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The open reading frame which lies within the Epstein-Barr virus (EBV) T2 cDNA isolated by Bodescot et al.
(M. Bodescot, O. Brison, and M. Perricaudet, Nucleic Acids Res. 14:2611-2620, 1986) was inserted into a
eucaryotic expression vector containing a strong adenovirus promoter. The T2 cDNA contains viral genomic
sequences from the short BLRF3 open reading frame fused to the adjacent BERF1 long open reading frame.
After transfection of human cells, the recombinant plasmid directed the expression of a 140-kilodalton protein.
The expressed protein had the same molecular weight, subcellular localization, and immunological character-
istics as the EBV-determined nuclear antigen EBNA3, which is made in lymphocytes latently infected with
EBV. Immunoprecipitation of extracts of transfected cells labeled with [32P]phosphoric acid showed that the

EBNA3 protein is phosphorylated.

Epstein-Barr virus (EBV) is a human herpes virus associ-
ated with two malignant tumors, Burkitt’s lymphoma and
nasopharyngeal carcinoma (for a review, see reference 6).
EBYV can infect primate B lymphocytes, conferring upon the
cells the ability to grow permanently in culture (13). In these
immortalized cells, a family of several EBV-determined
nuclear antigens (EBNAs) is characteristic of EBV infec-
tion. EBNAL1 (a 65- to 75-kilodalton [kDa] protein), encoded
by BKRF-1 (BamHI fragment K rightward reading frame 1)
of the viral genome (15, 26), is a sequence-specific DNA-
binding protein which binds to the EBV origin of replication
(ori-P) and supports replication of plasmids containing ori-P
sequences (21, 22, 29, 30). EBNA2 (80 to 90 kDa) is encoded
by BYRF-1 (BamHI fragment Y rightward reading frame 1)
(5). This protein is suspected to have a role in the immortal-
ization of B cells (8, 23). EBNA3 (140 kDa) has been
described recently by several investigators (14, 16, 24, 25). It
has been shown that the open reading frame BERF1 (BamHI
fragment E rightward open reading frame 1), which lies
within the BamHI E restriction fragment of the viral
genome, codes at least in part for this protein (14, 16).
EBNA4 is a 148- to 180-kDa protein whose gene and
function have not been identified (18). EBNAS (41 to 70 kDa)
is encoded by exons from the BamHI W, Y, and H restric-
tion fragments of the EBV genome (7). The function of this
protein has not been determined.

From a cDNA library made from cytoplasmic RNAs of the
EBV-producing marmoset B-cell line B95-8, Bodescot et al.
(3) have isolated a full-length cDNA, designated T2, whose
structure is shown in Fig. 1. The cDNA contains two exons
transcribed from the BamHI C fragment, five exons tran-
scribed from the BamHI W fragments, and two exons
transcribed from the BamHI L and E fragments of the viral
genome. The last two exons contain, respectively, most of
the open reading frames BLRF3 (BamHI fragment L right-
ward open reading frame 3) and BERF1 (BamHI fragment E
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rightward open reading frame 1) (1), which are joined
through splicing.

To express the open reading frame which lies within the
T2 cDNA, we subcloned it (using the restriction sites shown
in Fig. 1) into the eucaryotic expression vector pMLP10,
which was constructed by A. Ballay, M. Levrero, and P.
Perricaudet. This vector contains a chimeric association of
the very left end of the adenovirus type 5 genome and the
major late promoter of the adenovirus type 2 genome joined
to its tripartite leader sequence (2; A. Ballay, M. Levrero,
and P. Perricaudet, for publication).

The equivalent of the T2 cDNA sequence was recon-
structed (for technical ease) by using the 5’ region from the
cDNA and the intron-free 3’ region from the viral genome
(Fig. 2). The resulting chimeric plasmid pMLP10 T2 harbors
the whole coding sequence of the cDNA downstream from
the adenovirus promoter (Fig. 2).

The ability of the pMLP10 T2 plasmid to direct the
synthesis of an EBV protein was tested in a transient
expression assay after transfection of 293 cells. 293 cells (11)
were transfected by the calcium phosphate precipitation
method (10) with 10 pg of recombinant plasmid DNA and 10
ng of salmon sperm carrier DNA. Forty-eight hours later,
the cell monolayer was rinsed with 40 mM Tris-150 mM
NaCl-1 mM EDTA (pH 7.4), scraped into the same buffer,
and pelleted by centrifugation. The cell pellet was suspended
in Laemmli sample buffer and sonicated. Proteins were
separated by 9% polyacrylamide gel electrophoresis in the
presence of 0.1% sodium dodecyl sulfate (20). Immunoblot-
ting was performed as described previously (4, 17, 27).
Human anti-EBV sera were used as the source of antibodies.
The characteristics of the sera used in this study are given in
Table 1.

Serum 1 detected EBNA1, EBNA2, and EBNA3 proteins
in a whole-cell extract of IB-4 cells (19) (latently infected
with B95-8 virus) (Fig. 3, lane 2) but not in a BL2 (EBV-
negative Burkitt’s lymphoma cell line) cell extract (lane 1). A
protein with an apparent molecular mass of 140 kDa was
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FIG. 1. Structure of T2 cDNA. (A) Restriction map for BamHI in B95-8 EBV DNA; (B) ex‘panded BamHI map from a part of EBV DNA;
(C) map of exons (open boxes) in T2 cDNA; (D) coordinates of restriction sites on EBV genome (1); (E) coordinates of restriction sites on
T2 cDNA (3). The two open reading frames BLRF3 and BERF1 lie within the last two exons of the cDNA. The positions of the putative
initiation codon and the polyadenylation signal are shown along the cDNA. Only the restriction sites of interest for the construction of the

recombinant plasmids are indicated.
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FIG. 2. Construction of pMLP10 T2 plasmid. The Smal-BamHI
fragment of the EBV T2 cDNA (positions 566 to 970) and the
BamHI-Bgll fragment of the EBV genome (positions 92703 to 95392)
were inserted between the HindIIl and Nrul restriction sites of
pMLPI10 after blunt ending of the HindIll and Bgll ends. v,
Coordinates on T2 cDNA (3); %, Coordinates on EBV genome (1).
Ad2, Adenovirus type 2; AdS, adenovirus type 5.

detected in the 293 cells transfected with the pMLP10 T2
plasmid (Fig. 3, lane 3). This protein comigrated with the
EBNA3 protein present in the IB-4 cell extract and was
absent in mock-transfected cells. These results strongly
suggested that the mRNA transcribed from the T2 cDNA
encodes the EBNA3 protein. To confirm this hypothesis,
deletions were made in the recombinant plasmid in two
different sequences of the open reading frame. The recom-
binant plasmid pMLP10 T2A1 was obtained by deleting the
Kpnl restriction fragment which maps between positions
2506 and 2947 in the T2 cDNA (Fig. 1). The deleted plasmid
was expected to direct the expression of an EBNA3 protein
with an internal deletion of 147 amino acids near the C-
terminal end. A second recombinant plasmid, pMLP10
T2A2, was made by deleting the Bgl/II restriction fragment
which maps between positions 894 and 1689 in the cDNA
(Fig. 1). This deleted plasmid was expected to direct the
expression of an EBNA3 protein with an internal deletion of
245 amino acids near the N-terminal end. The plasmids
pMLP10 T2A1 and pMLP10 T2A2 were transfected into 293

TABLE 1. Reactivities of human EBNA3-positive sera
with different EBV antigens

Reactivity with antigen:

Serum
VCA“ EA* EBNA“ EBNAl®? EBNA2> EBNA3* EBNA3“
1 40 5 320 + + + ND¢
2 1,280 ND 1,280 ND ND + ND
3 1,280 ND 1,280 ND ND + ND
4 1,280 20 1,280 ND ND + ND
5 1,280 ND 1,280 ND ND ND +
6 1,280 ND 1,280 ND ND ND +

@ Antigens measured by immunofluorescence; the numbers are reciprocals
of the serum dilutions.

» Antigens visualized on immunoblots.

< ND, Not determined.
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FIG. 3. Immunological detection of EBNA3 in 293 cells
transfected with pMLP10 T2 recombinant DNA by using an anti-
EBNA human serum. Twenty microliters of proteins corresponding
to 2 X 10° cells was run on 9% sodium dodecyl sulfate-polyacryl-
amide gels. After blotting onto nitrocellulose filters (4, 29), the
nonspecific antibody binding sites were blocked by incubation with
low-fat milk (17). Specific proteins were detected with a Y200 dilution
of anti-EBNA human serum. The antigen-antibody complexes were
visualized after incubation with 1 pCi of *I-labeled protein A.
Lanes: 1, BL2 cells; 2, IB-4 cells; 3 and 4, 293 cells transfected with
pMLP10 T2 or salmon sperm carrier DNA, respectively. Molecular
mass estimates in kilodaltons are shown in the left margin and were
determined with prestained standard proteins (Bethesda Research
Laboratories, Inc.). The positions of EBNA1 (1), EBNA2 (2), and
EBNA3 (3) are indicated in the right margin.

cells, and the proteins were assayed in a Western blot
(immunoblot) experiment; proteins of approximately 115 and
100 kDa were detected by the anti-EBNA3 serum 2 in
pMLP10 T2A1- and pMLP10 T2A2-transfected cells, respec-
tively (Fig. 4). This result clearly shows that the 140-kDa
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FIG. 4. Western blot analysis of proteins extracted from 293
cells transfected with pMLP10 T2A1 and pMLP10 T2A2 recombi-
nant plasmids. The experiment was performed as described in the
legend to Fig. 3. 293 cells were transfected with pMLP10 T2 (lane 1),
pMLP10 T2A2 (lane 2), carrier DNA (lane 3), or pMLP10 T2A1 (lane
4). Molecular mass estimates in kilodaltons are shown in the margin.
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FIG. 5. Immunopreciptation of transfected 293 cells metaboli-
cally labeled with [*?P]phosphoric acid. Cell protein (corresponding
to 3 x 106 cells) was incubated with 4 ul of serum 1 at 4°C, and then
immune complexes were bound to protein A-Sepharose (Pharma-
cia). The bound proteins were eluted by boiling in Laemmli sample
buffer, analyzed by polyacrylamide gel electrophoresis, and autora-
diographed. Shown are extracts of 293 cells transfected with carrier
DNA (lane 1), pMLP10 T2 (lane 2), pMLP10 T2A1 (lane 3), or
pMLP10 T2A2 (lane 4). Molecular mass estimates in kilodaltons are
shown in the right margin and were determined as described in the
legend to Fig. 3.

protein is encoded by the open reading frame present in the
cDNA, since deletions within the coding sequence led to the
expression of shorter polypeptides that were still recognized
by the anti-EBNA3 serum. The EBV T2 cDNA clone
contains an open reading frame which is made up of BLRF3
and BERF1 sequences. Assuming that the ATG located at
position 598 in the T2 cDNA is used as an initiation codon,
the mRNA should encode a 944-amino-acid protein with a
theoretical molecular mass of 103 kDa. Analysis by poly-
acrylamide gel electrophoresis showed that the EBNA3
protein in fact migrated as a protein of higher molecular
mass. The high percentage of proline residues (13%) in the
protein might account for this abnormal electrophoretic
mobility. A similar discrepancy has been observed by
Hennessy et al. (16), who reported that the expression of
BERF1 (which could encode an 812-amino-acid polypeptide)
leads to the synthesis of a 120- to 130-kDa protein, as
determined by polyacrylamide gel electrophoresis, whereas
the theoretical molecular mass is 92.5 kDa.

In vivo 3P labeling of EBNA3 protein. At 48 h posttransfec-
tion, 293 cells were labeled for 3 h with 200 pnCi of
[**Plphosphoric acid (200 mCi/mmol; 1 mCi/ml; Amersham)
as described previously (28); at the end of the labeling
period, the cells (7 X 10% were washed twice with phos-
phate-buffered saline, suspended in 0.4 ml of immunoprecip-
itation buffer (0.1 M Tris [pH 8.3], 0.1% sodium dodecyl
sulfate, 0.25% Nonidet P-40, 0.25% sodium deoxycholate, 2
mM EDTA, 2mM phenylmethylsulfonyl fluoride), d. Full-



VoL. 61, 1987

FIG. 6. Indirect immunofluorescence staining of transfected
Vero cells. The cells were removed from plates 24 h posttransfection
and treated as described previously (12): EBV-positive serum $
(dilution, V10) was used to detect EBNA3 protein. The cells were
transfected with pMLP10 T2 (a), pMLP10 T2A1 (b), pMLP10 T2A2
(c), or carrier DNA (d).

tated by using serum 1 as described previously (28). The
EBNAZ3 proteins, as well as both deleted proteins, could be
phosphorylated in vivo (Fig. 5). Phosphorylation sites could
be either dispersed over the protein or restricted to the
sequence common to both deleted proteins.

To determine the intracellular location of EBNA3 protein
(as well as EBNA3 truncated polypeptides) synthesized
during transient expresssion, immunofluorescence experi-
ments were performed. In pMLP10 T2-transfected cells,
fluorescence was localized in the nucleus; the patchy stain-
ing appears to be perinucleolar (Fig. 6a). The same result
was obtained when pMLP10 T2A1 was used for transfection
(Fig. 6b). On the other hand, when pMLP10 T2A2 was
transfected into the cells, perinuclear staining was observed
(Fig. 6c).

These results show that EBNA3 protein synthesized dur-
ing transient expression is localized in the nucleus of
transfected cells, as in EBV-transformed lymphocytes.
Hennessy et al. (16) transfected rodent cells with BERF1
inserted in a eucaryotic expression vector: they also ob-
served nuclear staining by using anti-EBNA3 antibodies. We
showed that the deleted sequence A2 could be important in
the process leading to nuclear localization of this antigen.
Nuclear localization signal sequences have been identified in
several nuclear proteins; however, no universal sequence or
position within the primary protein sequence for the nuclear
localization signal has been apparent (for a review. see
reference 9). The shortest amino acid sequence conferring
nuclear localization of EBNA3 protein could be determined
by further deletion analysis of the T2 cDNA.

The use of our expression vector, pMLP10, allowed us to
identify the EBV gene which codes for the EBNA3 protein
and to overexpress it in eucaryotic cells. The availability of
a plasmid able to direct the synthesis of high levels of the
EBNAS3 protein is a valuable tool to study the functions of
the protein during latent infection and possibly in the immor-
talization process.
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