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The highly oncogenic erythroleukemia-inducing Friend mink cell focus-inducing (MCF) virus was
molecularly cloned in phage AgtWES.\B, and the DNA sequences of the env gene and the long terminal
repeat were determined. The nucleotide sequences of Friend MCF virus and Friend spleen focus-forming
virus were quite homologous, supporting the hypothesis that Friend spleen focus-forming virus might be
generated via Friend MCF virus from an ecotropic Friend virus mainly by some deletions. Despite their
different pathogenicity, the nucleotide sequences of the env gene of Friend MCF virus and Moloney MCF
virus were quite homologous, suggesting that the putative parent sequence for the generation of both MCF
viruses and the recombinational mechanism for their generation might be the same. We compare the amino
acid sequences in lymphoid leukemia-inducing ecotropic Moloney virus and Moloney MCF virus, and
erythroblastic leukemia-inducing ecotropic Friend virus, Friend-MCF virus, and Friend spleen focus-
forming virus. The Friend MCF virus long terminal repeat was found to be 550 base pairs long. This
contained two copies of the 39-base-pair tandem repeat, whereas the spleen focus-forming virus genome

contained a single copy of the same sequence.

Friend leukemia virus (12) is an acute leukemia virus
which consists of at least three components; replication-
competent ecotropic Friend virus, replication-defective
spleen focus-forming virus (SFFV) (2), and replication-
competent dualtropic mink cell focus-inducing (MCF) virus
(21, 33, 41). The replication-defective SFFV has been re-
garded as an erythroleukemia-inducing factor (2). However,
the replication-competent ecotropic virus, which had been
regarded as a helper virus for SFFV, has been found to be an
erythroleukemia-inducing factor when inoculated into new-
born NFS mice (21, 42). The third component of Friend
leukemia virus, Friend MCF virus, has also been reported as
a potent erythroleukemia-inducing factor in newborn NFS
mice (21), although a strain of Friend MCF was reported to
be nononcogenic per se (33). Except during the latent period,
the erythroleukemia induced by the Friend virus complex in
NFS mice is pathologically similar to the leukemias induced
by Friend MCF virus alone or ecotropic Friend virus alone
(21).

The mechanism of erythroleukemogenesis induced by
Friend virus in mice is unknown. However, there is experi-
mental evidence that SFFV encodes two proteins; a gag
gene-related protein, p45 (3), and an env gene-related pro-
tein, gp52 (4, 10, 35, 45), which has been shown to be a
recombinant between sequences of the ecotropic virus and
sequences related to the envelope gene of xenotropic virus
(34). Recombinant DNA experiments with molecular cloned
SFFV have suggested that the env gene-related sequences
that encode the gp52 protein may be required for erythroleu-
kemia induction (23).

The derivation of Friend MCF virus recombinant env gene
sequences from ecotropic Friend virus and xenotropic virus-
like sequences (11) opened the possibility that the recombi-
nant sequences in Friend MCF virus are also responsible for
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the induction of erythroleukemia and, thus, that the ecotro-
pic Friend virus causes erythroid leukemia by its ability to
induce the formation of Friend MCF virus in which the
recombinant sequences are constructed, even if ecotropic
virus per se has no oncogenic env gene sequences (21).

To elucidate the recombinational sequences responsible
for erythroleukemogenesis by Friend SFFV and Friend
MCEF virus, the highly oncogenic Friend MCF virus isolated
from a leukemic NFS mouse inoculated neonatally with
ecotropic Friend virus (21) was molecularly cloned, and the
DNA sequences of the env gene were determined and
compared with those of the ecotropic Friend virus and
Friend SFFV. Attention has been focused on the role of the
long terminal repeat (LTR) as a promoter since leukemia
virus without oncogenes may induce leukemia by transcrip-
tional activation of a particular cell gene (17). Thus, in the
present study we also determined the DNA sequences of the
LTR.

MATERIALS AND METHODS

Cells and virus. Mink lung cell line ATCC CCL-64 cells
(18), SC-1 cells (15), and mink S+L— cells derived from
CCL-64 (31) were grown and maintained in heated 5% fetal
calf serum in Dulbecco modified Eagle minimal essential
medium with penicillin (100 U/ml) and streptomycin (100 p.g/
ml). A highly oncogenic Friend MCF virus, designated
MCF-FrNx, was isolated from an erythroleukemic NFS
mouse that had been neonatally inoculated with NB-tropic,
ecotropic FVA Friend virus (21). The MCF virus was
propagated in mink lung cell (18).

Restriction enzymes and digestion. Restriction enzymes
were purchased from Takara Shuzo Co. Ltd. (Kyoto, Japan)
and Bethesda Research Laboratories (Rockville, Md.). DNA
was digested with 2 U of enzyme per ug of DNA under the
buffer conditions specified by the manufacturer. For more
than one cleavage, a restricted DNA sample was ethanol
precipitated, and the pellet was washed in 70% ethanol, air
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FIG. 1. Restriction endonuclease cleavage maps of Friend MCF virus Bp-1, Dp-1, and Ep-2 clones (A). Hirt-extracted linear Friend MCF
viral DNA (B), putative parental ecotropic Friend virus DNA genome (C) (7, 22), and the NFS xenotropic virus DNA genome (D) (7) are
shown for comparison. The asterisk in B marks a Ps!I site that does not exist in either C or D. The asterisks in C and D mark two PstI sites that

do not exist in B. Abbreviations: B, BamHI; H, Hindlll; K, Kpnl; Ps,

dried, and suspended in the reaction buffer of the second
enzyme. Digested DNA was analyzed by electrophoresis at
30 V on 0.7% agarose horizontal slab gels. The standard size
marker mixture consisted of DNA fragments ranging from
23.7 to 0.10 kilobases and was prepared by the product of
HindIII- or EcoRI-cleaved lambda DNA.

Pstl; Pv, Pvull; S, Smal; E, EcoRI.

Isolation of viral DNA for molecular cloning. Subconfluent
mink lung cells in four 10-cm plate dishes were infected with
the virus at a multiplicity of infection of 5 in the presence of
polybrene (39) to get unintegrated viral DNA for molecular
cloning. Unintegrated viral DNA was prepared from the Hirt
supernatant (19) of infected mink lung cells 24 h after
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FIG. 2. Sequencing strategy for the env gene of Friend MCF virus. (A) Schematic representation of the Friend-MCF virus DNA clones
Bp-1 and Ep-2. (B) Cleavage sites in the EcoRI-Sma fragment (Bp-1) and HindIlI-EcoRI fragment (Ep-2) of the cutting enzymes used for
sequencing. (C) Sequencing strategy. The closed circles on the lines represent 5’ ends labeled with [\->*P]ATP. Abbreviations: A, Alul; B,
BamHI; D, Ddel; E, EcoRI; K, Kpnl; R, Rsal; P, Pstl; Hd, Hindlll; Hf, Hinfl; Sa, Sau3Al; Sm, Smal.
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FIG. 3. Nucleotide sequence of the env gene region of Friend MCF virus.

infection. Supercoiled viral DNA was separated from 0.8%
low-melting-point agarose (Bethesda Research Labora-
tories) gels under the conditions specified by the manufac-
turer from the part where the existence of specific DNA was
shown by Southern blots.

Hybridization and DNA probe. Agarose gel electrophoresis
and DNA transfer onto a nitrocellulose membrane were
performed by the technique of Southern (38). Virus-specific
DNA fragments transferred to nitrocellulose membranes
were detected by hybridization with 32P-labeled Moloney
murine leukemia virus (MuLV) DNA cloned into pBR322
kindly provided by R. A. Weinberg, Massachusetts Institute
of Technology, Cambridge, Mass. (20). The probe DNA was
labeled by nick translation (26) and had specific activities of
2 X 107 to 40 x 107 cpm/pg. Hybridization was performed as
previously described (14).

Molecular cloning of Friend MCF viral DNA. EcoRI-
digested, supercoiled DNA was mixed with AgtWES.AB
vector arms, ligated with T4 DNA ligase, packaged in vitro
into infectious phage particles, and plated on Escherichia
coli DP50 supF as previously described (14). Recombinant
phage plaques were screened with 32P-labeled Moloney

MuLV DNA. The MuLV-reactive DNA inserts from the
lambda clones were released by EcoRI cleavage and ligated
to EcoRI-digested pBR322 DNA by incubation with T4 DNA
ligase. E. coli K-12 strain HB101 cells were transformed by
the ligation mixture, and the recombinant plasmids contain-
ing MuL V-reactive DNA inserts were identified as previous-
ly described (7).

DNA sequence. The DNA sequence was determined by the
chemical methods of Maxam and Gilbert (27).

Transfection. The viral inserts were excised from pBR322
recombinants by cleavage with EcoRI and ligated with T4
DNA ligase. Transfections were performed on SC-1 cells
(15) with ligated viral DNA by a modification (43) of the
original calcium phosphate precipitation method (13). Viral
production in the supernatant of SC-1 cells was measured by
focus assay in the mink S+L— cells (31) and by the foci in
mink lung cells (16).

Animals. The NFS mouse strain is an inbred strain from
NIH Swiss mice originally supplied by the animal production
section of the National Institutes of Health. A continuous
single line was maintained in our laboratory by sibling
mating. A 0.2-ml sample of the recovered MCF virus (10*
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FIG. 4. Deduced amino acid sequence of the Friend MCF virus env gene. In addition to Friend MCF virus, sequences of ecotropic Friend
virus (22), ecotropic Moloney virus (37), and Moloney MCF virus (5) env genes and the Friend SFFV (9) env-related sequence are shown for
comparison. Amino acids different from those of Friend MCF virus are indicated by asterisks. Potential glycosylation sites are underlined.
Abbreviations: A, alanine; C, cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine; I, isoleucine; K, lysine;
L, leucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; W, tryptophan; Y,

tyrosine.

S+L— mink cell focus-forming units per mouse) harvested
from SC-1 cells transfected with the DNA was inoculated
intraperitoneally into newborn NFS mice.

RESULTS

Molecular cloning of Friend MCF virus. To analyze the
structure of Friend MCF viral DNA and to determine the
appropriate enzyme for molecular cloning, in vivo circular
unintegrated viral DNA was digested with EcoRI, HindIII,
and BamHI. After digestion, samples were run on 0.7%
agarose %els, transferred to nitrocellulose filters, and hybrid-
ized to >?P-labeled Moloney virus DNA. Although the eco-
tropic Friend virus and the xenotropic virus from NFS mice

had one EcoRlI site at a different place (Fig. 1) (7, 22), both
EcoRI and HindIII cleaved the Friend MCF genome twice,
indicating the presence of an additional EcoRlI site compared
with the ecotropic Friend virus or the xenotropic virus.
BamHI cleaved the genome three times. For molecular
cloning, the closed circular forms of unintegrated, super-
coiled viral DNA were cleaved with EcoRI and ligated to
EcoRlI-cleaved phage A\gtWES.A\B DNA. Packaging of this
ligated DNA generated about 5,000 plaques. Recombinant
phages containing permuted viral inserts were identified by
hybridization with 32P-labeled Moloney MuLV and 3?P-
labeled LTR-specific probes (Small-Pvull, 290-base-pair
[bp] fragment in LTR) from Moloney MuLV. Four Friend
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FIG. 5. Friend MCF virus characterization of the env gene and its products. (A) Distribution of termination codons in the coding (+) and
noncoding (—) strands in all reading frames (a, b, and c). (B) Representation of the env polypeptide within the boundaries of A. (C) Potential
glycosylation sites (CHO) and large, uncharged, hydrophobic regions (closed boxes) in the env polypeptide. This figure was arranged like the

figure for ecotropic Friend virus (22) for easy comparison.

MCEF virus recombinants, designated C1-B and C1-C (5.1-
kilobase-pair [kbp] insert), C1-D (4.6 kbp), and C1-E (3.3
kbp) was obtained. The LTR-specific probe obtained from
Moloney MuLV was hybridized with C1-B (two LTR
copies), C1-C (two LTR copies), and C1-D (one LTR copy),
but not with C1-E. None of recombinants, C1-B, C1-C, and
C1-D, was hybridized with the 3?P-labeled virus-specific
insert of C1-E. For further analysis, the C1-B, C1-C, C1-D,
and C1-E viral DNA inserts were subcloned into pBR322 at
the EcoRI site and designated Bp-1, Cp-1, Dp-1, and Ep-2,
respectively. Each cloned fragment was subjected to restric-
tion endonuclease mapping (Fig. 1). Comparison of the
restriction site and the location of the LTR with published
data for ecotropic Friend virus and xenotropic virus from
NFS mice (7, 22) allowed us to compose the full sequence of
Friend MCF virus by the rearrangement of C1-B and C1-E
(Fig. 1), since Friend MCF virus is considered to be a
recombinant between ecotropic Friend virus and xenotropic
virus-like sequence in NFS mice. For comparison, restric-
tion endonuclease mapping of ecotropic Friend virus (7) and
xenotropic MuLV from NFS mice (7) is also shown in Fig. 1.

The restriction map of the Friend MCF genome was more
similar to the map of ecotropic Friend virus than to that of
xenotropic virus from NFS mice (7). However, Friend MCF
virus had two EcoRlI sites, one of which was located at the
same site as in the xenotropic virus. The location of the two
EcoRlI sites in the Friend MCF genome suggests the possibil-
ity that MCF-FrNX is a recombinant between ecotropic
Friend virus and endogenous xenotropic virus-like sequence
in NFS mice. The Friend MCF virus lost the PstI site in
LTRs that existed in the putative parental ecotropic Friend
virus.

Infectivity of clone Bp-1 and Ep-2 Friend MCF viral DNA.
The infectivity of the recombinant viral DNAs was tested by
the calcium phosphate transfection procedure (43). Viral
inserts in Bp-1 and Ep-2 were excised by cleavage with
EcoRI. Viral DNAs from Bp-1 (0.75 ng) and Ep-2 (0.25 ng)
were ligated with T4 DNA ligase. Ethidium bromide staining
of the gel showed that most of the DNAs were converted to
circular or linear dimers and several other unknown forms of
higher-molecular-weight DNA. After confirmation of the

ligation by agarose gel electrophoresis, religated DNA (0.1
to 0.2 ng per plate) was transfected onto 6-cm plates
containing SC-1 cells and tested for its ability to generate
infectious virus. Two days after transfection, the SC-1 cells
were passaged and cultured with mink lung cells (18). Viral
production was observed in the supernatant of the Sc-1 cells
10 days after transfection. The virus recovered after this
transfection had the same biological characteristics as the
parental MuLV MCF-FrNx; it was a dualtropic NB-tropic
MCEF virus. Inoculation of this virus into newborn NFS mice
induced leukemia in 100% of animals within 3 months. The
gross and microscopic leukemic abnormalities developed by
the virus were identical to those developed by the original
parent viral stock of MCF-FrNx.

DNA sequence of Friend MCF virus envelope gene. Com-
parison of the restriction site with ecotropic Friend virus
suggested the location of the env gene in the cloned Friend
MCEF viral DNA to be shown in Fig. 1 and 2. The sequencing
strategy and the additional restriction enzyme cleavage sites
used are shown in Fig. 2. The nucleotide sequence is
presented in Fig. 3. The deduced amino acid sequences for
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FIG. 6. Sequencing strategy for LTR of Friend MCF virus. (A)
Schematic representation of the Friend MCF virus DNA clone Bp-1.
(B) Cleavage sites in the PstI-PstI fragment (Bp-1). (C) Sequencing
strategy. The closed circles on the lines represent S’ ends labeled
with [*2P]JATP. Abbreviations: A, Alul; E, EcoRl; H, Hinfl; K,
Kpnl; P, Pst1; Sa, Sau3Al; Sm, Smal.
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FIG. 7. Nucleotide sequence of the Friend MCF virus LTR. Friend SFFV (8), Moloney-MCF virus (5), and ecotropic Moloney virus (37)
are shown for comparison. Nucleotides different from those of MCF-FrNx are indicated by asterisks. The major structural features of this
region are indicated. The internal tandem repeat sequences are enclosed in brackets.

this reading frame are shown in Fig. 4. The sequence had one
large open frame consisting of 1,911 nucleotides (Fig. 5). The
mRNA for the env gene products is spliced from a precursor
RNA. The splice acceptor sequence (36) was located 287
nucleotides upstream from the peptide leader (Fig. 3). The
rough location of the sequence coding for the envelope
polyprotein and the border of gp70 and p15E within the env
gene was determined by comparing the nucleotide sequence
with previously published data for ecotropic Friend virus
(22) and Moloney MCEF virus (5). In this frame, a methionine
codon is 99 nucleotides upstream from the proposed NH,
terminal of gp70, a glutamine residue (Fig. 4). It is possible
that the carboxyl and NH,-terminal amino acids of Friend
MCF gp70 and plSE are actually located a few amino acids
to the left or right, since neither the carboxyl nor the NH,
terminal of the env polypeptide of Friend MCF virus has
been determined yet.

The carbohydrates are linked to proteins via the side
chains of asparagine residues in Asn-X-Thr or Asn-X-Ser
sequences (28, 32). Seven glycosylation sites were found in
the amino acid sequence of Friend MCF gp70 (Fig. 4 and 5).
It has been reported that glycosylation sites within the env
gene are highly conserved in the different MuL Vs (22). Six of
the seven glycosylation sites were at the same sites as in
ecotropic Friend virus. The other was not found in ecotropic
Friend virus, but was found in Friend SFFV and Moloney
MCEF virus. Whether all of the seven potential sites in the
Friend MCF gp70 are actually glycosylated is not known at
present.

Comparison of the nucleotide and amino acid sequences of
Friend MCF virus with the sequences of ecotropic Friend
virus (22), Friend SFFV (9), and Moloney MCF virus (5)
revealed some distinctive features. (i) Friend MCF virus
seemed to demonstrate substitution with some endogenous
nonecotropic virus-like (or xenotropic virus-like) sequences.
Nucleotide sequence analysis of the env gene of Friend MCF
virus DNA showed that the substitutions were in the NH,-
terminal portion of the envelope protein. The substitution
began in the carboxyl terminous of the pol gene and ended at
about amino acid no. 322. Assuming identical processing
sites in ecotropic Friend virus (22) and Friend MCF virus,
the leader region, gp70, p15E, and R consisted of 33, 407,
180, and 17 amino acids, respectively. (ii) The nucleotide
sequences of the env gene of Friend MCF and the env-
related sequence of Friend SFFV were quite homologous.
Comparison showed a 585-bp deletion in this region in
Friend SFFV. (iii) The nucleotide sequence of the Friend
MCEF virus env gene is 114 nucleotides shorter than the
corresponding ecotropic Friend nucleotide sequence. Eco-
tropic Friend virus, Friend MCF virus, Friend SFFV, and
Moloney MCEF virus share the same initiation codon and are
translated in the same reading frame. The carboxyl termini
of gp70 and p15E of Friend MCF and ecotropic Friend virus
were identical. (iv) The amino acid sequences of Friend
MCF virus, Moloney MCF virus, and Friend SFFV were
very similar (95% homology). (v) It has been reported that
the most variable and proline-rich site among the env gene of
Akv, ecotropic Friend virus, and ecotropic Moloney virus is
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located between amino acids no. 233 and 283 (22). However,
the amino acid sequence in this region (no. 281 to no. 332 in
Fig. 4) of Friend MCF virus and Friend SFFV (9) showed
strong (96%) homology, and the sequence of Friend MCF
virus and Moloney MCF virus showed moderate (86%)
homology. This difference in homology among Friend MCF
virus, Friend SFFV, and Moloney MCF virus seemed to
reflect the difference in their pathogenicity. However, the
amino acid sequence homologies in this region between our
Friend MCF virus and two other strains of Friend SFFV
which were recently reported were not so strong as that
shown in the Fig. 4; 74% homology (44) and 84% homology
(1). Incidentally, the amino acid sequence in this region of
Friend MCF and ecotropic Friend virus or ecotropic Mo-
loney virus showed very low (30%) homology.

DNA sequence of Friend MCF virus LTR. To elucidate the
possible role of the LTR on erythroleukemia induction by
Friend MCF virus, we studied the nucleotide sequence of
the Friend MCF virus LTR, which may play a critical role in
the promoter insertion mechanism of oncogenesis (17), and
compared it with the nucleotide sequence in ecotropic
Moloney virus, Friend SFFV, and Moloney MCF virus.

Figure 6 shows the strategy used to sequence the various
restriction fragments, and Fig. 7 illustrates the nucleotide
sequence obtained. For comparison, the previously reported
LTR nucleotide sequences of Moloney MCF virus (5),
ecotropic Moloney virs (37), and Friend SFFV (8) are also
shown in Fig. 7. The Friend MCF virus LTR was found to be
550 bp long. This includes an 11-bp-long inverted repeat at
the termini of the LTR, CAT box, TATA box, and polyade-
nylate addition signals (AATAAA). Apart from these highly
conserved sequences, considerable nucleotide heterogeneity
(14%) between Friend MCF virus and Moloney MCF virus
was observed in the U3 region, whereas only 2% nucleotide
dissimilarity was noted between Friend MCF virus and
Friend SFFV. Nucleotide sequences of the R and US region
were 95% homologous between Friend MCF virus and
Moloney MCF virus. The major difference between the
LTRs of Friend MCF virus and Friend SFFV was in the 39-
bp tandem repeat: the Friend SFFV had only one copy of it.
In Moloney MCEF virus, the tandem repeat that was present
in ecotropic Moloney virus was also missing.

DISCUSSION

The Friend leukemia virus complex is a unique oncogenic
retrovirus whose oncogenic mechanism may be different
from that of other acute leukemia viruses and sarcoma
viruses, since no oncogenic proteins coded for by a non-
virus-related gene derived from a cellular gene have been
detected in the infected cells. Another unique property of the
Friend virus complex is that it includes at least three
components that can induce erythroleukemia independently.
However, the mechanism(s) of erythroleukemogenesis by
each of these components remains unknown. The ability of
Friend SFFV to induce erythroleukemia was shown by
inoculating mice with Friend SFFV that had been rescued by
Moloney MuLV (40) or amphotropic virus (24), which does
not induce erythroleukemia by itself. Linemeyer et al.
showed that the gp52 protein encoded by SFFV is required
for the virus-induced proliferation of erythroid precursor
cells (23).

NFS mice neonatally inoculated with ecotropic Friend
virus developed erythroid leukemia (21, 41). However,
erythroleukemia induction by ecotropic Friend virus may be
ascribable to its ability to induce the formation of Friend
MCEF virus, since all of the mice inoculated with ecotropic
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Friend virus manifested the rapid emergence of the MCF-
type virus (21). The observation made by T; RNase-resistant
fingerprint analysis (11), that Friend MCF virus has an env
gene sequence homologous to the env-related sequence of
Friend SFFV, supports this hypothesis. In this study, we
examined the nucleotide sequence of the env gene and the
LTR of the highly oncogenic Friend MCF virus to elucidate
its mechanism of erythroleukemogenesis and compared our
findings with those reported for Friend SFFV (8, 9) and
ecotropic Friend virus (22).

Analysis of the env and LTR nucleotide sequences sug-
gested that Friend MCF virus is also a recombinant in which
almost the same regions of the env gene are substituted by
the same endogenous nonecotropic virus-like sequences as
in Moloney MCF virus. Despite the observed close homolo-
gy of the nucleotide and amino acid sequences in Friend
MCF and Moloney MCF viruses, the pathogenicity of these
two viruses is different. Moloney MCF virus does not induce
erythroid leukemia; rather, it induces thymic lymphoid leu-
kemia. The identification of the nucleotide sequence that
codes for this difference in pathogenicity represents a chal-
lenge. However, we could not identify the nucleotide se-
quence that is responsible for erythroid leukemia induction
when the env gene nucleotide sequences of Friend MCF
virus, ecotropic Friend virus, Friend SFFV, Moloney MCF
virus, and ecotropic Moloney viruses were compared. Stud-
ies by Scolnick and his collaborators have shown that the 3’
portion of the genome (gp70, pl1SE, LTR) plays a determi-
nant role in erythroid leukemia induction (23, 25, 29). Oliff
and Ruschetti showed that the 2.4-kbp fragment of the
Friend MuLV genome contains the sequences responsible
for Friend MuLV-induced erythroid leukemia (30). Howev-
er, Chatis et al. found that a recombinant virus whose
genome was derived primarily from Friend MulLV, but
which had 621 nucleotides of Moloney MuLV information at
its 3’ end, did not induce erythroid leukemia, but induced
thymic lymphomas, inspite of the presence of Oliff’s 2.4-kbp
fragment in the Chatis et al. recombinant (6). These data
show that both the env gene and the LTR of ecotropic Friend
virus might play a role in leukemia induction. These data
also suggest that it is very difficult to identify the sequence
responsible for the erythroid leukemia induction and to
determine whether eiythroid leukemia induction by the
ecotropic Friend virus is ascribable to the appearance of
MCEF virus. Recently, we have constructed a recombinant
whose genome is derived primarily from Friend MCF virus,
but which has the same 621 nucleotides of Moloney MuLV
as the Chatis et al. recombinant, which might show the
possible role of the Friend MCF virus on the erythroleuke-
mia induction. The characteristics of the Friend MCF virus
and the Moloney virus LTRs are under investigation.
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