 20.8 (C7-C); ¹⁹F NMR (400 MHz, CDCl₃) δ -115.3; IR (thin film) 3208, 2941, 2873, 1656, 1494, 1454, 1220 cm⁻¹; HRMS (EI) Calcd for C₁₄H₁₆FN₂O (M+H) 247.1267, found 247.1246; (6S) $[\alpha]^{23}_{D}$ +52.3° (c 1.11, CHCl₃), (6R) $[\alpha]^{23}_{D}$ -46.6° (c 1.20, CHCl₃).

To a solution of (6S)-2-[4-(4-fluorophenyl)-imidazol-1-yl]-3-methylbut-3-en-1-ol (104 mg (with minor amount of DMF), 0.422 mmol) in CH₂Cl₂ (4 mL) was added *i*Pr₂NEt (255 mg, 1.27 mmol), followed by *tert*-butylchlorodiphenylsilane (255 mg, 0.93 mmol) and a catalytic amount of 4-dimethylaminopyridine. The reaction mixture was stirred at rt for 8 hours, H₂O (5 mL) was added, and the reaction mixture was extracted with CH_2Cl_2 (2 x 5 mL). The organic layers were combined, washed with brine (2 x 5 mL), dried with Na₂SO₄, filtered, concentrated under reduced pressure, and purified by flash chromatography (30% EtOAc in hexanes) to provide 11 (176 mg, 86% over 2 steps). The enantiomeric excess was determined by chiral HPLC [CHIRALPAKTM AD column, detection at 254 nm, flow rate 1.0 mL/min, 85:15 hexane:*i*PrOH \rightarrow 75:25 hexane:*i*PrOH. $T_r(R)$ 5.2 min. and $T_r(S)$ 6.9 min.] providing the enantiomeric ratio: 6R:6S = 99.3:0.7(98.6% ee) ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.69 (m, 2H, aryl), 7.63-7.59 (m, 3H, aryl, imid.), 7.52-7.49 (m, 2H, aryl), 7.47-7.31 (m, 6H, aryl), 7.15 (d, J = 1.2 Hz, 1H, imid.), 7.09-7.04 (m, 2H, aryl), 5.05 (s, 1H, C8-H), 4.90 (s, 1H, C8-H), 4.54 (dd, J = 7.6, 4.0 Hz, 1H, C6-H), 4.09 (dd, J = 10.8, 4.0 Hz, 1H, C6-CH₂), 4.01 (dd, J = 10.8, 7.6 Hz, 1H, C6-CH₂), 1.80 (s, 3H, C7-CH₃), 1.04 (s, 9H, OTBDPS); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, J_{C-F} = 243 Hz, aryl), 141.0 (imid.), 140.7 (C7), 137.4 (imid.), 135.6 (aryl), 135.5 (aryl), 132.8 (aryl), 132.4 (aryl), 130.6 (d, $J_{C-F} = 3$ Hz, aryl), 129.9 (aryl), 129.9 (aryl), 127.8 (aryl), 127.8 (aryl), 126.2 (d, $J_{C-F} = 8$ Hz, aryl), 115.3 (d, $J_{C-F} = 22$ Hz, aryl), 114.6 (C8), 113.6 (imid.), 64.6 (C6-C), 64.0 (C6), 29.7 (OTBDPS), 20.5 (C7-C), 19.1 (OTBDPS); ¹⁹F NMR (377 MHz, CDCl₃) δ -116.8; IR (thin film) 2931, 1557, 1496, 1471, 1427 1113 cm⁻¹; HRMS (EI) calcd for $C_{30}H_{34}FN_2OSi$ (M+H) 485.2424, found 485.2450; (S) $[\alpha]^{23}_{D}$ +19.9° (c 1.19, CHCl₃), (R) $[\alpha]^{23}_{D}$ -20.3° (c 1.06, CHCl₃).

Synthesis of 12:

To a solution of **11** (0.660 g, 1.36 mmol) in toluene (18 mL) in a glove box was added [RhCl(coe)₂]₂ (48.8 mg, 0.068 mmol), tricyclohexylphosphine (57.2 mg, 0.204 mmol) and MgBr₂ (12.5 mg, 0.068 mmol). The reaction mixture was heated to 180 °C in a sealed high pressure flask for 40 hours, cooled to rt, concentrated and purified by flash silica gel chromatography (25% \rightarrow 50% EtOAc in hexanes) to provide **12** (402 mg, 61%). The enantiomeric purity was evaluated by chiral HPLC [Daicel ChiracelTM OD column, flow rate 1.0 mL/min, 90:10 hexane:*i*PrOH \rightarrow 75:25 hexane:*i*PrOH, T_r(6R,7R) 5.73, T_r(6S,7S) 6.33, T_r(6R,7S) 10.44 and T_r(6S,7R) 28.05] providing the enantiomeric ratio: 6R:6S = 4.0:96.0 (92% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.66 (m, 5.25H), 7.48-7.35 (m, 6H), 7.30-7.27 (m, 0.75H), 7.20 (s, 0.75H), 7.08-7.02 (m, 2.25H), 4.12-4.19 (ddd, *J* = 8.0, 4.0, 4.0 Hz, 0.25H), 3.90-3.76 (m, 2.75H), 3.19-3.10 (m, 1H), 3.03 (dd, *J* = 15.2, 8.0 Hz, 0.25H), 2.73-2.65 (m, 1H), 2.51 (dd, *J* = 16.0, 6.4 Hz, 0.75H), 1.29 (d, *J* = 6.8 Hz, 0.75H), 1.19 (d, *J* = 6.8 Hz, 2.25H), 1.08 (s, 6.75H), 1.00 (s, 2.25H); ¹⁹F NMR (377 MHz, CDCl₃) δ -117.06 (0.75H), -117.17 (0.25H); HRMS (EI) calcd for C₃₀H₃₄FN₂OSi (M+H) 485.2424, found 485.2424.

Synthesis of 13:

To a solution of **12** (215 mg, 0.440 mmol) in CH_2Cl_2 (20 mL) at -78 °C was added dropwise a cooled solution of Br_2 (73.5 mg, 0.46 mmol) in CH_2Cl_2 (0.5 mL) (*The slow addition of the bromine solution is imperative for optimal yields*). The reaction mixture was stirred for 15 minutes at -78 °C and a saturated aqueous solution of NaHCO₃ (5 mL) was added. The reaction mixture was warmed to rt and extracted with

 CH_2Cl_2 (2 x 5 mL). The organic phases were combined, washed with brine, dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (20%)EtOAc in hexanes) provide 3-bromo-5-(tertto butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-6-methyl-6.7-dihydro-5Hpyrrolo[1,2-a]imidazole (238.1 mg, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.90 (m, 2H), 7.63-7.61 (m, 2H), 7.48-7.22 (m, 8H), 7.15-7.09 (m, 2H), 4.18-4.15 (m, 0.25H), 4.04-3.99 (m, 1H), 3.91-3.86 (m, 1.75H), 3.36 (dd, J = 16.0, 8.0 Hz, 0.75H), 3.21-3.06(m, 1.25H), 3.01-2.94 (m, 0.25H), 2.55 (dd, J = 16.0, 2.4 Hz, 0.75H), 1.48 (d, J = 8 Hz, 0.75H, 1.29 (d, J = 8, 2.25H), 0.99 (s, 6.75H), 0.95 (s, 2.25H); HRMS (EI) calcd for C₃₀H₃₃BrFN₂OSi (M+H) 563.1530, found 563.1530.

To a solution of 3-bromo-5-(*tert*-butyldiphenylsilanyloxymethyl)-2-(4-fluoro-phenyl)-6-methyl-6,7-dihydro-5H-pyrrolo[1,2-

a]imidazole (0.220 g, 0.390 mmol) in dioxane (6 mL) was added 2methylsulfanyl-4-trimethylstannanylpyrimidine⁵ (0.248 g, 0.860), Pd₂(dba)₂•CHCl₃ (41.0 mg, 0.040 mmol), triphenylphosphine (21.0 mg, 0.080 mmol), LiCl (50.4 mg, 1.19 mmol), and CuI (33.7 mg,

0.177 mmol). The reaction mixture was heated to 170 °C for 12 hours, cooled to rt, filtered through a pad of celite, concentrated under reduced pressure, and purified by flash chromatography (20% EtOAc in hexanes) to provide 5-(*tert*-butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-6-methyl-3-(2-

methylsulfanylpyrimidin-4-yl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (0.144 g, 66%). HRMS (EI) calcd for $C_{35}H_{38}FN_4OSiS$ (M+H) 609.2520, found 609.2526.

To a solution of 5-(*tert*-Butyldiphenylsilanyloxymethyl)-2-(4fluorophenyl)-6-methyl-3-(2-methylsulfanylpyrimidin-4-yl)-6,7dihydro-5H-pyrrolo[1,2-a]imidazole (50 mg, 0.08 mmol) in THF (2 mL) and H₂O (4 mL) at rt was added OXONE[®] (196 mg, 0.32 mmol). The reaction mixture was stirred at rt for 8 hours and diluted with EtOAc (6 mL). The reaction mixture was washed with 1 N NaOH (3 mL) and brine (2 x 5 mL), dried with Na₂SO₄,

filtered, concentrated under reduced pressure, and purified by flash chromatography (50% EtOAc in hexanes) to provide (6S,7S)-(*tert*-butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)-6-methyl-6,7-dihydro-5H-

pyrrolo[1,2-a]imidazole (40.4 mg, 77%) ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 5.6, 1H, pyrim.), 7.60-7.52 (m, 2H, aryl), 7.48-7.47 (m, 2H, aryl), 7.43-7.25 (m, 6H, aryl), 7.23-7.14 (m, 3H, aryl, pyrim.), 7.11-7.08 (m, 2H, aryl), 4.73 (s, 1H, C6-H), 4.04 (dd, J = 11.2, 2.8 Hz, 1H, C6-CH₂), 3.93 (dd, J = 11.2, 1.6 Hz, 1H, C6-CH₂), 3.43 (dd, J = 16.8, 8.4 Hz, 1H, C8-H), 3.17-3.10 (m, 1H, C8-H), 3.07 (s, 3H, SO₂-CH₃), 2.56 (dd, J = 16.8, 1.6 Hz, 1H, C7-H), 1.34 (d, J = 7.2 Hz, 3H, C7-CH₃), 0.91 (s, 9H, OTBDPS); ¹³C NMR (100 MHz, CDCl₃) δ 165.7 (pyrim.), 163.1 (d, $J_{C-F} = 247$ Hz, aryl), 159.3 (pyrim.), 157.9 (imid.), 156.7 (imid.), 151.4 (pyrim.), 135.4 (aryl), 135.3 (aryl), 132.8 (aryl), 132.5 (aryl), 131.1 (d, $J_{C-F} = 3$ Hz, aryl), 130.6 (d, $J_{C-F} = 8$ Hz, aryl), 129.8 (aryl), 129.7 (aryl), 127.7 (aryl), 127.4 (aryl), 121.4 (imid.), 118.2 (pyrim.), 116.1 (d, $J_{C-F} = 22$ Hz, aryl), 68.9 (C6-C), 65.3 (C6), 39.1 (SO₂-C), 38.8 (C8), 32.6 (OTBDPS), 26.6 (C7), 22.0 (C7-C), 18.9 (OTBDPS); ¹⁹F NMR (377 MHz, CDCl₃) δ -112.6; IR (thin film) 2959, 1573, 1357, 1321, 1137, 1112 cm⁻¹; HRMS (EI) calcd for C₃₅H₃₈FN₄O₃SiS (M+H) 641.2418, found 641.2427; (6S,7S) [α]²³_D -161.8° (c 1.61, CHCl₃), (6R,7R) [α]²³_D +163.0° (c 1.20, CHCl₃).

(6S,7S)-(tert-butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-

3-(2-methanesulfonylpyrimidin-4-yl)-6-methyl-6,7-dihydro-5Hpyrrolo[1,2-a]imidazole (60 mg, 0.09 mmol) was dissolved in propylamine (2 mL) and stirred for 8 hours at rt, concentrated under reduced pressure, and purified by flash chromatography (30% EtOAc in hexanes) to provide (6S,7S)-{4-[5-(*tert*butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-6-methyl-6,7-

dihydro-5H-pyrrolo[1,2-a]imidazol-3-yl]-pyrimidin-2-yl}-propylamine (54 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 5.2 Hz, 1H, pyrim.), 5.57-7.53 (m, 4H, aryl), 7.44-7.29 (m, 6H, aryl), 7.26-7.19 (m, 2H, aryl), 7.11-7.05 (m, 2H, aryl), 6.38 (d, J = 5.2Hz, 1H, pyrim.), 5.01 (bs, 1H, N-H), 4.64 (s, 1H, C6-H), 3.86 (dd, J = 10.4, 3.6 Hz, 1H, C6-CH₂), 3.77 (dd, J = 10.8, 2.4 Hz, 1H, C6-CH₂), 3.33 (dd, J = 16.4, 8.4 Hz, 1H, C8-H), 3.23-3.08 (m, 3H, C8-H, N-Pr), 2.52 (dd, J = 16.4, 2.0 Hz, 1H, C7-H), 1.47-1.47 (m, 2H, N-Pr), 1.34 (d, J = 7.2 Hz, 3H, C7-CH₃), 0.93 (s, 9H, OTBDPS), 0.88 (t, J = 7.2 Hz, 3H, N-Pr); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, $J_{C-F} = 246$ Hz, aryl), 162.1 (pyrim.), 157.4 (pyrim.), 157.3 (imid.), 156.4 (imid.), 147.7 (pyrim.), 135.3 (aryl), 135.3 (aryl), 133.1 (aryl), 132.2 (aryl), 131.8 (aryl), 130.6 (d, $J_{C-F} = 8$ Hz, aryl), 129.8 (aryl), 129.7 (aryl), 127.7 (aryl), 127.6 (aryl), 122.8 (imid.), 115.3, (d, $J_{C-F} = 22$ Hz, aryl), 107.7 (pyrim.), 67.8 (C6-C), 65.2 (C6), 43.2 (N-Pr), 38.4 (C8), 32.0 (OTBDPS), 22.7 (N-Pr), 26.5 (C7), 22.0 (C7-CH₃), 19.0 (OTBDPS), 11.4 (N-Pr): ¹⁹F NMR (377 MHz, CDCl₃) δ - 114.7; IR (thin film) 3264, 2959, 1569, 1523, 1492, 1112 cm⁻¹; HRMS (EI) calcd for C₃₇H₄₂FN₅OSi (M⁺) 619.3142, found 619.3126; (6S,7S) [α]²³_D -152.8° (c 1.11, CHCl₃), (6R,7R) [α]²³_D +150.2° (c 1.08, CHCl₃).

To a solution of (6S,7S)-{4-[5-(tert-butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-6-methyl-6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-3-yl]-pyrimidin-2-yl}-propylamine (33.2 mg, 0.054 mmol) in THF (2 mL) was added tetrabutylammonium fluoride (78.2 mg, 0.216 mmol), and the reaction mixture was stirred at rt for 3 hours. H₂O (4 mL) was added, and the reaction mixture was extracted with EtOAc (3 x 5 mL). The organic phases were combined, washed with brine (5 mL), dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (2% iPrOH in EtOAc) to provide **13** (17.2 mg, 87%). H¹ NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 5.2 Hz, 1H, pyrim.), 7.58 (dd, J = 8.8, 5.6 Hz, 2H, aryl), 7.10 (dd, J = 8.8, 8.4 Hz, 2H, aryl), 6.46 (d, J = 5.2 Hz, 1H, pyrim.), 5.20-5.17 (m, 1H, N-H), 4.47-4.40 (m, 1H, C6-H), 4.03-4.00 (m, 1H, C6-CH₂), 3.85-3.81 (m, 1H, C6-CH₂), 3.46-3.41 (m, 2H, N-Pr), 3.26 (dd, J = 16.4, 7.6 Hz, 1H, C8-H), 2.82-2.78 (m, 1H, C7-H), 2.54 (d, J = 16.4 Hz, 1H, C8-H), 1.76-1.64 (m, 2H, N-Pr), 1.64 (bs, 1H, O-H), 1.29 (d, J = 7.2 Hz, 3H, C7-CH₃), 1.05 (t, J = 7.2 Hz, 3H, N-Pr); ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, J_{C-F} = 246 Hz, aryl), 161.7 (pyrim.), 158.0 (pyrim.), 156.9 (imid.), 155.7 (imid.), 147.4 (pyrim.), 131.1 (aryl), 130.5 (d, $J_{C-F} = 9$ Hz, aryl), 122.9 (imid.), 115.4 (d, $J_{C-F} = 22$ Hz, aryl), 108.4 (imid.), 68.2 (C6-C), 64.6 (C6), 43.3 (N-Pr), 38.8 (C8), 31.2 (N-Pr), 22.8 (C7), 14.1 (C7-C), 11.4 (N-Pr); 19 F NMR (377 MHz, CDCl₃) δ -114.3; IR (thin film) ; HRMS (EI) calcd for C₂₁H₂₅FN₅O (M+H) 382.2043, found 382.2050; (6S,7S) $[\alpha]^{23}_{D}$ -107.8° (c 0.71, CHCl₃), (6R,7R) $[\alpha]^{23}_{D}$ +101.9° (*c* 1.29, CHCl₂).

Synthesis of 14:

To a solution of **5** (2.00 g, 7.21 mmol) in CH_2Cl_2 (30 mL) cooled to -78 °C was added drop wise allylmagnesium bromide (1.0 M in ether, 14.4 mL, 14.4 mmol). The reaction mixture was stirred at -78 °C for 5 hours and slowly warmed to rt. Saturated aqueous NH_4Cl (20 mL)

was added, and the resulting mixture was extracted with CH_2Cl_2 (3 x 10 mL). The organic phases were combined, washed with brine, dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (20% EtOAc provide (S_{S},S) -2-methylpropane-2-sulfinic in hexanes) to acid [1-(*tert*butyldimethylsilanyloxymethyl)-but-3-enyl]-amide (2.12 g, 92%) as а single diastereomer; ¹H NMR (400 MHz, CDCl₃) δ 5.81-5.75 (m, 1H, C4-H), 5.17-5.12 (m, 2H, C5-H), 3.66 (dd, J = 10.0, 4.4 Hz, 1H, C1-H), 3.53 (dd, J = 9.6, 5.2 Hz, 1H, C1-H), 3.49 (d, J = 6.4 Hz, 1H, N-H), 3.38-3.30 (m, 1H, C2-H), 2.55-2.48 (m, 1H, C3-H), 2.43-2.36(m, 1H, C3-H), 1.20 (s, 9H, SOtBu), 0.90 (s, 9H, OTBS), 0.05 (s, 6H, OTBS); ¹³C (100 MHz, CDCl₃) δ 134,3 (C4), 118,5 (C5), 64,9 (C1), 56,4 (C2), 55,8 (SOtBu), 37,0 (C3), 25.8 (SOtBu), 22.5 (OTBS), 18.2 (OTBS), -5.5 (OTBS), -5.5 (OTBS); IR (thin film) 3222, 2955, 2857, 1640, 1472, 1254, 1058 cm⁻¹; HRMS (EI) calcd for C₁₅H₃₄NO₂S

(M+H) 320.2080, found 320.2085; (S_S,S) $[\alpha]^{23}{}_{D}$ +57.8° (*c* 1.15, CHCl₃), (R_S,R) $[\alpha]^{23}{}_{D}$ - 56.8° (*c* 1.02, CHCl₃).

То solution of (S_{S},S) -2-methylpropane-2-sulfinic acid [1-(*tert*а butyldimethylsilanyloxymethyl)-but-3-enyl]-amide (1.72 g, 5.38 mmol) in methanol (20 mL) at 0 °C was added 4N HCl in dioxane (6.73 mL, 26.9 mmol). The reaction mixture was warmed to rt and stirred for 2 hours, concentrated under reduced pressure and the resulting oil was washed with ether (20 mL) revealing a yellow solid. The solid was washed with ether (2 x 30 mL) and residual solvent was removed under reduced pressure providing 14 (0.70 g, 94%) as a white solid that was used without further purification. 1 H NMR (400 MHz, CD₃OD) δ 5.78-5.68 (m, 1H, C4-H), 5.18-5.11 (m, 2H, C5-H), 3.67 (dd, J = 11.6, 3.6 Hz, 1H, C1-H), 3.47 (dd, J = 11.6, 6.8 Hz, 1H, C1-H), 3.19-3.14 (m, 100)1H, C2-H), 2.39-2.52 (m, 2H, C3-H); ¹³C NMR (100 MHz, CD₃OD) δ 163.5 (C4), 150.4 (C5), 92.1 (C1), 84.1 (C2), 65.0 C3); (S) $[\alpha]^{25}_{D}$ +14.1° (c 0.64, CH₃OH), (R) $[\alpha]^{25}_{D}$ -12.2 (c 1.09, CH₃OH).

Synthesis of 15:

To a solution of **14** (0.287 g, 2.09 mmol) in DMF (10 mL) was added glyoxylic acid monohydrate (0.165 g, 1.79 mmol) followed by K_2CO_3 (1.10 g, 7.94 mmol). The reaction mixture was stirred at rt for 3.5 hours and 4-fluorophenyl tosylmethyl isonitrile⁴ (0.430 g, 1.49 mmol) was added, and the reaction mixture was stirred at rt for

8 hours. The reaction was quenched with the addition of H₂O (10 mL) and the resulting mixture was extracted with EtOAc (4 x 10 mL). The organic phases were combined, washed with H₂O (2 x 10 mL), brine (2 x 10 mL), dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (2.0% \rightarrow 3.5% methanol in CH₂Cl₂ to provide (S)-2-[4-(4-fluorophenyl)-imidazol-1-yl]-pent-4-en-1-ol with residual DMF as a minor impurity. This sample was carried forward without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.41 (m, 2H, aryl), 7.31 (d, *J* = 1.2 Hz, 1H, imid.), 7.03-6.98 (m, 2H, aryl), 6.87 (d, *J* = 0.8 Hz, 1H, imid.), 5.63-5.53 (m, 1H, C8-H), 5.30 (bs, 1H, O-H), 5.07-5.00 (m, 2H, C9-H), 4.05-3.98 (m, 1H, C6-H), 3.80 (dd, *J* = 12.0, 3.2 Hz, 1H, C6-CH₂), 3.72 (dd, *J* = 12.4, 8.0 Hz, 1H, C6-CH₂), 2.54-2.39 (m, 2H, C7-H); ¹³C NMR (100 MHz, CDCl₃) δ 161.8 (d, *J_{C-F}* = 244 Hz, aryl), 140.5 (imid.), 136.7 (imid.), 132.5 (C8), 128.7 (d, *J_{C-F}* = 3 Hz, aryl), 126.0 (d, *J_{C-F}* = 8 Hz, aryl), 118.7 (C9), 115.2 (d, *J_{C-F}* = 21 Hz), 112.1 (imid.), 64.8 (C6-C), 61.0 (C6), 35.5 (C7); ¹⁹F NMR (377 MHz, CDCl₃) δ -116.2; IR (thin film) 3226, 2837, 1639, 1550, 1221 cm⁻¹; HRMS calcd for C₁₄H₁₆FN₂O (M+H) 247.1247, found 247.1243; (S) [α]²³_D +28.8° (*c* 1.04, CHCl₃), (R) [α]²³_D -29.6°.

To a solution of (S)-2-[4-(4-fluorophenyl)-imidazol-1-yl]-pent-4-en-1-ol (1.49 mmol) in CH_2Cl_2 (5 mL) was added *i*Pr₂NEt (0.577 g, 4.47 mmol), followed by *tert*-butylchlorodiphenylsilane (0.90 g, 3.29 mmol) and a catalytic amount of 4-dimethylaminopyridine. The reaction mixture was stirred at rt for 8 hours, H₂O (5 mL) was added, and then the reaction mixture was extracted with CH_2Cl_2 (2 x 10 mL). The organic layers were combined, washed with brine (2 x 5 mL), dried with Na₂SO₄, filtered,

concentrated under reduced pressure, and purified by flash chromatography (20% EtOAc in hexanes) to provide **15** (0.566 g, 78% over two steps). ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.69 (m, 2H, aryl), 7.57-7.50 (m, 5H, aryl, imid.), 7.44-7.40 (m, 2H, aryl), 7.37-7.31 (m, 4H, aryl), 7.18 (d, J = 0.8 Hz, 1H, imid.), 7.09-7.05 (m, 2H, aryl), 5.69-5.59 (m, 1H, C8-H), 5.12-5.05 (m, 2H, C9-H), 4.15-4.08 (m, 1H, C6-H), 3.87 (dd, J = 10.8, 4.0 Hz, 1H, C6-CH₂), 3.78 (dd, J = 10.8, 6.0 Hz, 1H, C6-CH₂), 2.69-2.56 (m, 2H, C7-CH₂), 1.04 (s, 9H, OTBDPS); ¹³C NMR (100 MHz, CDCl₃) δ 161.8 (d, $J_{C-F} = 244$ Hz, aryl), 141.1 (imid.), 137.0 (imid.), 135.5 (aryl), 135.4 (aryl), 132.8 (C8), 132.6 (aryl), 132.4 (aryl), 130.6 (d, $J_{C-F} = 3$ Hz, aryl), 129.9 (aryl), 129.9 (aryl), 127.8 (aryl), 127.8 (aryl), 126.3, (d, $J_{C-F} = 8$ Hz, aryl), 118.8 (C9), 115.3 (d, $J_{C-F} = 22$ Hz), 113.0 (imid.), 66.0 (C6-C), 59.8 (C6), 35.6 (C7), 26.7 (OTBDPS), 19.1 (OTBDPS); ¹⁹F NMR (377 MHz, CDCl₃) δ - 116.7; IR (thin film) 2931, 1557, 1496, 1471, 1427 1113 cm⁻¹; HRMS (EI) calcd for C₃₀H₃₄FN₂OSi (M+H) 485.2424, found 485.2425; (S) [α]²³_D -2.3° (*c* 1.10, CHCl₃), (R) [α]²³_D +0.9° (*c* 1.27, CHCl₃).

Synthesis of 16:

To a solution of 15 (0.05 g, 0.10 mmol) in toluene (1 mL) in a glove box was added [RhCl(coe)₂]₂ (3.7 mg, 5.0 µmol), tricyclohexylphosphine (5.8 mg, 21 µmol) and MgBr₂ (1.0 mg, 5.0 µmol). The reaction mixture was heated to 180 °C in a sealed high pressure flask for 20 hours, cooled to rt and an additional loading of catalyst ([RhCl(coe)₂]₂ (3.7 mg, 5.0 μ mol), tricyclohexylphosphine (5.8 mg, 21 μ mol) and MgBr₂ (1.0 mg, 5.0 μ mol) in 0.2 mL toluene) was added. The reaction mixture was heated to 180 °C and stirred for an additional 20 hours, cooled to rt, concentrated and purified by flash silica gel chromatography ($25\% \rightarrow 50\%$ EtOAc in hexanes) to provide 16 (26.2 mg, 52%, 92% ee). The enantiomeric purity was evaluated by chiral HPLC [Daicel ChiracelTM OD column, flow rate 1.0 mL/min, 90:10 hexane:*i*PrOH \rightarrow 75:25 hexane:*i*PrOH, T_r 6.31 (6S,8S) and 19.47 (6R.8R) providing the enantiomeric ratio: (6S.7S):(6R.7R) = 4.1:95.9 (92% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.63 (m, 6H, aryl), 7.45-7.37 (m, 6H, aryl), 7.21 (s, 1H, imid.), 7.08-7.02 (m, 2H, aryl), 4.38-4.28 (m, 1H, C6-H), 3.85 (dd, J = 10.8, 3.6 Hz, 1H, C6-CH₂), 3.76 (dd, J = 10.8, 7.6 Hz, 1H, C6-CH₂), 3.31-3.18 (m, 1H, C8-H), 2.77 (ddd, J = 13.2, 7.6, 7.6 Hz, 1H, C7-H), 1.79 (ddd, J = 12.8, 7.6, 7.6 Hz, 1H, C7-H) 1.39 $(d, J = 7.2 \text{ Hz}, 3H, C8-CH_3), 1.09 (s, 9H, OTBDPS);$ ¹³C NMR (100 MHz, CDCl₃) δ 161.8 (d, $J_{C-F} = 244$ Hz, aryl), 157.9 (imid.), 145.0 (imid.), 135.7 (aryl), 135.6 (aryl), 132.8 (aryl), 132.7 (aryl), 131.1 (d, $J_{C-F} = 3$ Hz, aryl), 130.1 (aryl), 130.0 (aryl) 127.9 (aryl), 127.9 (aryl), 126.4 (d, $J_{C-F} = 8$ Hz, aryl), 115.3 (d, $J_{C-F} = 22$ Hz, aryl), 110.0 (imid.), 66.7 (C6-C), 58.1 (C6), 37.7 (C8), 30.6 (OTBDPS), 26.9 (C7), 19.3 (C8-C), 19.2 (OTBDPS); ¹⁹F (377 MHz, CDCl₃) δ -117.07; IR (thin film) 2931, 2858, 1547, 1492, 1428, 1112 cm⁻¹; HRMS (EI) calcd for C₃₀H₃₄FN₂OSi (M+H) 485,2424, found 485,2415; $(6S,8S) [\alpha]^{23}_{D} + 18.1^{\circ} (c 3.37, CHCl_3), (6R,8R) [\alpha]^{23}_{D} - 19.6^{\circ} (c 2.83, CHCl_3).$

Synthesis of 17:

To a solution of **15** (84 mg, 0.17 mmol) in CH_2Cl_2 (20 mL) at -78 °C was added dropwise a cooled solution of Br_2 (0.1 M in CH_2Cl_2 , 1.7 mL, 0.17 mmol) in CH_2Cl_2 (17 mL) (*The slow addition of the bromine solution is imperative for optimal yields*). The reaction mixture was

stirred for 15 minutes at -78 °C and a saturated aqueous solution of NaHCO₃ (10 mL) was added. The reaction mixture was warmed to rt and extracted with CH_2Cl_2 (2 x 5 mL). The organic phases were combined, washed with brine, dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (20% EtOAc in hexanes) to provide (6S.8S)-3-bromo-5-(tert-butyldiphenylsilanyloxymethyl)-2-(4fluorophenyl)-7-methyl-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (76.1 mg, 80%); ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.81 (m, 2H, aryl), 7.65-7.62 (m, 2H, aryl), 7.59-7.57 (m, 2H, aryl), 7.44-7.32 (m, 6H, aryl), 7.09-7.02 (m, 2H, aryl), 4.34-4.29 (m, 1H, C6-H), 4.06 (dd, J = 10.8, 5.6 Hz, 1H, C6-CH₂), 3.95 (dd, J = 10.4, 2.8 Hz, 1H, C6-CH₂), 3.27-3.18 (m, 1H, C8-H), 2.95 (ddd, J = 13.2, 9.2, 9.2 Hz, 1H, C7-H), 2.32 (ddd, J = 13.6, 4.8, 9.24.8 Hz, 1H, C7-H), 1.43 (d, J = 7.2 Hz, 3H, C8-CH₃), 1.03 (s, 9H, OTBDPS); ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, J_{C-F} = 244 Hz, aryl), 158.6 (imid.), 141.7 (imid.), 135.6 (aryl), 135.5 (aryl), 132.9 (aryl), 132.7 (aryl), 129.9 (d, $J_{C-F} = 3$ Hz, aryl), 129.9 (aryl), 129.8 (aryl), 129.3 (d, $J_{C-F} = 8$ Hz, aryl), 127.9 (aryl), 127.7 (aryl), 115.0 (d, $J_{C-F} = 22$ Hz, aryl), 92.8 (imid.), 64.1 (C6-C), 58.1 (C6), 37.2 (C8), 30.5 (OTBDPS), 26.8 (C7), 19.8 (C8-C), 19.2 (OTBDPS); ¹⁹F NMR (377 MHz, CDCl₃) δ -115.8; IR (thin film) 2959, 2857, 1540, 1113 cm⁻¹; HRMS (EI) calcd for $C_{30}H_{33}BrFN_2OSi$ (M+H) 563.1530, found 563.1543; (6S,8S) $[\alpha]^{23}_{D}$ +21.7°, (6R,8R) $[\alpha]^{23}_{D}$ -23.1° (*c* 0.95, CHCl₃).

То solution of (6S,8S)-3-bromo-5-(tertа butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-7-methyl-6,7dihydro-5H-pyrrolo[1,2-a]imidazole (60 mg, 0.11 mmol) in dioxane mL) was added 2-methylsulfanyl-4-(3 trimethylstannanylpyrimidine⁵ (67 0.23 mmol). mg, Pd₂(dba)₂•CHCl₃ (12 mg, 0.01 mmol), triphenylphosphine (6.0 mg, 0.02 mmol), LiCl (16 mg, 0.37 mmol), and CuI (10 mg, 0.05

mmol). The reaction mixture was heated to 170 °C for 12 hours, cooled to rt, filtered through a pad of celite, concentrated under reduced pressure, and purified by flash chromatography (30% EtOAc in hexanes) to provide (6S,8S)-5-(*tert*-butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-7-methyl-3-(2-

methylsulfanylpyrimidin-4-yl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (0.54 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 5.2 Hz, 1H, pyrim.), 7.50-7.46 (m, 4H, aryl), 7.41-7.31 (m, 6H, aryl), 7.26-7.21 (m, 2H, aryl), 7.08 (app t, J = 8.4 Hz, 2H, aryl), 6.64 (d, J = 5.2, 1H, pyrim.), 5.05-5.04 (m, 1H, C6-H), 3.79-3.72 (m, 2H, C6-CH₂), 3.30-3.27 (m, 1H, C8-H), 3.07 (ddd, J = 13.2, 9.2, 9.2 Hz, 1H, C7-H), 2.48 (s, 3H, S-CH₃), 2.36 (ddd, J = 13.2, 4.0, 4.0 Hz, 1H, C8-H), 1.46 (d, J = 7.2 Hz, 3H, C8-CH₃), 0.97 (s, 9H, OTBDPS); ¹³C NMR (100 MHz, CDCl₃) δ 172.3 (pyrim.), 162.6 (d, $J_{C-F} = 241$ Hz, aryl), 161.0 (pyrim.), 156.6 (pyrim.), 156.2 (imid.), 148.8 (imid.), 135.4 (aryl), 135.4 (aryl), 132.9 (aryl), 132.5 (aryl), 131.4 (aryl), 130.6 (d, $J_{C-F} = 8$ Hz, aryl), 129.8 (aryl), 129.8 (aryl), 127.7 (aryl), 127.6 (aryl), 121.9 (imid.), 115.6 (d, $J_{C-F} = 22$ Hz, aryl), 113.0 (pyrim.), 64.9 (C6-C), 59.5 (C6), 37.5 (S-C), 30.0 (C8), 26.7 (OTBDPS), 19.6 (C7), 19.1 (C7-C), 14.0 (OTBDPS); ¹⁹F NMR (377 MHz, CDCl₃) δ -114.0; IR (thin film) 2959, 1540, 1427 cm⁻¹; HRMS (EI) calcd for C₃₅H₃₈FN₄OSSi (M+H) 609.2520, found 609.2543; (6S,8S) [α]²³_D +176.4° (*c* 1.51, CHCl₃), (6R,8R) [α]²³_D -186.7° (*c* 1.09, CHCl₃).

To a solution of (6S,8S)-5-(*tert*-butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)-7-methyl-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (105 mg, 0.17 mmol) in THF (4 mL) and H₂O (6 mL) at rt was added OXONE[®] (627 mg, 1.02 mmol). The reaction mixture was stirred at rt for 8 hours and diluted with EtOAc (10 mL). The reaction mixture was washed

with 1 N NaOH (6 mL) and brine (2 x 5 mL), dried with Na₂SO₄, filtered, concentrated under reduced pressure to provide (6S,8S)-{4-[5-(tert-butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-7-methyl-6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-3-yl]-pyrimidin-2-yl}propylamine, which was taken on without purification. The product can be purified by flash chromatography (50% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 5.6 Hz, 1H, pyrim.), 7.49-7.36 (m, 5H, aryl), 7.31-7.27 (m, 5H, aryl), 7.18-7.12 (m, 4H, arvl), 7.10 (d, J = 5.6 Hz, 1H, pyrim.), 5.16-5.14 (m, 1H, C6-H), 4.01 (dd, J = 11.2, 3.6Hz, 1H, C6-CH₂), 3.80 (dd, J = 11.2, 1.6 Hz, 1H, C6-CH₂), 3.38-3.29 (m, 1H, C8-H), 3.13 (ddd, J = 13.2, 9.6, 9.6 Hz, 1H, C7-H), 3.08 (s, 3H, SO₂-C), 2.39 (ddd, J = 13.2, 4.4, 10.24.4 Hz, 1H, C7-H), 1.52 (d, J = 7.2 Hz, 3H, C8-C), 0.93 (s, 9H, OTBDPS); ¹³C NMR (100 MHz, CDCl₃) δ 164.2 (pyrim.), 164.1 (d, J_{C-F} = 243 Hz, aryl), 161.7 (pyrim.), 157.9 (pyrim.), 156.7 (imid.), 151.5 (imid.), 135.3 (aryl), 135.3 (aryl), 132.8 (aryl), 132.6 (aryl), 131.0 (d, *J*_{*C-F*} = 4 Hz, aryl), 130.4, (d, *J*_{*C-F*} = 8 Hz, aryl), 129.7 (aryl), 129.7 (aryl), 127.7 (aryl), 127.5 (aryl), 121.2 (imid.), 118.4 (pyrim.), 116.0 (d, $J_{C-F} = 21$ Hz, aryl), 64.6 (C6-C), 60.2 (C6), 39.0 (SO₂-C), 37.4 (C8), 26.7 (OTBDPS), 19.1 (C7), 19.0 (C8-C), 14.1 (OTBDPS); ¹⁹F NMR (377 MHz, CDCl₃) δ -112.8; IR (thin film) 2959, 1573, 1357, 1321, 1137, 1112 cm⁻¹; HRMS (EI) calcd for C₃₅H₃₈FN₄O₃SSi (M+H), found 641.2421; $(6S,8S) [\alpha]^{23}_{D} + 190.4^{\circ} (c \ 1.06, CHCl_3), (6R,8R) [\alpha]^{23}_{D} - 206.1^{\circ} (c \ 0.98, CHCl_3).$

(6S,8S)-5-(*tert*-Butyldiphenylsilanyloxymethyl)-2-(4fluorophenyl)-3-(2-methanesulfonylpyrimidin-4-yl)-7-methyl-6,7dihydro-5H-pyrrolo[1,2-a]imidazole (0.17 mmol) was dissolved in propylamine (2 mL) and stirred for 8 hours at rt, concentrated under reduced pressure, and purified by flash chromatography (30% EtOAc in hexanes) to provide (6S,8S)-{4-[5-(*tert*butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-7-methyl-6,7-

dihydro-5H-pyrrolo[1,2-a]imidazol-3-yl]-pyrimidin-2-yl}-propylamine (96 mg, 91% over two steps); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 5.6 Hz, 1H, pyrim.), 7.63-7.48 (m, 4H, aryl), 7.42-7.31 (m, 6H, aryl), 7.25-7.22 (m, 2H, aryl), 7.07-7.02 (m, 2H, aryl), 6.29 (d, *J* = 5.2 Hz, 1H, pyrim.), 5.20-4.95 (m, 2H, C6-H, N-H), 3.81-3.74 (m, 2H, C6-CH₂), 3.34-3.23 (m, 3H, C8-H, N-Pr), 3.06 (ddd, *J* = 12.8, 9.6, 9.6 Hz, 1H, C7-H), 2.35 (ddd, *J* = 13.2, 4.4 Hz, 1H, C7-H), 1.58-1.45 (m, 2H, N-Pr), 1.45 (d, *J* = 6.9 Hz, 3H, C8-C), 0.97 (s, 9H, OTBDPS), 0.90 (t, *J* = 7.6 Hz, 3H, N-Pr); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, *J*_{C-F} = 246 Hz, aryl), 162.1 (pyrim.), 160.2 (pyrim.), 157.4 (pyrim.), 157.3 (imid.), 147.6 (imid.), 135.4 (aryl), 135.3 (aryl), 133.1 (aryl), 132.6 (aryl), 131.7 (d, *J*_{C-F} = 3 Hz, aryl), 130.7 (d, *J*_{C-F} = 8 Hz, aryl), 129.7 (aryl), 129.7 (aryl), 127.7 (aryl), 127.6 (aryl), 122.6 (imid.), 115.3 (d, *J*_{C-F} = 21 Hz, aryl), 108.0 (pyrim.), 65.2 (C6-C), 59.2 (C6), 43.2 (N-Pr), 37.5 (C8), 30.0 (N-Pr), 26.7 (OTBDPS), 23.6 (N-Pr), 19.7 (C7), 19.1 (C8-C), 11.4 (OTBDPS); ¹⁹F (377 MHz, CDCl₃) δ -114.8; IR (thin film) 3264, 2959, 1569, 1523,

1492, 1112 cm⁻¹; HRMS (EI) calcd for $C_{37}H_{43}FN_5OSi$ (M+H) 620.3221, found 620.3211; (6S,8S) $[\alpha]^{23}{}_{\rm D}$ +176.5° (*c* 2.21, CHCl₃), (6R,8R) $[\alpha]^{23}{}_{\rm D}$ -178.8° (*c* 1.00, CHCl₃).

To a solution of (6S,8S)-{4-[5-(*tert*-butyldiphenylsilanyloxymethyl)-2-(4-fluorophenyl)-7-methyl-6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-3-yl]-pyrimidin-2-yl}-propylamine (54.0 mg, 0.087 mmol) in THF (2 mL) was added tetrabutylammonium fluoride (1 M THF, 0.17 mL, 0.17 mmol) and the reaction mixture was stirred at rt for 3 hours. H_2O (4 mL) was added, and the reaction mixture was extracted with EtOAc (3 x 5 mL). The organic layers were combined, washed with brine (5 mL), dried with Na₂SO₄, filtered, concentrated under reduced pressure and purified by flash chromatography (2% iPrOH in EtOAc) to provide 17 (32.8 mg, 99%); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 5.2 Hz, 1H, pyrim.), 7.52-7.49 (m, 2H, aryl), 7.07-7.02 (m, 2H, aryl), 6.35 (d, J = 5.2 Hz, 1H, aryl), 5.24 (bs, 1H, N-H), 4.80 (bs, 1H, C6-H), 3.94 (dd, J = 11.6, 3.6 Hz, 1H, C6-CH₂), 3.82 (dd, J = 11.2, 6.4 Hz, 1H, C6-CH₂), 3.41-3.36 (m, 2H, N-Pr), 3.26-3.21 (m, 1H, C8-H), 3.02 (ddd, J = 13.2, 9.2, 9.2 Hz, 1H, C7-H), 2.06-2.01 (m, 1H, C8-H), 1.70-1.61 (m, 1H, C8-H), 1.70-1.62H, N-Pr), 1.48 (d, J = 7.2 Hz, 3H, C8-CH₃), 1.00 (d, J = 7.2 Hz, 3H, N-Pr), 3.00-0.50 (very bs, 1H, O-H); 13 C NMR (CDCl₃, 100 MHz) δ 162.6 (d, J_{C-F} = 246 Hz, aryl), 161.7 (pyrim.), 160.3 (pyrim.), 158.1 (pyrim.), 157.1 (imid.), 147.9 (imid.), 131.2 (aryl), 130.7 (d, J = 9 Hz, aryl), 122.6 (imid.), 115.4 (d, $J_{C-F} = 21$ Hz, aryl), 108.8 (pyrim.), 66.3 (C6-C), 60.5 (C6), 43.3 (N-Pr), 38.4 (C8), 29.9 (N-Pr), 22.8 (N-Pr), 20.1 (C8-C), 11.4 (N-Pr); ¹⁹F NMR (377 MHz, CDCl₃) δ -113.0; IR (thin film) 3261, 2962, 2872, 1570, 1493, 1221 cm^{-1} ; HRMS (EI) calcd for C₂₁H₂₅FN₅O (M+H) 382.2043, found 382.2045; (6S,7S) $[\alpha]^{23}_{D}$ -172.8 (c 0.91, CH₃OH), (6R,7R) $[\alpha]^{23}_{D}$ +163.9° (c 0.59, CH₃OH).

Assay Data

Homogeneous time resolved fluorescence assay

Enzyme inhibition studies were performed in 384-well polystyrene HTRF plates (Grainier) for 15 min at ambient temperature (~ 22 °C) with , 0.2 μ M biotinylated GST-ATF2, 1 μ M ATP, 0.3 nM activated JNK3 α 1 (with a control in the absence of kinase for determining the basal signal) in 10 μ L volumes containing the final concentrations of the following: 50 mM Hepes, pH 7.0, 2.5 mM MgCl₂, 0.1 mg/ml bovine serum albumin, 1 mM DL-dithiothreitol, 0.01% Triton X-100 (all from Sigma-Aldrich), and 5% DMSO (with or without compound). A 10 point titration of all compounds was carried out in 3–fold dilutions from 10pM –2000 nM. After 15 min, the kinase reaction was terminated by addition of 10 μ l of quenching solution [50 mM Hepes, pH 7.0, with 14 mM EDTA, 0.01% Triton X-100, 200 mM KF (all from Sigma-Aldrich)]. The detection reagents, streptavidin-xlAPC (400 nM) and europium cryptate-labeled rabbit polyclonal antiphospho-ATF2 (0.43 ng/well), were from Cis-Bio. The HTRF signal was detected using a viewlux plate reader (Perkin Elmer) 1h post-quenching. The data from four different experiments were averaged and presented as the mean \pm standard deviation. IC₅₀ values were determined by fitting the data to the equation for a four-parameter logistic.

Compound	IC ₅₀ curve fit	Avg. JNK3			
_	1 (nM)	1 (nM)	1 (nM)	1 (nM)	IC ₅₀ (nM)
1	4.47	4.30	7.35	5.40	5.38 ± 1.4
13	3.42	5.82	6.03	5.90	5.29 ± 1.25
ent-13	1.30	1.60	2.09	1.53	1.63 ± 0.34
17	5.10	5.23	5.03	4.06	4.85 ± 0.54
<i>ent</i> -17	5.59	9.87	8.85	8.09	8.10 ± 1.82

Radioactivity Assay Data

Enzyme inhibition studies were performed at 27 °C-32 °C for 60 min with 0.5 μ M biotinylated GST-ATF2, 1 μ M ATP, 0.5 nM activated JNK3 α 1 in 50 μ L volumes containing the final concentrations of the following: 50mM HEPES (Sigma), pH 7.4, 10 mM MgCl₂ (Sigma); 1 mM DTT (Sigma), 2 μ Ci [γ -³³P]ATP (3000 Ci/mmol; 1 Ci = 37 GBq) Amersham). A 10 point titration of all compounds was carried out in 3-fold dilutions from 30pM – 1000 nM. Reactions were stopped by addition of 25 μ L 8 M guanidine HCl. Incorporation of [³³P]phosphate into biotinylated GST-ATF2 was measured by capture onto streptavidin membrances (SAM²; Promega) following the manufacturer's instructions and as previously described.⁶ 15 μ L of stopped reaction was spotted on each 1 cm² SAM³ membrane. Data are from an average of two replicate experiments ± SE. IC₅₀ values were determined by fitting the data to the equation for a four-parameter logistic⁷ (assay references will be included at the end of the experimental section).

References:

- Graczyk, P. P.; Khan, A.; Bhatia, G.; Palmer, V.; Medland, D.; Numata, H.; Oinuma, H.; Catchick, J.; Dunne, A.; Ellis, M.; Smales, C.; Whitfield, J.; Neame, S. J.; Shah, B.; Wilton, D.; Morgan, L.; Patel, T.; Chung, R.; Desmond, H.; Staddon, J. M.; Sato, N.; Inoue, A. *Bioorg. & Med. Chem. Lett.* **2005**, *15*, 4666-4670.
- 2. Tang, T. P.; Volkman, S. K.; Ellman, J. A. J. Org. Chem. 2001, 66, 8772.
- 3. Cambell, A. D.; Raynham, T. M.; Taylor, R. J. Synthesis 1998, 1707-1709.
- 4. Sisko, J.; Mellinger, M.; Sheldrake, P. W.; Baine, N. H. Tetrahedron Lett. 1996, 37, 8113.
- 5. Ahaidar, A.; Fernandez, D.; Danilon, G.; Cuevas, C.; Manzanares, I.; Albericio, F.; Joule, J. A.; Alvarez, M. J. Org. Chem. 2003, 68, 10020.
- 6. Wisniewski D.; LoGrasso, P.; Calaycay, J.; Marcy, A. Anal. Biochem. 1999, 274, 220-228.
- 7. Leatherbarrow, R.J. (1992) GraFit, Version 3.0, Erithacus Software Ltd. Staines, UK.

Parameter	Value	Std. Error
Y Range IC 50 Slope factor Background	3439.4372 5.1514 1.5311 984.3799	202.4983 0.9244 0.3406 134.4669

13 = JR2

1 = JR1

Parameter	Value	Std. Error
Y Range	3557.6580	165.6780
IC 50	3.8854	0.5611
Slope factor	1.1291	0.1612
Background	751.5210	99.1372

Parameter	Value	Std. Error
Y Range	5190.5212	382.3525
IC 50	1.2473	0.2644
Slope factor	1.2013	0.2653
Background	706.0100	172.5521

17 = JR6

Parameter	Value	Std. Error
Y Range	5100.2031	330.3587
IC 50	6.0640	1.2421
Slope factor	0.9193	0.1640
Background	1104.4510	208.9115

ent-17 = JR8

Parameter	Value	Std. Error
Y Range	3646.5036	127.9619
IC 50	3.1064	0.3260
Slope factor	1.4060	0.1904
Background	814.0937	77.1507

