#### A True Brønsted Acid Catalyst for the Enantioselective Protonation Reaction

Cheol Hong Cheon and Hisashi Yamamoto\*

Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637

#### **General Procedures:**

All reactions were carried out in oven- or flame-dried glassware under an atmosphere of dry argon unless otherwise noted. Except as otherwise indicated, all reactions were magnetically stirred and monitored by analytical thin layer chromatography (TLC) using Whatman pre-coated silica gel flexible plates (0.25 mm) with F254 indicator or Merck pre-coated silica gel plates with F254 indicator. Visualization was accomplished by UV light (254 nm), with combination of potassium permanganate and/or phosphomolybdic acid, solution as an indicator. Flash column chromatography was performed according to the method of Still using silica gel 60 (mesh 230-400) supplied by Silicycle. Yields refer to chromatographically and spectrographically pure compounds, unless otherwise noted.

Commercial grade reagents and solvents were used without further purification except as indicated below. Toluene (anhydrous, 99.8 %, 18 L in Pure-Pac<sup>TM</sup>), dichloromethane (anhydrous, 99.9%, 18L in Pure-Pac<sup>TM</sup>), hexanes (anhydrous, 99.9%, 18L in Pure-Pac<sup>TM</sup>), and THF (anhydrous, 99.9%, 18L in Pure-Pac<sup>TM</sup>) purchased from Aldrich were purified by M. BRAUN solvent purification system (A2 Alumina). Propionitrile was dried over 4 Å MS.

<sup>1</sup>H NMR, <sup>13</sup>C NMR, <sup>19</sup>F NMR and <sup>31</sup>P NMR spectra were recorded on a Bruker Avance 500 (500 MHz <sup>1</sup>H, 125 MHz <sup>13</sup>C, 471 MHz <sup>19</sup>F, 202 MHz <sup>31</sup>P). Tetramethylsilane was used as an internal standard for <sup>1</sup>H NMR ( $\delta$ : 0.0 ppm), CDCl<sub>3</sub> for <sup>13</sup>C NMR ( $\delta$ : 77.0 ppm), CFCl<sub>3</sub> for <sup>19</sup>F NMR ( $\delta$ : 0.0 ppm) as an external standard, and H<sub>3</sub>PO<sub>4</sub> for <sup>31</sup>P NMR ( $\delta$ : 0.0 ppm) as an external standard. The proton spectra are reported as follows  $\delta$  (position of proton, multiplicity, coupling constant *J*, number of protons). Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (quintet), h (septet), m (multiplet) and br (broad). High-performance liquid chromatography (HPLC) was performed on a Varian ProStar Series equipped with a variable wavelength detector using chiral stationary columns (0.46 cm x 25 cm) from Daicel. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter.

#### 1. Synthesis of Chiral Brønsted Acids

#### Synthesis of (S)-BINOL derivatives

All 3,3'-diaryl-2,2'-dihydroxy-1,1'-dinaphthyls were prepared following the reported procedure, except (*S*)-3,3'-bis-(4-*t*-butyl-2,6-diisopropylphenyl)-2,2'-dihydroxy-1,1'-dinaphthyl.

#### (S)-3,3'-Di-(2-phenyl)-2,2'-dihydroxy-1,1'-dinaphthyl<sup>1</sup>

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 5.36 (s, 2H), 7.15-7.42 (m, 12H), 7.45 (m, 4H), 7.93 (d, J = 7.7 Hz, 2H), 8.03 (s, 2H).

#### (S)-3,3'-Bis-(2-mesityl)-2,2'-dihydroxy-1,1'-dinaphthyl<sup>2</sup>

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ: 2.06 (s, 6H), 2.13 (s. 6H), 2.31 (s, 6H), 5.00 (s, 2H), 7.98 (s, 4H), 7.23-7.36 (m, 6H), 7.72 (s, 2H), 7.84 (d, *J* = 8.1Hz, 2H).

#### (S)-3,3'-Bis-(2,4,6-triisopropylphenyl)-2,2'-dihydroxy-1,1'-dinaphthyl<sup>3</sup>

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ: 2.06 (s, 6H), 2.13 (s. 6H), 2.31 (s, 6H), 5.00 (s, 2H), 7.98 (s, 4H), 7.23-7.36 (m, 6H), 7.72 (s, 2H), 7.84 (d, *J* = 8.1Hz, 2H).

#### (S)-3,3'-Bis-(4-(1-admantyl)-2,6-diisopropylphenyl)-2,2'-dihydroxy-1,1'-dinaphthyl<sup>4</sup>

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ: 1.06 (d, *J* = 6.9 Hz, 6H), 1.10 (d, *J* = 6.9 Hz, 6H), 1.12 (d, *J* = 6.9 Hz, 6H), 1.21 (d, *J* = 6.9 Hz, 6H), 1.80 (m, 18H), 1.99 (m, 12H), 2.12 (m, 6H), 2.72 (m, 2H), 2.88 (m, 2H), 4.92 (s, 2H), 7.26 (m, 2H), 7.29 (m, 2H), 7.31 (m, 4H), 7.36 (m, 2H), 7.78 (s, 2H), 7.86 (d, *J* = 8.1Hz, 2H).

#### (S)-3,3'-Bis-(4-t-butyl-2,6-diisopropylphenyl)-2,2'-dihydroxy-1,1'-dinaphthyl

1-Bromo-4-t-butyl-2,6-diisopropylbenzene To a mixture of 1,3-diisopropylbenzene (2.91 eq, 170 g, 1.05 mol) and FeCl<sub>3</sub> (0.44 eq, 26 g, 0.16 mol) was added t-BuCl (1 eq, 33 g, 0.36 mol) dropwise over a period of 60 min at 0 °C. The reaction mixture was stirred at 0 °C for 2 h. After 2 h, H<sub>2</sub>O (200 mL) was carefully added to the reaction mixture at 0 °C. The organic layer was extracted with ethyl acetate (200 mL x 2), dried over  $Na_2SO_4$ , and concentrated. The dark mixture was distilled under vacuum. Unreacting starting material was first distilled out (69-71 °C at 5 mmHg). The desired product (27.2 g, 0.12 mol) was obtained as colorless oil at 98-100 °C at 5 mmHg. The above product (1 eq, 27.2 g, 0.12 mol), Fe (0.19 eq, 1.3 g, 23 mmol) and CCl<sub>4</sub> (120 mL) were added to a flask, which was wrapped with aluminum foil. A bromine (1.1 eq, 22 g, 136 mmol) in CCl<sub>4</sub> (20 mL) was added to the reaction mixture through an addition funnel over a period of 60 min at 0 °C. The resulting mixture was allowed to stir at 0 °C for additional 3 h. After 3h, 15 % of Na<sub>2</sub>SO<sub>3</sub> aqueous solution (100 mL) and CH<sub>2</sub>Cl<sub>2</sub> (50 mL) were added to the reaction mixture. The mixture was stirred until red color disappeared. The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (100 mL x 2), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo. A brown liquid was distilled under vacuum. Colorless oil was obtained at 130-135 °C at 5 mmHg (25 g, 84 mmol, 23 %).<sup>1</sup>H NMR (CDCl3, 500 MHz) & 1.25 (d,  $J = 5.8 \text{ Hz}, 12\text{H}, 1.32 \text{ (s, 9H)}, 3.49 \text{ (m, 2H)}, 7.15 \text{ (s, 2H)}; \text{MS (EI) Exact mass calcd for } C_{16}H_{25}Br (M+1)$ : 297.2 Found: 297.9.

(4-*t*-Butyl-2,6-diisopropylphenyl)magnesium bromide. A three neck round-bottom flask containing Mg (2 eq, 0.82 g, 34 mmol) was equipped with a condenser and an addition funnel. A 5 mL portion of a 1bromo-4-*t*-butyl-2,6-diisopropylbenzene (1 eq, 5.0 g, 17 mmol) in Et<sub>2</sub>O (30 mL) was added to the flask through the addition funnel. 1,2-Dibromoethane (0.20 mL, 0.002 mmol) was added and waited until the reaction mixture was refluxing. After starting refluxing, the remaining solution was added dropwise over a period of 30 min. The resulting mixture was refluxing under a nitrogen atmosphere for 12 h. The resulting Grignard reagent was titrated and stored in a Schreck tube. (0. 28 M, 30 mL, 8.4 mmol, 50 %).

(S)-{3,3'-Bis-(4-t-butyl-2,6-diisopropylphenyl)-2,2'-dihydroxy-1,1'-binaphthyl. (S)-3,3'-Diiodo-2,2'dimethoxy-1,1'-binaphthyl(1 eq, 1.27 g, 2.25 mmol) and NiCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.11 eq, 0.16 g, .25 mmol) were suspended in Et<sub>2</sub>O (20 mL). To this suspension was added the above Grignard reagent (4 eq, 0.28 M, 30 mL, 8.4 mmol) slowly at room temperature. The reaction mixture was allowed to stir for 10 min. The resulting dark green solution was refluxed for 24 h. The reaction mixture was cooled to 0 °C and quenched slowly by the addition of 1*N* HCl solution (10 mL). The aqueous layer was extracted with ether (50 mL) twice, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated. Without further purification, to a solution of this crude product in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was added BBr<sub>3</sub> (1 M in CH<sub>2</sub>Cl<sub>2</sub>) (3 eq, 6.7 mL, 6.7 mmol) slowly at 0 °C. The resulting mixture was allowed to warm up to room temperature and stirred for 6 h. The mixture was then cooled to 0 °C, and the reaction was quenched by the slow addition of 25 mL water. Aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (25 mL X 2), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated. Chromatography on silica (hexanes/EtOAc, 50/1) gave 0.89 g (1.24 mmol, 55 %) of the desired product as an foamy solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.03 (d, *J* = 6.8 Hz, 6H), 1.08-1.12 (m, 12H), 1.21 (d, *J* = 6.8 Hz, 6H), 1.38 (s, 18H), 2.68-2.71 (m, 2H), 2.84-2.88 (m, 2H), 4.91 (s, 2H), 7.28-7.31 (m, 8H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.77 (s, 2H), 7.86 (d, *J* = 8.2 Hz, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$ : 23.9, 24.1, 24.5, 31.1 (2C), 31.6, 35.1, 113.2, 120.2, 123.9, 124.7, 126.8, 128.4, 129.2 (2C), 130.2, 130.8, 133.6, 147.4 (2C), 150.8, 151.5; [ $\alpha$ ]<sup>23.9</sup><sub>D</sub> = - 64.6 (c 1.29, CHCl<sub>3</sub>); MS (APCI) Exact mass calcd for C<sub>52</sub>H<sub>61</sub>O<sub>2</sub> (M-1): 717.4 Found: 717.2.

#### Synthesis of Chiral Brønsted Acids (1-5)

#### (S)-{3,3'-Bis-(2,4,6-triisopropylphenyl)-1,1'-binaphthalen-2,2'-yl}phosphoric acid (1)<sup>5</sup>

This compound was prepared following the reported procedure and <sup>1</sup>H NMR data was in agreement with the literature. After purification by column chromatography on silica gel (hexanes/EtOAc, 1/1), the product in Et<sub>2</sub>O was washed with 4 *N* HCl (aq) twice, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo. Foam-like solid was obtained. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 0.92 (d, *J* = 6.7 Hz, 12H), 0.99 (d, *J* = 6.6 Hz, 6H), 1.11 (d, *J* = 6.8 Hz, 6H), 1.20-1.25 (m, 12H), 2.54-2.60 (m, 4H), 2.81-2.86 (m, 2H), 6.94 (s, 2H), 6.97 (s, 2H), 7.26-7.32 (m, 4H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.82 (s, 2H), 7.87 (d, J = 8.2 Hz, 2H); <sup>31</sup>P NMR (CDCl<sub>3</sub>, 202 MHz)  $\delta$ : 3.68.

#### (S)-{3,3'-Bis-(2,4,6-triisopropylphenyl)-1,1'-binaphthalen-2,2'-yl}thiophosphoric acid (2)



To a solution of (*S*)-3,3'-bis-(2,4,6-triisopropylphenyl)-2,2'-dihydroxy-1,1'-dinaphthyl in dimethoxyethane was added NaH at 0 °C. The resultant mixture was stirred for 30 min at room temperature. PSCl<sub>3</sub> was added to the reaction mixture droppwise. The reaction mixture was stirred at room temperature for 6 h. After 6 h, H<sub>2</sub>O was added to the reaction mixture, and the reaction mixture was allowed to reflux for 12 h. The reaction mixture was cooled to room temperature, quenched with saturated NaHCO<sub>3</sub> aqueous solution, extracted with Et<sub>2</sub>O, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated. After purification by column chromatography on silica gel (hexanes/EtOAc, 2/1), the product was re-

dissolved in Et<sub>2</sub>O was washed with 4 *N* HCl (aq) twice, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo. Foam-like solid was obtained in 85 % yield. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 0.86 (d, *J* = 6.5 Hz, 3H), 0.97-1.00 (m, 6H), 1.04-1.15 (m, 6H), 1.21-1.43 (m, 21H), 2.65-3.02 (m, 4H), 3.33-3.40 (m, 2H), 6.99 (s, 4H), 7.07-7.11 (m, 3H), 7.22-7.34 (m, 4H), 7.47-7.50 (m, 2H), 7.87 (s, 1H), 7.90-7.93 (dd, *J* = 3.8, 8.2 Hz, 1H), 7.95 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$ : 23.2 (2C), 23.8, 24.0, 24.2 (2C), 25.2 (2C), 26.8, 27.5, 30.4, 30.8, 31.0, 31.1, 31.4, 34.4, 120.2, 120.8, 121.2, 121.6, 122.5, 122.9, 125.7, 125.8, 126.2 (2C), 127.4,

127.6, 128.3, 128.4, 131.1, 131.6, 131.9, 132.3, 132.6, 132.7, 133.0, 145.7, 145.8, 147.0, 147.1, 147.3, 147.9, 148.0, 148.2, 148.4, 148.5; <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>)  $\delta$ : 68.4;  $[\alpha]^{24.3}{}_{D}$  = +2.6 (c 1.20, CHCl<sub>3</sub>); MS (APCI) Exact mass calcd for C<sub>50</sub>H<sub>56</sub>O<sub>3</sub>PS (M-1): 767.3 Found: 767.1.

#### (S)-{3,3'-Bis-(2,4,6-triisopropylphenyl)-1,1'-binaphthalen-2,2'-yl}-N-triflylphosphoramide (3)<sup>6</sup>

This compound was prepared following the reported procedure and <sup>1</sup>H NMR data was in agreement with the literature. After purification by Column chromatography on silica gel (hexanes/EtOAc, 2/1), the product in Et<sub>2</sub>O was washed with 4 *N* HCl (aq) twice, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo. Foam-like solid was obtained in high yield. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 0.94 (d, *J* = 6.5 Hz, 3H), 0.98 (d, *J* = 6.5 Hz, 3H), 1.10 (d, *J* = 6.5 Hz, 3H), 1.16 (t, *J* = 6.5 Hz, 6H), 1.20 (d, *J* = 6.5 Hz, 3H), 1.24-1.30 (m, 18H), 2.55-2.65 (m, 1H), 2.65-2.80 (m, 3H), 2.90-3.00 (m, 2H), 7.04 (s, 1H), 7.11 (s, 2H), 7.16 (s, 1H), 7.27-7.34 (m, 2H), 7.36 (t, *J* = 7.0 Hz, 2H), 7.55 (t, *J* = 7.0 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 2H), 7.97 (s, 2H); <sup>31</sup>P NMR (CDCl<sub>3</sub>, 202 MHz)  $\delta$ : -2.57.

Synthesis of Chiral N-triflylthiophosphamides (4a-4e)



**General procedures:** To a solution of BINOL derivatives in dimethoxyethane was added NaH at 0 °C. The resultant mixture was stirred for 30 min at room temperature. PSCl<sub>3</sub> was added to the reaction mixture dropwise. The reaction mixture was stirred at room temperature for 6 h. After 6 h, the reaction mixture was quenched with saturated NaHCO<sub>3</sub> aqueous solution, extracted with Et<sub>2</sub>O, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The resultant crude mixture was used for amidation reaction without further purification. The resultant crude mixture was dissolved in EtCN. NH<sub>2</sub>Tf, DMAP, and NEt<sub>3</sub> were added into the reaction mixture was cooled to room temperature, quenched with saturated NaHCO<sub>3</sub> aqueous solution, extracted with Et<sub>2</sub>O, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated. After purification by column chromatography on silica gel (hexanes/EtOAc, 3/1), the product was re-dissolved in Et<sub>2</sub>O was washed with 4 *N* HCl (x 2), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo. Foam-like solid was obtained.

#### (S)-{3,3'-diphenyl-1,1'-binaphthalen-2,2'-yl}-N-triflyl-thiophosphoramide (4a)



Thiophosphoramide (**4a**) was obtained as a foamy solid in 70 % yield. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 7.32-7.38 (m, 4H), 7.41-7.47 (m, 6H), 7.50-7.54 (m, 2H), 7.68 (d, *J* = 7.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.98-8.01 (m, 2H), 8.06 (s, 1H), 8.09 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$ : 119.7 (q, J = 322.5 Hz), 123.5 (2C), 123.9 (2C), 126.0, 126.1, 126.6 (2C), 127.2, 127.5, 128.0, 128.2, 128.6 (2C), 130.5, 131.2, 131.4, 131.7, 131.9, 132.3, 132.4, 134.5 (2C),

134.9 (2C), 137.6, 137.8, 144.3, 144.4, 145., 145.8, 164.1; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 471 MHz)  $\delta$ :-77.44; <sup>31</sup>P NMR (CDCl<sub>3</sub>, 202 MHz)  $\delta$ : 64.4;  $[\alpha]^{24.3}{}_{D}$  = +223.8 (c 1.25, CHCl<sub>3</sub>); MS (APCI) Exact mass calcd for C<sub>33</sub>H<sub>20</sub>F<sub>3</sub>NO<sub>4</sub>PS<sub>2</sub> (M-1): 646.0 Found: 645.8.

#### (S)-{3,3'-Bis(2,4,6-trimethylphenyl)-1,1'-binaphthalen-2,2'-yl}-N-triflyl-thiophosphoramide (4b)



Thiophosphoramide (**4b**) was obtained as a foamy solid in 45 % yield. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 2.05 (s, 3H), 2.06 (s, 3H), 2.16 (s, 3H), 2.24 (s, 3H), 2.31 (s, 6H), 6.91-7.00 (m, 4H), 7.27-7.29 (m, 4H), 7.47-7.49 (m, 2H), 7.80 (d, *J* = 9.0 Hz, 2H), 7.90-7.93 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$ : 20.1, 20.5, 21.3, 22.4, 29.9, 30.5, 123.1 (q, *J* = 112 Hz), 125.7, 125.8, 126.2, 126.5, 127.3, 127.4, 127.7, 127.8, 128.4, 128.6, 128.7, 131.4, 131.5, 131.8, 132.0, 132.2, 132, 3, 133.2 (2C), 133.7, 134.9, 137.1, 137.3, 137.5, 137.6, 145.4, 145.5, 146.8, 147.0; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 471 MHz)  $\delta$ :-78.43; <sup>31</sup>P NMR

 $(\text{CDCl}_3, 202 \text{ MHz}) \delta: 67.7; [\alpha]^{22.7}{}_{\text{D}} = +72.4 \text{ (c } 0.27, \text{CHCl}_3); \text{MS (APCI) Exact mass calcd for} C_{39}H_{32}F_3NO_4PS_2 (M-1): 730.1 \text{ Found: } 729.9.$ 

#### (S)-{3,3'-Bis(2,4,6-triisopropylphenyl)-1,1'-binaphthalen-2,2'-yl}-N-triflyl-thiophosphoramide (4c)



Thiophosphoramide (**4c**) was obtained as a foamy solid in 52 % yield. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 0.85 (d, J = 6.5 Hz, 3H), 0.99 (d, J = 6.5 Hz, 3H), 1.10 (d, J = 7.0 Hz, 3H), 1.15 (d, J = 7.0 Hz, 3H), 1.25-1.35 (m, 24H), 2.54-2.59 (m, 1H), 2.69-2.82 (m, 2H), 2.90-3.06 (m, 3H), 7.03 (s, 1H), 7.12-7.18 (m, 4H), 7.26-7.34 (m, 3H), 7.53 (t, J = 7 Hz, 2H), 7.95 (d, J = 8 Hz, 2H), 7.98 (s, 1H), 8.03 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$ : 22.4, 23.3, 23.7, 23.8, 24.0 (2C), 24.1, 24.3, 25.3, 25.6, 27.1, 27.6, 30.5, 31.0 (2C), 31.7, 34.6, 34.7, 120.3, 121.3, 121.9, 122.1, 122.2 (q, J = 106 Hz), 126.4 (2C), 126.7, 126.9, 127.4, 127.5, 128.5 (2C), 129.8, 130.2 (2C),

130.6, 131.3, 131.5, 132.5, 132.6, 133.0, 133.5, 144.9, 145.0, 146.1, 146.4, 146.5, 147.0, 147.5, 148.7, 149.0, 150.0; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 471 MHz)  $\delta$ :-75.34; <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>)  $\delta$ : 52.7; [ $\alpha$ ]<sup>24.3</sup><sub>D</sub> = +15.5 (c 1.04, CHCl<sub>3</sub>); MS (APCI) Exact mass calcd for C<sub>51</sub>H<sub>56</sub>F<sub>3</sub>NO<sub>4</sub>PS<sub>2</sub> (M-1): 898.3 Found: 898.0.

#### (S)-{3,3'-Bis(4-t-butyl-2,6-diisopropylphenyl)-1,1'-binaphthalen-2,2'-yl}-N-triflyl-

thiophosphoramide (4d)



Thiophosphoramide (**4d**) was obtained as a foamy solid in 57 % yield. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 0.80 (d, *J* = 7.0 Hz, 3H), 0.85 (d, *J* = 6.5 Hz, 3H), 1.12-1.25 (m, 18H), 1.28 (s, 9H), 1.31 (s, 9H), 2.59-2.65 (m, 1H), 2.75-2.81 (m, 1H), 3.00-3.06 (m, 1H), 3.10-3.15 (m, 1H), 7.05-7.10 (m, 2H), 7.16 (s, 1H), 7.23 (t, *J* = 7.5 Hz, 3H), 7.27 (s, 1H), 7.31 (s, 1H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.83 (s, 1H), 7.87 (d, *J* = 7.5 Hz, 2H), 7.89 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$ : 21.7, 23.6, 23.9, 24.2, 24.9 (2C), 26.6, 27.3, 30.3, 30.7, 30.8 (2C), 31.1, 31.4, 34.7, 34.8, 118.9, 119.3, 119.8, 120.2, 122.5 (q, *J* = 153 Hz), 125.3, 125.4,

125.5, 126.0, 126.2, 126.9, 127.0, 128.0, 128.1, 130.6, 130.7, 131.2, 131.4, 131.9, 132.3, 132.4, 132.6, 132.8, 145.5, 145.6, 147.1, 147.2 (2C), 147.3, 147.8, 148.2, 150.4, 151.3; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 471 MHz)  $\delta$ : 78.37; <sup>31</sup>P NMR (CDCl<sub>3</sub>, 202 MHz)  $\delta$ : 67.0;  $[\alpha]^{24.7}_{D}$  = +38.5 (c 1.43, CHCl<sub>3</sub>); MS (APCI) Exact mass calcd for C<sub>53</sub>H<sub>60</sub>F<sub>3</sub>NO<sub>4</sub>PS<sub>2</sub> (M-1): 926.2 Found: 926.1.

## (*S*)-{3,3'-Bis(4-adamantyl-2,6-diisopropylphenyl-1,1'-binaphthalen-2,2'-yl}-N-triflyl-thiophosphoramide (4e)



Thiophosphoramide (**4e**) was obtained as a foamy solid in 42 % yield. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 0.81 (d, *J* = 7.0 Hz, 3H), 0.85 (d, *J* = 6.5 Hz, 3H), 1.12 (d, *J* = 7.0 Hz, 3H), 1.17 (d, *J* = 7.0 Hz, 3H), 1.21-1.24 (m, 6H), 1.33 (d, *J* = 6.5 Hz, 6H), 1.66 (s, 3H), 1.68 (s, 3H), 1.76 (s, 6H), 1.91 (s, 6H), 1.94 (s, 6H), 2.01 (s, 3H), 2.08 (s, 3H), 2.57-2.63 (m, 1H), 2.79-2.85 (m, 1H), 3.00-3.12 (m, 2H), 7.05 (d, *J* = 8.5 Hz, 1H), 7.11 (d, *J* = 9.0 Hz, 1H), 7.14 (s, 1H), 7.21-7.24 (m, 3H), 7.26 (s, 1H), 7.29 (s, 1H), 7.45 (t, *J* = 7.3 Hz, 2H), 7.83 (s, 1H), 7.86-7.88 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$ : 22.0, 23.5, 23.8, 24.0, 24.4, 25.3, 27.0, 27.5, 29.0, 29.2, 30.5, 31.0, 31.1, 36.7, 37.0, 43.1, 43.3, 118.8, 119.0, 119.6, 119.9, 122.8 (q, J)

= 156 Hz), 125.5, 125.6, 125.7, 126.2, 126.4, 127.2, 128.2, 128.3, 129.0, 130.8, 130.9, 131.2, 131.4, 131.6, 132.1, 132.5, 132.7, 132.9, 133.0, 133.1, 145.6, 145.7, 147.3, 148.3, 148.6, 150.9, 151.9; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 471 MHz)  $\delta$ :-78.37; <sup>31</sup>P NMR (CDCl<sub>3</sub>, 202 MHz)  $\delta$ : 67.0;  $[\alpha]^{25.2}_{D}$  = +29.4 (c 1.57, CHCl<sub>3</sub>); MS (APCI) Exact mass calcd for C<sub>65</sub>H<sub>72</sub>F<sub>3</sub>NO<sub>4</sub>PS<sub>2</sub> (M-1): 1082.3 Found: 1082.2.

(S)-{3,3'-Bis-(2,4,6-triisopropylphenyl)-1,1'-binaphthalen-2,2'-yl}-N-triflyl-selenophosphoramide (5)





To a solution of PCl<sub>3</sub> in toluene was added NEt<sub>3</sub> at 0 °C with vigorous stirring under nitrogen atmosphere. To the resultant solution was added (*S*)-3,3'-bis-(2,4,6-triisopropylphenyl)-2,2'-dihydroxy-1,1'-dinaphthyl in toluene at 0 °C, the reaction mixture was stirred at the same temperature for 10 min. After the addition of elemental selenium, the mixture was warmed to 110 °C and stirred for an additional 12 h. After 12 h, the reaction mixture was cooled to room temperature, quenched with saturated NaHCO<sub>3</sub> aqueous solution, extracted with Et<sub>2</sub>O, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated.<sup>7</sup> The resultant crude mixture was used for amidation reaction without further purification. The resultant crude

mixture was dissolved in EtCN. NH<sub>2</sub>Tf, DMAP, and NEt<sub>3</sub> were added into the reaction mixture. The resultant reaction mixture was allowed to reflux for 24 h. The reaction mixture was cooled to room temperature, quenched with saturated NaHCO<sub>3</sub> aqueous solution, extracted with Et<sub>2</sub>O, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated. After purification by Column chromatography on silica gel (hexanes:EtOAc, 3:1), the product was re-dissolved in  $Et_2O$  was washed with 4 N HCl (aq) twice, dried over anhydrous  $Na_2SO_4$ , and concentrated in vacuo. Selenophosphoramide (5) was obtained as a foamy solid in 42 % yield. <sup>1</sup>H NMR  $(CDCl_3)$   $\delta$ : 0.78 (d, J = 7.0 Hz, 3H), 0.84 (d, J = 7.0 Hz, 3H), 1.12 (d, J = 6.5 Hz, 3H), 1.16 (d, J =3H), 1.21-1.28 (m, 18H), 1.32 (d, J = 7.0 Hz, 3H), 1.34 (d, J = 7.0 Hz, 3H), 2.54-2.60 (m, 1H), 2.79-2.85 (m, 1H), 2.87-2.95 (m, 2H), 2.98-3.04 (m, 1H), 3.12-3.18 (m, 1H), 7.00 (s, 1H), 7.03-7.08 (m, 2H), 7.10 (s, 1H), 7.13 (s, 1H), 7.20 (s, 1H), 7.24 (t, J = 7.0 Hz, 2H), 7.44-7.48 (m, 2H), 7.82 (s, 1H), 7.89 (t, J = 7.5 Hz, 2H), 7.92 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ: 21.5, 23.7, 23.8, 24.0, 24.2, 24.3, 24.4, 25.0 (2C), 26.8, 27.7, 29.8, 30.5, 30.8, 30.9, 31.0, 33.8, 34.3, 120.1, 120.7, 121.5, 121.6,122.9 (g, J = 180 Hz), 125.5, 125.7, 126.2, 126.6, 127.0, 127.2, 128.2, 128.4, 130.7 (2C), 130.9, 131.6, 132.4 (2C), 132.6, 132.7, 132.9, 133.2 (2C), 145.3, 145.4, 147.4, 147.5, 147.6, 148.4, 148.9, 149.5, 149.60; <sup>19</sup>F NMR (CDCl<sub>3</sub>, 471 MHz) δ:-78.7; <sup>31</sup>P NMR (CDCl<sub>3</sub>, 202 MHz)  $\delta$ : 62.4;  $[\alpha]^{21.7}_{D}$  = +23.6 (c 1.36, CHCl<sub>3</sub>); MS (APCI) Exact mass calcd for C<sub>51</sub>H<sub>56</sub>F<sub>3</sub>NO<sub>4</sub>PSSe (M-1): 946.2 Found: 946.0.

#### 2. Structure determination by X-ray crystallography

X-ray crystallographic analysis of 4c reveals that P-N bond (1.60 Å) is almost as same as the P-N bond (1.61 Å) in the phosphoramide.<sup>4</sup> In addition, the observed P-S bond (1.92 Å) is much shorter than P-S

bond (2.09 Å) and almost as same as P=S bond (1.93 Å).<sup>8</sup> Thus, as suggested in the molecular structures of 4a-e above, P-S bond has double bond character and the proton is located on the nitrogen atom, instead of the sulfur atom bonded to the phosphorus atom.

#### 3. Synthesis of 2-substituted cyclic ketones

#### 3-1. Synthesis of 2-aryl cyclic ketones

All  $\alpha$ -aryl cyclic ketones were prepared by  $\alpha$ -arylation of trimethylsilyl (TMS) enol ethers with aryl halides.<sup>9</sup>



**General Procedures:** To a solution of TMS enol ether of cyclic ketone (20 mmol),  $Pd_2(dba)_3$  (0.23 g, 0.25 mmol), and  $Bu_3SnF$  (6.18 g, 20 mmol) under nitrogen was added a solution of  ${}^{t}Bu_3P$  (1.0 M, 0.6 mL) in benzene (40 mL) at room temperature. The resultant mixture was heated to reflux for 24 h. After cooling to room temperature, the reaction mixture was diluted with ether (200 mL) (when tin residue precipitated, it was removed by decantation with ether), washed with 1 *N* aqueous NaOH twice, followed by brine (50 mL x 2), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The residue was purified by flash column chromatography (hexanes/EtOAc, 10/1) on silica gel.



2-(4-Methylphenyl)cyclohexanone was obtained as a white solid (1.34 g, 72 % yield) and <sup>1</sup>H NMR was in agreement with the literature.<sup>10</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.78-1.84 (m, 2H), 1.95-2.05 (m, 2H), 2.12-2.17 (m, 1H), 2.22-2.27 (m, 1H), 2.22 (s, 3H), 2.39-2.56 (m, 2H), 3.56 (dd, *J* = 5.4, 12.0 Hz, 1H), 7.02 (d, *J* = 8.0

Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H).



2-(4-Methoxyphenyl)cyclohexanone was obtained as a white solid (1.34 g, 72 % yield) and <sup>1</sup>H NMR was in agreement with the literature.<sup>9</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.75-1.85 (m, 2H), 1.94-2.02 (m, 2H), 2.10-2.15 (m, 1H), 2.22-2.26 (m, 1H), 2.49-2.53 (m, 2H), 3.56 (dd, *J* = 5.5, 12.5 Hz, 1H), 3.78 (s, 3H), 6.87 (d, *J* 

= 8.5 Hz, 2H), 7.05 (d, J = 8.5 Hz, 2H).



2-(4-Chlorophenyl)cyclohexanone was obtained as a white solid (1.29 g, 62 % yield), and <sup>1</sup>H NMR was in agreement with the literature.<sup>10</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.79-1.91 (m, 2H), 1.95-2.02 (m, 2H), 2.15-2.28 (m, 2H), 2.41-2.54 (m, 2H), 3.59 (dd, J = 5.4, 12.4 Hz, 1H), 7.07 (d, J = 9.0 Hz, 2H), 7.30 (d, J = 9.0 Hz,



2-(2-naphthyl)cyclohexanone was obtained as a white solid (1.54 g, 70 % yield) and <sup>1</sup>H NMR was in agreement with the literature.<sup>11 1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.81-1.91 (m, 2H), 2.00-2.07 (m,1H), 2.12-2.21 (m, 2H), 2.31-2.36 (m, 1H), 2.46-2.58 (m, 2H), 3.77 (dd, J = 5.6, 12.2 Hz, 1H), 7.27 (dd, J = 1.6, 8.4 Hz, 1H),

7.41-7.46 (m, 2H), 7.60 (s, 1H), 7.77-7.83 (m, 3H).



2-(2-Methoxyphenyl)cyclohexanone was obtained as oil (1.02 g, 50 %) and <sup>1</sup>H NMR was in agreement with the literature.<sup>9</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.73-1.84 (m, 2H), 1.98-2.05 (m, 2H), 2.13-2.21 (m, 2H), 2.44-2.53 (m, 2H), 3.78 (s, 3H), 3.94 (dd, *J* = 5.5, 12.5 Hz, 1H), 6.88 (d, *J* = 8 Hz, 1H), 6.96 (t, *J* = 8 Hz, 1H), 7,12 (d, *J* = 8 Hz, 1H

1H), 7.24 (t, J = 8 Hz, 1H).



TMS

2-(2-Naphthyl)cyclohexanone was obtained as oil (1.37 g, 57 %). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz,)  $\delta$ : 1.49-1.53 (m, 2H), 1.66-1.73 (m, 1H), 1.99-2.15 (m, 4H), 2.20-2.23 (m, 1H), 2.55-2.58 (m, 1H), 2.72-2.78 (td, J = 12.8, 3.1 Hz, 1H), 3.88 (dd, J = 4.2, 11.4 Hz, 1H), 7.37 (dd, J = 1.7, 8.5 Hz, 1H), 7.42-7.48 (m, 2H),

7.67 (s, 1H), 7.79-7.81 (m, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 25.5, 28.8, 30.3, 32.1, 43.0, 59.1, 125.9, 126.2, 126.4, 127.8, 128.0, 128.3, 129.8, 132.6, 133.6, 138.0, 213.8; MS (APCI) Exact mass calcd for C<sub>17</sub>H<sub>19</sub>O (M+1): 239.2 Found: 239.1.

#### 3-2. Synthesis of silyl enol ethers of 2-substituted cyclic ketones (6a-j)

All silvl enol ethers of 2-substituted cyclic ketones were synthesized by the following method, except 6j.



**General procedures of 6a-i:** To a solution of lithium diisopropylamide (LDA) (4.8 mmol) in THF was added 2-substituted cyclic ketone (5.0 mmol) at -78 °C. The reaction mixture was warmed up to room temperature and stirred for 16 h. After 16h, trimethylsilyl chloride (TMSCl) was added to the reaction mixture was allowed to stir for additional 2 h. After then, the reaction mixture was quenched with saturated aqueous NaHCO<sub>3</sub>, extracted with ether, followed by brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The residue was purified by flash column chromatography (hexanes/EtOAc, 20:1) on silica gel.

The silvl enol ether (**6a**) was obtained as oil (1.15 g, 93 %) and <sup>1</sup>H NMR was in agreement with the literature.<sup>12,13 1</sup>H NMR (CDCl<sub>3</sub> 500 MHz)  $\delta$ : -0.05 (s, 9H), 1.64-

1.77 (m, 4H), 2.15-2.19 (m, 2H), 2.34-2.38 (m, 2H), 7.12-7.15 (m, 1H), 7.25-7.28 (m, 2H), 7.34-7.36 (dd, *J* = 1.3, 8.2 Hz, 2H).



The silyl enol ether (**6b**) was obtained as oil (1.10 g, 84 %) and <sup>1</sup>H NMR was in agreement with the literature.<sup>13</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : -0.04 (s, 9H), 1.65-1.76 (m, 4H), 2.15-2.18 (m, 2H), 2.31 (s, 3H), 2.32-2.36 (m, 2H), 7.07-7.09 (d, *J* = 7.9 Hz, 2H), 7.25-7.26 (d, *J* = 7.9 Hz, 2H).



The silyl enol ether (**6c**) was obtained as oil (1.18 g, 85 %) and <sup>1</sup>H NMR was in agreement with the literature.<sup>12,13</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : -0.04 (s, 9H), 1.65-1.77 (m, 4H), 2.14-2.17 (m, 2H), 2.31-2.35 (m, 2H), 3.80 (s, 3H), 6.80-6.85 (d, *J* = 8.8 Hz, 2H), 7.28-7.31 (d, *J* = 8.8 Hz, 2H).



The silyl enol ether (**6d**) was obtained as oil (1.13 g, 80 %). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : -0.02 (s, 9H), 1.67-1.75 (m,4H), 2.15-2.18 (m, 2H), 2.31-2.34 (m, 2H), 7.22-7.24 (d, *J* = 8.6 Hz, 2H), 7.30-7.32 (d, *J* = 8.6 Hz, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$ : 0.78, 23.4, 23.5, 29.4, 30.5, 31.2, 114.6, 127.9, 128.4,

128.7, 130.0, 131.1, 140.0, 146.6; MS (EI) Exact mass calcd for  $C_{15}H_{21}ClOSi$  (M): 280.1 this compound is not stable in this condition. Instead, the corresponding ketone was observed. Exact mass calcd for the ketone  $C_{12}H_{14}ClO$  (M+1):209.1 Found: 209.2.



The silyl enol ether (**6e**) was obtained as oil (1.24 g, 84 %) and <sup>1</sup>H NMR was in agreement with the literature.<sup>12,13</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : -0.06 (s, 9H), 1.72-1.82 (m, 4H), 2.21-2.24 (m, 2H), 2.47-2.49 (m, 2H), 7.38-7.43 (m, 2H), 7.57-7.59 (dd, J = 1.7, 8.5 Hz, 1H), 7.73-7.80 (m, 4H).



The silyl enol ether (**6f**) was obtained as oil (1.05 g, 76 %). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)) δ: -0.12 (s, 9H), 1.64-1.68 (m, 2H), 1.74-1.79 (m, 2H), 2.13-2.16 (m, 2H), 2.26-2.28 (m, 2H), 3.78 (s, 3H), 6.84-6.90 (m, 2H), 7.11-7.19 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz) δ: 1.38, 24.3, 24.7, 30.3, 31.9, 56.5, 111.9, 116.5, 121.3, 128.4,

131.7, 132.5, 146.2, 158.3; MS (APCI) Exact mass calcd for  $C_{16}H_{24}O_2Si$  (M): 276.2 this compound is not stable in this condition. Instead, the corresponding ketone was observed. Exact mass calcd for the ketone  $C_{13}H_{17}O_2$  (M+1):205.2 Found: 205.1.



The silyl enol ether (**6g**) was obtained as oil (1.06 g, 81 %) and <sup>1</sup>H NMR was in agreement with the literature.<sup>12,13</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : -0.07 (s, 9H), 1.63-1.70 (m, 4H), 1.78-1.82 (m, 2H), 2.42-2.47 (m, 4H), 7.11-7.14 (t, , *J* = 7.2 Hz, 1H), 7.25-7.32 (m, 4H).



The silyl enol ether (**6h**) was obtained as a white solid (1.12 g, 72 %). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : -0.09 (s, 9H), 1.67-1.76 (m, 4H), 1.82-1.87 (m, 2H), 2.45-2.50 (m, 2H), 2.56-2.62 (m, 2H), 7.39-7.45 (m, 2H), 7.50-7.54 (d, *J* = 8.5 Hz, 1H), 7.68-7.82 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 0.65, 25.4, 27.8, 32.4,

33.3, 36.5, 121.5, 125.1, 125.7, 126.8, 126.9, 127.6, 127.9, 128.0, 131.8, 133.6, 140.6, 151.8; MS (APCI) Exact mass calcd for  $C_{20}H_{26}OSi$  (M): 310.2 this compound is not stable in this condition. Instead, the corresponding ketone was observed. Exact mass calcd for the ketone  $C_{17}H_{19}O$  (M+1): 239.2 Found: 239.1.



The mixture of thermodynamic (**6i**) and kinetic silyl enol ethers (94:6) was obtained as oil (0.60 g, 46 %) and <sup>1</sup>H NMR was in agreement with the literature.<sup>14</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 0.20 (s, 9H), 1.51-1.53 (m, 2H), 1.65-1.68 (m, 2H), 1.87-1.89 (m, 2H), 2.11-2.13 (m, 2H), 3.39 (s, 2H), 7.15-7,19

(m, 3H), 7.25-7.28 (m, 2H).



The silyl enol ether (6j) was synthesized by the method developed by Cazeau *et al.*.<sup>15</sup>

To a solution of the ketone (0.90 g, 5 mmol), pyridine (0.49 g, 6.25 mmol), and TMSCl (0.65 g, 6 mmol) in acetonitrile (6 mL) was added NaI (0.94 g, 6.25 mmol)

in acetonitrile (5 mL) at room temperature. Anhydrous pentane (10 mL) was added to the reaction mixture. The reaction mixture was allowed to stir at room temperature for 24 h. After 24 h, the reaction mixture was extracted with pentane. The organic layer was collected, washed with H<sub>2</sub>O and brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. After column chromatography on silica (pentane:diethyl ether, 40:1), the mixture of thermodynamic and kinetic silyl enol ethers (96:4) was obtained as oil (1.08 g, 85 %). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 0.17 (s, 9H), 1.20-1.30 (m, 6H), 1.42-1.45 (m, 2H), 1.48-1.53 (m, 2H), 1.57-1.62 (m, 2H), 1.71-1.74 (m, 2H), 1.90-1.93 (m, 2H), 2.00-2.03 (m, 2H), 2.58-2.63 (m, 1H).

### 4. Catalytic Asymmetric Protonation Reactions of Silyl Enol Ethers with Chiral Brønsted Acid



**General Procedures:** To a solution of catalytic amount of chiral Brønsted acid and achiral Brønsted source (1.1 eq) in toluene was added silyl enol ether dropwise. The reaction mixture was monitored by thin layer chromatography (TLC). When the silyl enol ether was completely consumed, the reaction mixture was quenched with saturated aqueous NaHCO<sub>3</sub>, extracted with ether, followed by brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The residue was purified by flash column chromatography (EtOAc/hexanes, 1/10) on silica gel. Enantiomeric ratio (e.r.) was determined by HPLC or GC with a chiral column.

#### **Optimization of Reaction Conditions**

#### 1) Solvent effect

|   |                    | <b>4c</b> (10 mol %)                                                                          |         |                                                                                               |  |    |  |
|---|--------------------|-----------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------|--|----|--|
|   | Pn<br>en           | toluene, rt<br>2,4,6-Me <sub>3</sub> C <sub>6</sub> H <sub>2</sub> CO <sub>2</sub> H (1.1 eq) |         | toluene, rt<br>2,4,6-Me <sub>3</sub> C <sub>6</sub> H <sub>2</sub> CO <sub>2</sub> H (1.1 eq) |  | 70 |  |
| _ | 08                 |                                                                                               |         | 78                                                                                            |  |    |  |
|   | Solvent            | time                                                                                          | % yield | er (config.)                                                                                  |  |    |  |
|   | $CH_2CI_2$         | 3 h                                                                                           | >99     | 83.5:16.5 ( <i>S</i> )                                                                        |  |    |  |
|   | Et <sub>2</sub> O  | 32 h                                                                                          | 80      | 81:19 ( <i>S</i> )                                                                            |  |    |  |
|   | THF                | 32 h                                                                                          | 50      | 76:24 (S)                                                                                     |  |    |  |
|   | CH <sub>3</sub> CN | 3 h                                                                                           | >99     | 58:42 (S)                                                                                     |  |    |  |
|   | toluene            | 3 h                                                                                           | >99     | 89:11 ( <i>S</i> )                                                                            |  |    |  |
|   | Hexanes            | 8 h                                                                                           | >99     | 85.5:14.5 ( <i>S</i> )                                                                        |  |    |  |

The reactivity and enantioselectivity of 4c showed dependence on the solvent. High enantioselectivity could be achieved in non-polar solvents, such as toluene, hexanes, and methylene chloride (entries 1,5,6), whereas polar solvents, such as acetonitrile and ether solvent gave rise to lower enantioselectivity (entries 2-4). In addition, the reactivity of 4c was decreased in ethereal solvents, such as ether and THF (entries 2-3). Among the various solvents tested, toluene was found to be best in terms of enantioselectivity and reactivity.

#### 2) Survey of Achiral Brønsted Acids

| (     | OTMS               |                                                       |                         |         | Q                      |
|-------|--------------------|-------------------------------------------------------|-------------------------|---------|------------------------|
| /     | Ph                 | <b>4c</b> (10 mol %)                                  |                         |         | ,\Ph                   |
|       |                    | achiral Bronste                                       | d acid (1. <sup>-</sup> | 1 eq)   |                        |
| 6     | a                  | toluene, rt                                           |                         |         | 7a                     |
| entry | entry Brosted acid |                                                       | time                    | % yield | er (config.)           |
| 1     | Me                 | юH                                                    | 4 h                     | >99     | 65:35 ( <i>S</i> )     |
| 2     | Et                 | ОН                                                    | 5 h                     | >99     | 66:34 (S)              |
| 3     | <i>i</i> -P        | rOH                                                   | 5 h                     | >99     | 84.5:15.5 ( <i>S</i> ) |
| 4     | <i>t</i> -B        | uOH                                                   | 5 h                     | >99     | 87:13 ( <i>S</i> )     |
| 5     |                    | X = H                                                 | 3 h                     | >99     | 89:11 ( <i>S</i> )     |
| 6     | ×                  | X =Me                                                 | 3 h                     | >99     | 88.5:11.5 ( <i>S</i> ) |
| 7     | 🖉 🔪 Он             | X = <i>i</i> -Pr                                      | 3 h                     | >99     | 86.5:13.5 ( <i>S</i> ) |
| 8     | ×                  | X = <i>t</i> -Bu                                      | 48 h                    | < 1     | N. D.                  |
| 9     |                    | X = Ph                                                | 24 h                    | >99     | 70.5:29.5 ( <i>S</i> ) |
| 10    |                    | R = CH <sub>3</sub>                                   | 3 h                     | >99     | 89:11 ( <i>S</i> )     |
| 11    | RCO <sub>2</sub> H | R = Ph                                                | 3 h                     | >99     | 89:11 ( <i>S</i> )     |
| 12    | R = 2              | 2,4,6-(Me) <sub>3</sub> C <sub>6</sub> H <sub>2</sub> | 3 h                     | >99     | 89:11 ( <i>S</i> )     |

The steric bulk of the achiral Brønsted acids exhibited a dramatic effect on both reactivity and enantioselectivity. Enantioselectivity increased with the increase in the steric demand of alkyl moiety in alcohols (entries 1-4), whereas bulkier phenols had deleterious effect on both enantioselectivity and reactivity (entries 5-9). Especially, 2,6-di-t-butylphenol gave almost no reaction even after long reaction times (entry 8). Various aliphatic and non-hindered aromatic carboxylic acids showed almost same reactivity and enantioselectivity (entries 10-12). The best enantioselectivity could be achieved with non-hindered phenols and carboxylic acids (entries 5-6, 10-12). Either phenol or acetic acid was suitable as an achiral proton source for asymmetric protonation reaction.

#### 3) Survey catalyst loading

| O<br>I | TMS 4c (x                               | mol%)                                                     | O<br>∭  | Ph                 |
|--------|-----------------------------------------|-----------------------------------------------------------|---------|--------------------|
| 6a     | CH <sub>3</sub> CO <sub>2</sub><br>tolu | CH <sub>3</sub> CO <sub>2</sub> H (1.1 eq)<br>toluene, rt |         |                    |
| entry  | amount of <b>4c</b>                     | time                                                      | % yield | er (config)        |
| 1      | 1 mol%                                  | 48 h                                                      | >99     | 88:11 ( <i>S</i> ) |
| 2      | 3 mol%                                  | 7 h                                                       | >99     | 89:11 ( <i>S</i> ) |
| 3      | 5 mol%                                  | 5 h                                                       | >99     | 89:11 ( <i>S</i> ) |

Next, we surveyed the catalyst loading with 4c. Gratifyingly, we could decrease the catalyst loading to 1 mol% without any loss of enantioselectivity. Such a low catalyst loading was an unprecedented example of phosphoric acid catalysis. Even though high enantioselectivity and high yield could be obtained with only 1 mol% of 4c, 5 mol% of 4c was used for next experiments in order to get reasonable reactivity of 4c.

3.5 h

>99

89:11 (S)

#### 4) Survey of size of silyl groups

4

10 mol%

| C     | DSiR <sub>3</sub>     | <b>4c</b> (5 mol %)                        | _        |                    |
|-------|-----------------------|--------------------------------------------|----------|--------------------|
|       |                       | CH <sub>3</sub> CO <sub>2</sub> H (1.1 eq) | <b>F</b> | ""Ph               |
|       |                       | toluene, rt                                | Ĺ        | 7a                 |
| entry | SiR                   | timo                                       | % vield  | er (config.)       |
| Chuy  | Olixa                 | ume                                        |          | er (cornig.)       |
| 1     | TMS                   | 5 h                                        | >99      | 89:11 ( <i>S</i> ) |
| 2     | TBS                   | 8 h                                        | >99      | 82:18 ( <i>S</i> ) |
| 3     | SiMe <sub>2</sub> TMS | 6 h                                        | >99      | 88:12 (S)          |
| 4     | TIPS                  | 12 h                                       | >99      | 76:24 ( <i>S</i> ) |

Next, the effect of silyl groups on the enantioselectivity with 4c was investigated. The size of silyl group affected the enantioselectivity. Enantioselectivity decreased with the increase in the size of silyl groups (entries 1-4). Hence, TMS group was chosen as a suitable silyl group.

| (      | DTMS B        | Br© <b>As</b> ted acid (5 mol%) |         |                    |  |
|--------|---------------|---------------------------------|---------|--------------------|--|
|        |               | PhOH (1.1 eq)                   | -       | ,,\Pn              |  |
| $\sim$ |               | toluene, rt                     |         |                    |  |
| 6a     |               |                                 |         | 7a                 |  |
| entry  | Bronsted acid | time                            | % yield | er (config.)       |  |
| 1      | 4a            | 12 h                            | >99     | 56:44 ( <i>S</i> ) |  |
| 2      | 4b            | 8 h                             | >99     | 86:14 ( <i>S</i> ) |  |
| 3      | 4c            | 5 h                             | >99     | 89:11 ( <i>S</i> ) |  |
| 4      | 4d            | 5 h                             | >99     | 91:9 ( <i>S</i> )  |  |
| 5      | 4e            | 7 h                             | >99     | 89:11 ( <i>S</i> ) |  |

#### 5) Survey of substituents at the 3,3'-positions of the binaphthyl scaffold

With the optimized condition with 4c, we tested the effect of substituents at the 3,3'-positions of the binaphthyl scaffold. Both enantioselectivity and reactivity highly depended on the substituents at 3,3'-position of BINOL scaffold (entries 1-5). We found that alkyl substituents at 2,6-positions of aromatic substituents at 3,3'-position of the binaphthyl scaffold are crucial for enantioselectivity (entries 1-2). In addition, the substituent at 4-position of aromatic substituents could tune the electronic properties of thiophosphoric acids, which had slight influence on the enantioselectivity (entries 3-5). Enantioselectivity as high as 91:1 er was obtained using **4d** as the catalyst (entry 4).

#### Substrate scope



The product  $(7a)^{12,13}$  was obtained as a white solid in 97 % yield (17.0 mg; 0.098 mmol) and 91:9 er. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.80-1.84 (m, 2H), 1.99-2.05 (m, 2H), 2.14-2.15 (m, 1H), 2.26-2.30 (m, 1H), 2.45-2.55 (m, 2H), 3.59-3.64 (dd, J = 5.0, 12.5 Hz, 1H), 7.11-7.16 (d, J = 7.5 Hz, 2H), 7.23-7.27 (t, J = 7.5 Hz, 1H), 7.31-7.35 (t, J = 7.5

Hz, 2H). Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes: 2-propanol = 99:1, flow rate = 1.0 mL/min,  $\lambda$ = 210 nm), t<sub>r</sub>(major, *S*) = 15.7 min., t<sub>r</sub>(minor, *R*) = 17.8 min.



The product  $(7b)^{12,13}$  was obtained as a white solid in 96 % yield (18.1 mg; 0.096 mmol) and 93:7 er. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.78-1.84 (m, 2H), 1.95-2.05 (m, 2H), 2.12-2.17 (m, 1H), 2.22-2.27 (m, 1H), 2.22 (s, 3H), 2.39-2.56 (m, 2H), 3.56 (dd, J = 5.4, 12.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H).

Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 95:5, flow rate = 1.0 mL/min,  $\lambda$ = 210 nm), t<sub>r</sub>(major, *S*) = 14.9 min., t<sub>r</sub>(minor, *R*) = 16.2 min.



The product  $(7c)^{12,13}$  was obtained as a white solid in 98 % yield (20.0 mmol; 0.098 mmol) and 92:8 er. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.75-1.85 (m, 2H), 1.94-2.02 (m, 2H), 2.10-2.15 (m, 1H), 2.22-2.26 (m, 1H), 2.49-2.53 (m, 2H), 3.56 (dd, J = 5.5, 12.5 Hz, 1H), 3.78 (s, 3H), 6.87 (d, J = 8.5 Hz, 2H), 7.05 (d, J

= 8.5 Hz, 2H). Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 95:5, flow rate = 1.0 mL/min,  $\lambda$ = 210 nm), t<sub>r</sub>(major, *S*) = 12.2 min., t<sub>r</sub>(minor, *R*) = 15.5 min.



The product  $(7d)^{16}$  was obtained as a white solid in 95 % yield (19.9 mg; 0.095 mmol) and 92:8 er. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.79-1.91 (m, 2H), 1.95-2.02 (m, 2H), 2.15-2.28 (m, 2H), 2.41-2.54 (m, 2H), 3.59 (dd, J = 5.4, 12.4 Hz, 1H), 7.07 (d, J = 9.0 Hz, 2H), 7.30 (d, J = 9.0 Hz, 2H). Enantiomeric ratio (er) was determined

by HPLC with a Chiralcel OJ column equipped with an OJ guard column (hexanes:2-propanol = 90:10, flow rate = 0.7 mL/min,  $\lambda$ = 210 nm), t<sub>r</sub>(major) = 32.3 min., t<sub>r</sub>(minor) = 23.1 min.



The product  $(7e)^{12,13}$  was obtained as a white solid in 99 % yield (22.2 mg; 0.099 mmol) and 93:7 er. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$ : 1.81-1.91 (m, 2H), 2.00-2.07 (m,1H), 2.12-2.21 (m, 2H), 2.31-2.36 (m, 1H), 2.46-2.58 (m, 2H), 3.77 (dd, J = 5.6, 12.2 Hz, 1H), 7.27 (dd, J = 1.6, 8.4 Hz, 1H), 7.41-7.46 (m, 2H), 7.60 (s,

1H), 7.77-7.83 (m, 3H). Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 95:5, flow rate = 1.0 mL/min,  $\lambda$ = 210 nm), t<sub>r</sub>(major, *S*) = 25.9 min., t<sub>r</sub>(minor, *R*) = 32.1 min.



The product (**7f**) was obtained as oil in 97 % yield (19.8 mg; 0.097 mmol) and 86:14 er. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.73-1.84 (m, 2H), 1.98-2.05 (m, 2H), 2.13-2.21 (m, 2H), 2.44-2.53 (m, 2H), 3.78 (s, 3H), 3.94 (dd, J = 5.5, 12.5 Hz, 1H), 6.88 (d, J = 8 Hz, 1H), 6.96 (t, J = 8 Hz, 1H), 7,12 (d, J = 8 Hz, 1H), 7.24 (t, J = 8 Hz, 1H);

Enantiomeric ratio (er) was determined by HPLC with a Chiralcel OD-H column equipped with an OD-H guard column (hexanes:2-propanol = 95:5, flow rate = 1.0 mL/min,  $\lambda$ = 210 nm), t<sub>r</sub>(major) = 8.6 min., t<sub>r</sub>(minor) = 14.2 min; [ $\alpha$ ]<sup>24.3</sup><sub>D</sub> = -14.1 (c 1.20, CHCl<sub>3</sub>)



The product  $(7g)^{12,13}$  was obtained as oil in 99 % yield (18.6 mg; 0.099 mmol) and 95:5 er. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.43-1.48 (m, 2H), 1.60-1.69 (m, 1H), 1.95-2.18 (m, 4H), 2.47-2.54 (m, 1H), 2.67-2.72 (m, 1H), 3.70-3.73 (dd, J = 4, 11 Hz, 1H), 7.20-7.26 (m, 3H), 7.30-7.33 (t, J = 7 Hz,2H). Enantiomeric ratio (er) was determined by HPLC

with a Chiralcel AS column equipped with an AS guard column (hexanes:2-propanol = 95:5, flow rate = 1.0 mL/min,  $\lambda$ = 210 nm), t<sub>r</sub>(major, *S*) = 9.8 min., t<sub>r</sub>(minor, *R*) = 7.9 min.



The product (**7h**) was obtained as oil in 98 % yield (23.3 mg; 0.098 mmol) and 95:5 er. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ : 1.49-1.53 (m, 2H), 1.66-1.73 (m, 1H), 1.99-2.15 (m, 4H), 2.10-2.23 (m, 1H), 2.55-2.58 (m, 1H), 2.72-2.78 (td, J = 12.8, 3.1 Hz, 1H), 3.88 (dd, J = 4.2, 11.4 Hz, 1H), 7.37 (dd, J = 1.7, 8.5 Hz, 1H),

7.42-7.48 (m, 2H), 7.67 (s, 1H), 7.79-7.81 (m, 3H); Enantiomeric ratio (er) was determined by HPLC with a Chiralcel AS column equipped with an AS guard column (hexanes:2-propanol = 99:1, flow rate = 1.0 mL/min,  $\lambda$ = 230 nm), t<sub>r</sub>(major) = 18.9 min., t<sub>r</sub>(minor) = 15.5 min; [ $\alpha$ ]<sup>24.3</sup><sub>D</sub> = -134.0 (c 1.15, CHCl<sub>3</sub>).



The product  $(7i)^{17}$  was obtained as oil in 97 % yield (18.3 mg; 0.097 mmol) and 77:23 er. <sup>1</sup>H NMR (CDCl3, 500 MHz)  $\delta$ : 1.32-1.38 (m, 1H), 1.54-1.73 (m, 2H), 1.81-1.88 (m, 1H), 2.01-2.08 (m, 2H), 2.30-2.36 (m, 1H), 2.39-2.45 (m, 2H), 2.52-2.56 (m, 1H), 3.22-3.26 (dd, J = 5.0, 14 Hz, 1H); Enantiomeric ratio (er) was

determined by HPLC with a Chiralcel OJ-H column equipped with an OJ-H guard column (hexanes:2-propanol = 95:5, flow rate = 0.7 mL/min,  $\lambda$ = 210 nm), t<sub>r</sub>(major) = 17.1 min., t<sub>r</sub>(minor) = 15.5 min.



The product  $(7j)^{18}$  was obtained as oil in 96 % (17.3 mg; 0.096 mmol) and 82:18 er. <sup>1</sup>H NMR (CDCl3, 500 MHz)  $\delta$ : 0.68-1.26 (m, 5H), 1.34-1.88 (m, 12H), 1.90-2.02 (m, 1H), 2.07-2.32 (m, 2H); Enantiomeric ratio (er) was determined by GC with a Chlorosil-B column (injection temperature: 160 °C, column temperature: 140 °C, pressure: 100kPa),

 $t_r(major) = 28.3 \text{ min.}, t_r(minor) = 29.4 \text{ min.} [\alpha]^{24.3} = -38.1 (c 1.58, CH_3OH).$ 

| OTMS       |       | MS             |                                                                       |       | Ö       |                    |
|------------|-------|----------------|-----------------------------------------------------------------------|-------|---------|--------------------|
| Ph –<br>6a |       | Ph             | 4c (x eq)<br>ROH (1.05 eq)<br>toluene, rt                             |       | PI      | า                  |
|            |       |                |                                                                       |       | 7a      |                    |
|            | entry | <b>4c</b> (eq) | ROH                                                                   | time  | % yield | er (config.)       |
|            | 1     | 1.05 eq        | -                                                                     | 48 h  | <1 %    | N. D.              |
|            | 2     | 1.05 eq        | CH <sub>3</sub> CO <sub>2</sub> H                                     | 2 h   | 100 %   | 88:12 ( <i>S</i> ) |
|            | 3     | 0.1 eq         | 2,6-( <sup>t-</sup> Bu) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> OH | 48 h  | <1 %    | N. D.              |
|            | 4     | 0.1 eq         | CH <sub>3</sub> CO <sub>2</sub> H                                     | 3.5 h | 100 %   | 89:11 ( <i>S</i> ) |

#### Survey of the Role of Achiral Brønsted Acids

Preliminary studies into the mechanism of the Brønsted acid catalyzed asymmetric protonation reaction of silyl enol ethers indicate that achiral proton sources play an important role in determining reactivity. In the absence of an achiral proton source, even though a stoichiometric amount of chiral Brønsted acid was used, no reaction was observed even after 2 days (entry 1). However, when the same reaction was carried out in the presence of stoichiometric amount of CH<sub>3</sub>CO<sub>2</sub>H as an achiral proton source, the reaction was completed within 2 h with almost the same enantioselectivity as the catalytic one (entries 2 and 4). When 2,6-di-(*t*-butyl)phenol, sterically hindered achiral Brønsted acid, was used as an achiral proton source, protonation was still very slow, however (entry 3).

#### References

- (1) Simonsen, K. B.; Cothelf, K. V.; Jørgensen, K. A. J. Org. Chem. 1998, 63, 7536.
- (2) Tsang, W. C. P.; Schrock, R. R.; Hoveyda, A. H. Organometallics 2001, 20, 5658.
- (3) Zhu, S. S.; Cefalo, D. R.; La, D. S.; Jamieson, J. Y.; Davis, W. M.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1999, 121, 8251.
- (4) Jiao, P.; Nakashima, D.; Yamamoto, H. Angew. Chem., Int. Ed. 2008, 47, 2411.
- (5) Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086.
- (6) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626.
- (7) For the preparation of selenophosphoryl chloride, see: Murai, T.; Matsuoka, D.; Morishita, K. J. Am. Chem. Soc. 2006, 128, 4584.
- (8) Potrzebowski, M. J.; Vereshchagina, J.; Michalski, J.; Wieczorek, M. W.; Majzner, W. J. Chem. Soc. Dalton Trans. 1995, 3683.

- (9) Iwama, T.; Rawal, V. H. Org. Lett., 2006, 8, 5725.
- (10) Xie, J.-H.; Liu, S.; Huo, X.-H.; Cheng, X.; Duan, H.-F.; Fan, B.-M.; Wang, L.-X.; Zhou, Q.-L. J. Org. Chem. 2005, 70, 2967.
- (11) Góra, Maciej; Łuczyński, Michał K.; Sepioł, Janusz J. Synthesis 2005, 1625.
- (12) Nakamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8120.
- (13) Yanagisawa, A.; Touge, T.; Arai, T. Angew. Chem., Int. Ed. 2005, 44, 1546.
- (14) Krafft, M. E.; Holton, R. A. Tetrahedron Lett. 1983, 24, 1345.
- (15) Cazeau, P.; Duboudin, F.; Moulines, F.; Babot, O.; Dunogues, J. Tetrahedron 1987, 43, 2075.
- (16) Nakamura, Y.; Takeuchi, S.; Ohgo, Y.; Yamaoka, M.; Yoshida, A.; Mikami, K. Tetrahedron 1999, 55, 4595.
- (17) Mitsuhashi, K.; Ito, R.; Arai, T.; Yanagisawa, A. Org. Lett. 2006, 8, 1721.
- (18) Soorukram, D.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 3686.
- (19) For reviews of enantioselective organocatalysis, see: (a) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289. (b) Seayad, J.; List, B. Org. Biomol. Chem. 2003, 3, 719.
- (20) For another review of hydrogen bond organic catalysis, see: Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
- (21) For reviews of chiral phosphoric acid catalysis, see: (a) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Cat. 2006, 348, 999. (b) Connon, S. J. Angew. Chem, Int. Ed. 2006, 45, 3909.
- (22) For reviews of enantioselective protonation, see: (a) Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2566. (b) Yanagisawa, A.; Yamamoto, H. In Comprehensive Asymmetric Synthesis III; Jacobsen, E. N.; Pfaltz, A., Yamamoto, H. Eds.; Springer: Heidelberg, 1999; p. 1295. (c) Eames, J.; Weerasooriya, N. Tetrahedron: Asymmetry 2001, 113, 3840. (d) Yanagisawa, A. In Comprehensive Asymmetric Synthesis, Suppl. 2; Jacobsen, E. N.; Pfaltz, A., Yamamoto, H. Eds.; Springer: Heidelberg, 2004; p. 125.
- (23) For reviews of LBA, see: (a) Ishibashi, H.; Ishihara, K.; Yamamoto, H. Chem. Rec. 2002, 2, 177. (b) Yamamoto, H.; Futatsugi, K. Angew. Chem., Int. Ed. 2005, 44, 1924.

# $Crystal \ Structure \ Report \ for \ Chch03 \\ C_{55}H_{65}F_3NNaO_6PS_2 + 1/2C_6H_{14}$

Report Prepared for: Cheol Hong Cheon and Mr. H. Yamamoto

May, 2008

Ian Steele (steele@geosci.uchicago.edu) X-ray Laboratory, Jones 305, 773-834-5861 Department of Chemistry The University of Chicago 5735 S. Ellis Ave. Chicago, Il 60637

#### **Crystallographic Experimental Section**

#### **Data Collection**

An irregular broken fragment (0.20 x 0.12 x 0.10 mm) was selected under a stereo-microscope while immersed in Fluorolube oil to avoid possible reaction with air. The crystal was removed from the oil using a tapered glass fiber that also served to hold the crystal for data collection. The crystal was mounted and centered on a Bruker SMART APEX system at 100 K. Rotation and still images showed the diffractions to be sharp. Frames separated in reciprocal space were obtained and provided an orientation matrix and initial cell parameters. Final cell parameters were obtained from the full data set.

A "full sphere" data set was obtained which samples approximately all of reciprocal space to a resolution of 0.75 Å using  $0.3^{\circ}$  steps in  $\omega$  using 10 second integration times for each frame. Data collection was made at 100 K. Integration of intensities and refinement of cell parameters were done using SAINT [1]. Absorption corrections were applied using SADABS [1] based on redundant diffractions.

#### **Structure solution and refinement**

The space group was determined as P1(bar) based on systematic absences and intensity statistics. Direct methods were used to locate S, P and many C atoms from the E-map. Repeated difference Fourier maps allowed recognition of all expected C, N, O and F atoms. Following anisotropic refinement of all non-H atoms, ideal H-atom positions were calculated. Electron density clearly indicated yet another unexpected atom. Trial and error of occupancy factor indicated that Na was present. One Na bond was to the O atom of C<sub>4</sub>OH<sub>10</sub> solvent. Another solvent group thought to be C<sub>6</sub>H<sub>14</sub> was present and yet another disordered solvent molecule was indicated. Program SQUEEZE was uses to remove the contribution from the latter (84e<sup>-</sup>/cell, void =115ang<sup>3</sup>). Considerable positional disorder is present as indicated by large displacement parameters on unconstrained terminal groups. Final refinement was anisotropic for all non-H atoms, and isotropic-riding for H atoms. No other anomalous bond lengths or thermal parameters were noted. All ORTEP diagrams have been drawn with 50% probability ellipsoids.

#### Equations of interest:

 $\mathsf{R}_{\mathsf{int}} = \Sigma \mid \mathsf{F_o}^2 - \langle \mathsf{F_o}^2 \rangle \mid / \Sigma \mid \mathsf{F_o}^2 \mid$ 

$$\mathsf{R1} = \Sigma \mid \mid \mathsf{F_o} \mid \mathsf{-} \mid \mathsf{F_c} \mid \mid \mathsf{\Sigma} \mid \mathsf{F_o} \mid$$

wR2 = 
$$[\Sigma [w (F_o^2 - F_c^2)^2] / \Sigma [w (F_o^2)^2]]^{1/2}$$
  
where: w = q / $\sigma^2 (F_o^2)$  + (aP)<sup>2</sup> + bP;  
q, a, b, P as defined in [1]

 $\begin{aligned} \text{GooF} &= \text{S} = [\Sigma \left[ \text{w} \left( \text{F}_{\text{o}}^{2-} \text{F}_{\text{c}}^{2} \right)^{2} \right] / (\text{n-p})^{1/2} \\ \text{n} &= \text{number of independent reflections;} \\ \text{p} &= \text{number of parameters refined.} \end{aligned}$ 

#### References

[1] All software and sources of scattering factors are contained in the SHELXTL (version 5.1) program library (G. Sheldrick, Bruker Analytical X-ray Systems, Madison, WI).











Table 1. Crystal and structure refinement for Chch03.

| Identification Code                            | Chch03                                                       |                                                      |  |  |
|------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|--|--|
| Empirical formula                              | Empirical formula $C_{55}H_{65}F_3NNaO_6PS_2 + 1/2C_6H_{14}$ |                                                      |  |  |
| Formula weight                                 | 1054.25                                                      |                                                      |  |  |
| Temperature                                    | 100 K                                                        |                                                      |  |  |
| Wavelength                                     | 0.71073 Å                                                    |                                                      |  |  |
| Crystal system                                 | Triclinic                                                    |                                                      |  |  |
| Space Group                                    | P1(bar)                                                      |                                                      |  |  |
| Unit cell dimensions                           | <i>a</i> = 13.010(2) Å                                       | $\alpha$ = 66.982(3) °                               |  |  |
|                                                | <i>b</i> = 16.696(3) Å                                       | $\beta$ = 69.797(4) °                                |  |  |
|                                                | <i>c</i> = 17.141(3) Å                                       | $\gamma = 79.001(3)^{\circ}$                         |  |  |
| Volume                                         | 3209.1(10) Å <sup>3</sup>                                    |                                                      |  |  |
| Z                                              | 2                                                            |                                                      |  |  |
| Density (calculated)                           | 1.091 Mg/m <sup>3</sup>                                      |                                                      |  |  |
| Absorption coefficient                         | 0.166 mm <sup>-1</sup>                                       |                                                      |  |  |
| F(000)                                         | 1120                                                         |                                                      |  |  |
| Crystal size, color, habit                     | 0.20 x 0.12 x 0.10 m                                         | m, transparent, fragment                             |  |  |
| Theta range for data collection                | 1.33 – 28.31 °                                               |                                                      |  |  |
| Index ranges                                   | -17 ≤ h ≤ 17, -22 ≤ k                                        | $\leq$ 22, -22 $\leq$ I $\leq$ 22                    |  |  |
| Reflections collected                          | 38,168                                                       |                                                      |  |  |
| Independent reflections                        | 15,071 (R <sub>int</sub> = 0.0268                            | 5)                                                   |  |  |
| Reflections with $I > 4\sigma(F_o)$            | 5,626                                                        |                                                      |  |  |
| Absorption correction                          | SADABS based on r                                            | SADABS based on redundant diffractions               |  |  |
| Max. and min. transmission                     | 1.0, 0.852                                                   |                                                      |  |  |
| Refinement method                              | Full-matrix least squ                                        | ares on F <sup>2</sup>                               |  |  |
| Weighting scheme                               | $w = q [\sigma^2 (F_o^2) + (aP)]$                            | w = q $[\sigma^2 (F_o^2) + (aP)^2 + bP]^{-1}$ where: |  |  |
|                                                | $P = (F_o^2 + 2F_c^2)/3$ , a =                               | = 0.0772, b = 0.0, q =1                              |  |  |
| Data / restraints / parameters                 | 15071 / 0 / 665                                              |                                                      |  |  |
| Goodness-of-fit on F <sup>2</sup>              | 0.767                                                        |                                                      |  |  |
| Final R indices [I > 2 sigma(I)]               | R1 = 0.0620, wR2 = 0.1445                                    |                                                      |  |  |
| R indices (all data) R1 = 0.1507, wR2 = 0.1693 |                                                              |                                                      |  |  |
| Largest diff. peak and hole                    | 0.506, -0.283 eÅ <sup>-3</sup>                               |                                                      |  |  |
|                                                |                                                              |                                                      |  |  |

Table 2. Atomic coordinates [  $x\ 10^4$ ] and equivalent isotropic displacement parameters [Å $^2\ x\ 10^3$ ] for Chch03. U(eq) is defined as one third of the trace of the orthogonalized U\_{ij} tensor.

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | x                  | У                    | Z                  | U(eq)            | SOF |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------|--------------------|------------------|-----|
| $\begin{array}{ccccc} C(2) & 7576(2) & 8141(2) & 5167(2) & 43(1) \\ C(3) & 8385(2) & 8555(2) & 4412(2) & 42(1) \\ C(4) & 9333(2) & 8734(2) & 4522(2) & 45(1) \\ C(5) & 9381(3) & 8565(2) & 5396(2) & 52(1) \\ C(6) & 8451(3) & 8242(2) & 6120(2) & 54(1) \\ C(7) & 7555(2) & 8004(2) & 6043(2) & 46(1) \\ C(8) & 10306(2) & 9033(2) & 3804(2) & 54(1) \\ C(9) & 11208(3) & 9182(2) & 3948(3) & 67(1) \\ C(10) & 11220(3) & 9040(2) & 4803(3) & 74(1) \\ C(11) & 10329(3) & 8744(2) & 5509(3) & 66(1) \\ C(12) & 6594(3) & 7687(2) & 6850(2) & 52(1) \\ C(13) & 6668(3) & 6894(2) & 7521(2) & 61(1) \\ C(14) & 5778(4) & 6671(3) & 8315(2) & 82(1) \\ C(15) & 4843(4) & 7225(3) & 8426(3) & 89(1) \\ C(16) & 4794(3) & 7292(3) & 7748(3) & 78(1) \\ C(17) & 5633(3) & 8249(2) & 6959(2) & 60(1) \\ C(18) & 7651(3) & 6241(2) & 7704(3) & 96(1) \\ C(19) & 8355(4) & 6237(3) & 8016(3) & 106(2) \\ C(20) & 7332(4) & 5319(2) & 7704(3) & 96(1) \\ C(21) & 3890(5) & 6992(4) & 9281(3) & 147(2) \\ C(22) & 3414(6) & 6313(5) & 9506(5) & 244(5) \\ C(24) & 5355(3) & 9137(2) & 6259(2) & 67(1) \\ C(24) & 5355(3) & 9137(2) & 6259(2) & 67(1) \\ C(24) & 5355(3) & 9137(2) & 6259(2) & 67(1) \\ C(26) & 6011(4) & 9429(3) & 6220(3) & 115(2) \\ C(27) & 7930(2) & 8272(2) & 3239(2) & 44(1) \\ C(28) & 8233(2) & 9837(2) & 3519(2) & 43(1) \\ C(28) & 8233(2) & 9837(2) & 3519(2) & 43(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(33) & 8485(3) & 11240(2) & 2609(3) & 68(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(33) & 8495(3) & 11240(2) & 2609(3) & 68(1) \\ C(33) & 8495(3) & 7198(2) & 1998(2) & 59(1) \\ C(33) & 8495(3) & 7198(2) & 1998(2) & 59(1) \\ C(33) & 8495(3) & 7198(2) & 1098(2) & 59(1) \\ C(34) & 8596(3) & 7198(2) & 1098(2) & 59(1) \\ C(35) & 8579(3) & 11470(2) & 1743(3) & 75(1) \\ C(44) & 6149(3) & 7342(2) & 1743(3) & 75(1) \\ C(44) & 6149(3) & 7342(2) & 1743(2) & 72(1) \\ C(44) & 6149(3) & 7342(2) & 1743(2) & 174(3) \\ C(44) & 6149(3) & 7342(2) & 1743(2) & 174(3) \\ C(45) & 10221(4) & 738(4) & 987(3) & 142(2) \\ C(46) & 5534(4) & 9403(3) & 1375(3) & 113(2) \\ C(47) & 6843(6) & 6203(4) & 422(3) & 177(3) \\ C(4$ | C(1)  | 3997(4)            | 6926(3)              | 5900(4)            | 94(1)            |     |
| $\begin{array}{ccccc} C(3) & 8385(2) & 8555(2) & 4412(2) & 42(1) \\ C(4) & 9353(2) & 8734(2) & 4522(2) & 45(1) \\ C(5) & 9381(3) & 8565(2) & 5396(2) & 52(1) \\ C(6) & 8451(3) & 8242(2) & 6120(2) & 54(1) \\ C(7) & 7555(2) & 8004(2) & 6043(2) & 46(1) \\ C(8) & 10306(2) & 9033(2) & 3804(2) & 54(1) \\ C(9) & 11208(3) & 9182(2) & 3904(2) & 4803(3) & 74(1) \\ C(10) & 11220(3) & 9040(2) & 4803(3) & 74(1) \\ C(11) & 10329(3) & 8744(2) & 5509(3) & 66(1) \\ C(12) & 6594(3) & 7687(2) & 6850(2) & 52(1) \\ C(13) & 6668(3) & 6894(2) & 7521(2) & 61(1) \\ C(14) & 5778(4) & 6671(3) & 8315(2) & 82(1) \\ C(15) & 4843(4) & 7225(3) & 8426(3) & 89(1) \\ C(16) & 4794(3) & 7922(3) & 7748(3) & 78(1) \\ C(17) & 5633(3) & 8249(2) & 6559(2) & 60(1) \\ C(18) & 7651(3) & 6241(2) & 7748(3) & 78(1) \\ C(19) & 8355(4) & 6237(3) & 8016(3) & 106(2) \\ C(20) & 7332(4) & 5319(2) & 7704(3) & 96(1) \\ C(21) & 3890(5) & 6992(4) & 9281(3) & 147(2) \\ C(22) & 3336(5) & 7495(5) & 9815(3) & 186(3) \\ C(24) & 5535(3) & 9137(2) & 6229(2) & 677(1) \\ C(25) & 4361(3) & 9429(3) & 6220(3) & 115(2) \\ C(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ C(27) & 7930(2) & 8272(2) & 2380(2) & 44(1) \\ C(28) & 8233(2) & 8837(2) & 3519(2) & 43(1) \\ C(30) & 8273(2) & 9770(2) & 2061(2) & 52(1) \\ C(31) & 8033(2) & 9330(2) & 1813(2) & 55(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(34) & 8596(3) & 11240(2) & 2069(3) & 68(1) \\ C(35) & 8579(3) & 11240(2) & 2069(3) & 68(1) \\ C(36) & 8416(3) & 10845(2) & 1477(2) & 69(1) \\ C(44) & 6679(4) & 6669(3) & 1592(2) & 73(1) \\ C(44) & 6687(4) & 6669(3) & 1592(2) & 73(1) \\ C(44) & 6687(4) & 6669(3) & 1592(2) & 73(1) \\ C(44) & 5687(6) & 5510(4) & 1922(4) & 206(4) \\ C(47) & 6843(6) & 6203(4) & 422(3) & 177(3) \\ C(44) & 5667(6) & 5510(4) & 1922(4) & 206(4) \\ C(47) & 5534(4) & 9403(3) & 1375$  | C(2)  | 7576(2)            | 8141(2)              | 5167(2)            | 43(1)            |     |
| $\begin{array}{cccc} C(4) & 9353(2) & 8734(2) & 4522(2) & 45(1) \\ C(5) & 9381(3) & 8555(2) & 536(2) & 52(1) \\ C(6) & 8451(3) & 8242(2) & 6120(2) & 54(1) \\ C(7) & 7555(2) & 8004(2) & 6043(2) & 46(1) \\ C(8) & 10306(2) & 9033(2) & 3804(2) & 54(1) \\ C(9) & 11208(3) & 9182(2) & 3948(3) & 67(1) \\ C(10) & 11220(3) & 9040(2) & 4803(3) & 74(1) \\ C(11) & 10329(3) & 8744(2) & 5509(3) & 66(1) \\ C(12) & 6594(3) & 7687(2) & 6850(2) & 52(1) \\ C(13) & 6668(3) & 6894(2) & 7521(2) & 61(1) \\ C(14) & 5778(4) & 6671(3) & 8315(2) & 82(1) \\ C(16) & 4794(3) & 7992(3) & 7748(3) & 78(1) \\ C(16) & 4794(3) & 7992(3) & 7748(3) & 78(1) \\ C(16) & 4794(3) & 7992(3) & 7748(3) & 78(1) \\ C(17) & 5633(3) & 8249(2) & 6959(2) & 60(1) \\ C(18) & 7651(3) & 6241(2) & 7454(2) & 70(1) \\ C(19) & 8355(4) & 6237(3) & 8016(3) & 106(2) \\ C(20) & 7332(4) & 5319(2) & 7704(3) & 96(1) \\ C(21) & 3890(5) & 6992(4) & 9281(3) & 147(2) \\ C(22) & 3414(6) & 6313(5) & 9506(5) & 244(5) \\ C(24) & 5535(3) & 9137(2) & 6259(2) & 67(1) \\ C(25) & 436(13) & 9429(3) & 6220(3) & 115(2) \\ C(25) & 436(13) & 9429(3) & 6220(3) & 115(2) \\ C(27) & 7930(2) & 8272(2) & 3239(2) & 43(1) \\ C(28) & 8233(2) & 9729(2) & 2938(2) & 46(1) \\ C(30) & 8273(2) & 9700(2) & 2061(2) & 52(1) \\ C(31) & 8033(2) & 9730(2) & 1813(2) & 55(1) \\ C(33) & 8236(3) & 7186(2) & 177(2) & 69(1) \\ C(33) & 8236(3) & 7186(2) & 177(2) & 69(1) \\ C(34) & 8596(3) & 11240(2) & 2609(3) & 68(1) \\ C(35) & 8579(3) & 11470(2) & 1743(3) & 75(1) \\ C(33) & 8236(3) & 7865(2) & 2109(2) & 49(1) \\ C(34) & 8596(3) & 11240(2) & 2609(3) & 68(1) \\ C(35) & 8579(3) & 11470(2) & 1743(3) & 75(1) \\ C(34) & 8596(3) & 11240(2) & 2609(3) & 68(1) \\ C(35) & 8579(3) & 11470(2) & 1743(3) & 75(1) \\ C(36) & 416(3) & 10845(2) & 1477(2) & 69(1) \\ C(37) & 7486(3) & 7865(2) & 2109(2) & 49(1) \\ C(38) & 8236(3) & 7949(2) & 2043(2) & 58(1) \\ C(44) & 6607(4) & 6623(2) & 1646(2) & 70(1) \\ C(44) & 6432(3) & 7949(2) & 2043(2) & 58(1) \\ C(45) & 10221(4) & 7348(4) & 987(3) & 134(2) \\ C(44) & 6667(6) & 5510(4) & 1922(4) & 206(4) \\ C(44) & 504(3) & 8666(2) & 2230(3) & 69(1) \\ C(50)$ | C(3)  | 8385(2)            | 8555(2)              | 4412(2)            | 42(1)            |     |
| $\begin{array}{cccc} C(5) & 9381(3) & 8565(2) & 5336(2) & 521(1) \\ C(7) & 7555(2) & 8004(2) & 6043(2) & 46(1) \\ C(8) & 10306(2) & 9033(2) & 3804(2) & 54(1) \\ C(9) & 11208(3) & 9182(2) & 3948(3) & 67(1) \\ C(10) & 11220(3) & 9040(2) & 4803(3) & 74(1) \\ C(11) & 10329(3) & 8744(2) & 5509(3) & 66(1) \\ C(11) & 10329(3) & 8744(2) & 5509(3) & 66(1) \\ C(12) & 6594(3) & 7687(2) & 6850(2) & 52(1) \\ C(13) & 6668(3) & 6894(2) & 7521(2) & 61(1) \\ C(14) & 5778(4) & 6671(3) & 8315(2) & 82(1) \\ C(15) & 4843(4) & 7225(3) & 8426(3) & 89(1) \\ C(16) & 4794(3) & 7992(3) & 7748(3) & 78(1) \\ C(17) & 5633(3) & 8249(2) & 6959(2) & 60(1) \\ C(18) & 7651(3) & 6241(2) & 7454(2) & 70(1) \\ C(18) & 7651(3) & 6241(2) & 7704(3) & 96(1) \\ C(20) & 7332(4) & 5319(2) & 7704(3) & 96(1) \\ C(21) & 3890(5) & 6992(4) & 9281(3) & 147(2) \\ C(22) & 3334(5) & 7495(5) & 9815(3) & 186(3) \\ C(24) & 5535(3) & 9137(2) & 6259(2) & 67(1) \\ C(25) & 4361(3) & 9429(3) & 6220(3) & 115(2) \\ C(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ C(27) & 7930(2) & 8272(2) & 3239(2) & 44(1) \\ C(28) & 8233(2) & 8837(2) & 3519(2) & 43(1) \\ C(29) & 8339(2) & 9729(2) & 2338(2) & 46(1) \\ C(30) & 8273(2) & 9970(2) & 2061(2) & 52(1) \\ C(31) & 8033(2) & 9330(2) & 1813(2) & 55(1) \\ C(33) & 7823(2) & 8502(2) & 2380(2) & 45(1) \\ C(33) & 7823(2) & 8502(2) & 2380(2) & 45(1) \\ C(33) & 7823(2) & 8502(2) & 2380(2) & 45(1) \\ C(33) & 8236(3) & 7128(2) & 177(2) & 69(1) \\ C(33) & 7823(2) & 7855(2) & 1209(2) & 29(1) \\ C(34) & 8596(3) & 11240(2) & 2609(3) & 68(1) \\ C(35) & 8579(3) & 11240(2) & 2609(3) & 68(1) \\ C(37) & 7486(3) & 7856(2) & 1209(2) & 49(1) \\ C(38) & 8236(3) & 7128(2) & 1781(2) & 72(1) \\ C(44) & 674(4) & 6669(3) & 1592(2) & 73(1) \\ C(44) & 674(4) & 6669(3) & 1592(2) & 73(1) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(45) & 10221(4) & 7318(4) & 987(3) & 142(2) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(44) & 5594(3) & 8666(2) & 2230(3) & 69(1) \\ C(50) & 5534(4) & 9403(3) & 1375(3) & 113(2) \\ C(51) & 4337(3) & 8347(2) & 277(3) \\ R(51) & 4337(3) & 8347(2) & 277(3) \\ R(51) & 4337(3) & 834$ | C(4)  | 9353(2)            | 8734(2)              | 4522(2)            | 45(1)            |     |
| $\begin{array}{cccc} C(6) & 8451(3) & 8242(2) & 6120(2) & 54(1) \\ C(7) & 7555(2) & 8004(2) & 6043(2) & 46(1) \\ C(8) & 10306(2) & 9033(2) & 3804(2) & 54(1) \\ C(9) & 11208(3) & 9182(2) & 3948(3) & 67(1) \\ C(10) & 11220(3) & 9040(2) & 4803(3) & 74(1) \\ C(11) & 10329(3) & 8744(2) & 5509(3) & 66(1) \\ C(12) & 6594(3) & 7687(2) & 6850(2) & 52(1) \\ C(13) & 6668(3) & 6894(2) & 7521(2) & 61(1) \\ C(14) & 5778(4) & 6671(3) & 8315(2) & 82(1) \\ C(16) & 4794(3) & 7992(3) & 7748(3) & 78(1) \\ C(16) & 4794(3) & 7992(3) & 7748(3) & 78(1) \\ C(17) & 5633(3) & 8249(2) & 6959(2) & 60(1) \\ C(18) & 7651(3) & 6241(2) & 7454(2) & 70(1) \\ C(19) & 8355(4) & 6237(3) & 8016(3) & 106(2) \\ C(21) & 3890(5) & 6992(4) & 9281(3) & 147(2) \\ C(22) & 3414(6) & 6313(5) & 9506(5) & 244(5) \\ C(24) & 5535(3) & 9137(2) & 6259(2) & 67(1) \\ C(25) & 4361(3) & 9429(3) & 6220(3) & 115(2) \\ C(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ C(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ C(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ C(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ C(27) & 7330(2) & 877(2) & 3239(2) & 44(1) \\ C(28) & 8233(2) & 9720(2) & 2938(2) & 46(1) \\ C(30) & 8273(2) & 9970(2) & 2061(2) & 55(1) \\ C(31) & 8033(2) & 9330(2) & 1813(2) & 55(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(34) & 8596(3) & 11240(2) & 2609(3) & 68(1) \\ C(35) & 8579(3) & 11470(2) & 1743(3) & 75(1) \\ C(36) & 416(3) & 10845(2) & 1477(2) & 69(1) \\ C(37) & 7486(3) & 765(2) & 2109(2) & 49(1) \\ C(37) & 7486(3) & 765(2) & 2109(2) & 49(1) \\ C(38) & 8236(3) & 7198(2) & 1098(2) & 59(1) \\ C(39) & 9910(3) & 6623(2) & 1646(2) & 70(1) \\ C(40) & 6874(4) & 6669(3) & 1592(2) & 73(1) \\ C(41) & 6432(3) & 7949(2) & 2043(2) & 58(1) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(44) & 9594(3) & 8666(2) & 2230(3) & 69(1)$  | C(5)  | 9381(3)            | 8565(2)              | 5396(2)            | 52(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(6)  | 8451(3)            | 8242(2)              | 6120(2)            | 54(1)            |     |
| $\begin{array}{ccccc} C(9) & 112306(2) & 9132(2) & 3604(2) & 941) \\ C(10) & 11220(3) & 9040(2) & 4803(3) & 74(1) \\ C(11) & 10329(3) & 8744(2) & 5509(3) & 66(1) \\ C(12) & 6594(3) & 7687(2) & 6850(2) & 52(1) \\ C(13) & 6668(3) & 6894(2) & 7521(2) & 61(1) \\ C(14) & 5778(4) & 6671(3) & 8315(2) & 82(1) \\ C(15) & 4843(4) & 7225(3) & 8426(3) & 89(1) \\ C(16) & 4794(3) & 7992(3) & 7748(3) & 781(1) \\ C(17) & 5633(3) & 8249(2) & 6959(2) & 60(1) \\ C(18) & 7651(3) & 6241(2) & 7454(2) & 70(1) \\ C(19) & 8355(4) & 6237(3) & 8016(3) & 106(2) \\ C(20) & 7332(4) & 5319(2) & 7704(3) & 96(1) \\ C(21) & 3890(5) & 6992(4) & 9281(3) & 147(2) \\ C(22) & 3414(6) & 6313(5) & 9506(5) & 244(5) \\ C(23) & 3836(5) & 7495(5) & 9815(3) & 186(3) \\ C(24) & 5535(3) & 9137(2) & 6259(2) & 67(1) \\ C(25) & 4361(3) & 9429(3) & 6220(3) & 115(2) \\ C(27) & 7930(2) & 8272(2) & 3239(2) & 44(1) \\ C(28) & 8233(2) & 8837(2) & 3519(2) & 43(1) \\ C(29) & 8339(2) & 9729(2) & 2938(2) & 46(1) \\ C(30) & 8273(2) & 9970(2) & 2061(2) & 52(1) \\ C(31) & 8003(2) & 9330(2) & 1813(2) & 55(1) \\ C(33) & 8465(2) & 10404(2) & 3195(2) & 55(1) \\ C(33) & 8465(2) & 10404(2) & 3195(2) & 55(1) \\ C(34) & 8596(3) & 11240(2) & 2609(3) & 68(1) \\ C(35) & 8579(3) & 11470(2) & 1743(3) & 75(1) \\ C(36) & 8416(3) & 10845(2) & 1477(2) & 69(1) \\ C(37) & 7466(3) & 7865(2) & 2109(2) & 49(1) \\ C(38) & 8236(3) & 7198(2) & 1908(2) & 59(1) \\ C(39) & 7910(3) & 6623(2) & 1646(2) & 70(1) \\ C(44) & 9709(4) & 6233(3) & 2533(4) & 134(2) \\ C(44) & 9709(4) & 6233(3) & 2533(4) & 144(2) \\ C(44) & 9709(4) & 6233(3) & 2533(4) & 144(2) \\ C(45) & 6432(3) & 7949(2) & 2043(2) & 58(1) \\ C(44) & 9709(4) & 6233(3) & 2533(4) & 144(2) \\ C(45) & 6432(3) & 7949(2) & 2043(2) & 58(1) \\ C(44) & 9709(4) & 6233(3) & 2533(4) & 134(2) \\ C(45) & 6521(5) & 6017(3) & 1324(3) & 114(2) \\ C(47) & 6843(6) & 6203(4) & 422(3) & 177(3) \\ C(44) & 9709(4) & 6233(3) & 2533(4) & 134(2) \\ C(45) & 6521(5) & 6017(3) & 1324(3) & 114(2) \\ C(47) & 6843(6) & 6203(4) & 422(3) & 69(1) \\ C(49) & 5594(3) & 8666(2) & 2230(3) & 69(1) \\ C(50) & 5534(4) & 9403(3) & 1375(3) &$  | C(7)  | /555(2)            | 8004(2)              | 6043(2)            | 46(1)<br>54(1)   |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(0)  | 11208(2)           | 9033(2)              | 3004(2)            | 54(1)<br>67(1)   |     |
| $\begin{array}{ccccc} (11) & 10329(3) & 8740(2) & 7500(3) & 66(1) \\ (12) & 6594(3) & 7687(2) & 6850(2) & 52(1) \\ (13) & 6668(3) & 6694(2) & 7521(2) & 61(1) \\ (14) & 5778(4) & 6671(3) & 8315(2) & 82(1) \\ (15) & 4843(4) & 7225(3) & 8426(3) & 89(1) \\ (15) & 4843(4) & 7225(3) & 8426(3) & 89(1) \\ (16) & 4794(3) & 7992(3) & 7748(3) & 78(1) \\ (17) & 5633(3) & 8249(2) & 6959(2) & 60(1) \\ (18) & 7651(3) & 6241(2) & 7454(2) & 70(1) \\ (19) & 8355(4) & 6237(3) & 8016(3) & 106(2) \\ (20) & 7332(4) & 5319(2) & 7704(3) & 96(1) \\ (212) & 3890(5) & 6992(4) & 9281(3) & 147(2) \\ (22) & 3414(6) & 633(5) & 9550(5) & 244(5) \\ (22) & 3436(5) & 7495(5) & 9815(3) & 186(3) \\ (24) & 5535(3) & 9137(2) & 6229(2) & 67(1) \\ (25) & 436(13) & 9429(3) & 6220(3) & 115(2) \\ (26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ (26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ (26) & 6011(4) & 9827(2) & 3239(2) & 44(1) \\ (28) & 8233(2) & 9729(2) & 2938(2) & 44(1) \\ (28) & 8233(2) & 9729(2) & 2938(2) & 46(1) \\ (30) & 8273(2) & 970(2) & 2061(2) & 52(1) \\ (31) & 8033(2) & 930(2) & 1813(2) & 55(1) \\ (33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ (33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ (33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ (33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ (33) & 8485(3) & 7188(2) & 1477(2) & 69(1) \\ (33) & 8485(3) & 7188(2) & 1477(2) & 69(1) \\ (33) & 8485(3) & 7188(2) & 1477(2) & 69(1) \\ (34) & 8596(3) & 11240(2) & 2069(3) & 68(1) \\ (35) & 8779(3) & 11470(2) & 1743(3) & 75(1) \\ (36) & 8416(3) & 10845(2) & 1477(2) & 69(1) \\ (37) & 7486(3) & 7862(2) & 1209(2) & 49(1) \\ (38) & 8236(3) & 7198(2) & 1908(2) & 59(1) \\ (44) & 6799(4) & 6233(3) & 2533(4) & 134(2) \\ (44) & 9709(4) & 6233(3) & 2533(4) & 134(2) \\ (44) & 667(6) & 5510(4) & 422(3) & 177(3) \\ (44) & 567(6) & 5514(4) & 987(3) & 142(2) \\ (44) & 667(6) & 5514(4) & 9403(3) & 1375(3) & 113(2) \\ \end{array}$                                                                                                                                                                                                              | C(9)  | 11200(3)           | 9040(2)              | 4803(3)            | 74(1)            |     |
| $\begin{array}{ccccc} c(12) & 6594(3) & 7687(2) & 6850(2) & 52(1) \\ c(13) & 6668(3) & 6894(2) & 7521(2) & 61(1) \\ c(14) & 5778(4) & 6671(3) & 8315(2) & 82(1) \\ c(15) & 4843(4) & 7225(3) & 8426(3) & 89(1) \\ c(16) & 4794(3) & 7992(3) & 7748(3) & 78(1) \\ c(17) & 5633(3) & 6249(2) & 6959(2) & 60(1) \\ c(18) & 7651(3) & 6241(2) & 7454(2) & 70(1) \\ c(19) & 8355(4) & 6237(3) & 8016(3) & 106(2) \\ c(20) & 7332(4) & 5319(2) & 7704(3) & 96(1) \\ c(21) & 3890(5) & 6992(4) & 9281(3) & 147(2) \\ c(22) & 3414(6) & 6313(5) & 9506(5) & 244(5) \\ c(23) & 3836(5) & 7495(5) & 9815(3) & 186(3) \\ c(24) & 5535(3) & 9137(2) & 6259(2) & 67(1) \\ c(25) & 4361(3) & 9429(3) & 6220(3) & 115(2) \\ c(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ c(27) & 7930(2) & 8272(2) & 2338(2) & 44(1) \\ c(28) & 8233(2) & 9330(2) & 1813(2) & 55(1) \\ c(30) & 8273(2) & 9970(2) & 2061(2) & 52(1) \\ c(31) & 8033(2) & 9330(2) & 1813(2) & 55(1) \\ c(33) & 8485(2) & 1040(42) & 3198(2) & 45(1) \\ c(34) & 8596(3) & 11240(2) & 2609(3) & 68(1) \\ c(35) & 8579(3) & 11240(2) & 2609(3) & 68(1) \\ c(36) & 8416(3) & 10845(2) & 1477(2) & 69(1) \\ c(37) & 7486(3) & 7865(2) & 2109(2) & 49(1) \\ c(38) & 8236(3) & 7198(2) & 1908(2) & 59(1) \\ c(37) & 7486(3) & 7865(2) & 2109(2) & 49(1) \\ c(38) & 8236(3) & 7198(2) & 1098(2) & 59(1) \\ c(37) & 7486(3) & 742(2) & 1781(2) & 72(1) \\ c(44) & 643(3) & 7145(3) & 1592(2) & 73(1) \\ c(44) & 6674(4) & 6669(3) & 1592(2) & 73(1) \\ c(44) & 6674(4) & 6669(3) & 1592(2) & 73(1) \\ c(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ c(45) & 10221(4) & 7342(2) & 1781(2) & 72(1) \\ c(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ c(45) & 10221(4) & 7342(2) & 1781(2) & 72(1) \\ c(46) & 6521(5) & 6017(3) & 1324(3) & 114(2) \\ c(47) & 6843(6) & 6203(4) & 422(3) & 177(3) \\ c(48) & 5667(6) & 5510(4) & 1922(3) & 69(1) \\ c(49) & 5594(3) & 8666(2) & 2230(3) & 69(1) \\ c(50) & 5534(4) & 9403(3) & 1375(3) & 113(2) \\ c(51) & 4437(3) & 8347(2) & 2779(3) & 83(1) \\ c(51) & 4437(3) & 8347(2) & 2779(3) & 83(1) \\ c(51) & 4437(3) & 8347(2) & 2779(3) & 83(1) \\ c(51) & 520(4) & 500(4) & 2779(3) & 83(1) \\$ | C(11) | 10329(3)           | 8744(2)              | 5509(3)            | 66(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(12) | 6594(3)            | 7687(2)              | 6850(2)            | 52(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(13) | 6668(3)            | 6894(2)              | 7521(2)            | 61(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(14) | 5778(4)            | 6671(3)              | 8315(2)            | 82(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(15) | 4843(4)            | 7225(3)              | 8426(3)            | 89(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(16) | 4794(3)            | 7992(3)              | 7748(3)            | 78(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(17) | 5633(3)            | 8249(2)              | 6959(2)            | 60(1)            |     |
| $\begin{array}{cccccc} C(19) & 8355(4) & 6237(3) & 8016(3) & 106(2) \\ C(20) & 7332(4) & 5319(2) & 7704(3) & 96(1) \\ C(21) & 3890(5) & 6992(4) & 9281(3) & 147(2) \\ C(22) & 3414(6) & 6313(5) & 9506(5) & 244(5) \\ C(23) & 3836(5) & 7495(5) & 9815(3) & 186(3) \\ C(24) & 5535(3) & 9137(2) & 6259(2) & 67(1) \\ C(25) & 4361(3) & 9429(3) & 6220(3) & 115(2) \\ C(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ C(27) & 7930(2) & 8272(2) & 3239(2) & 44(1) \\ C(28) & 8233(2) & 8837(2) & 3519(2) & 43(1) \\ C(29) & 8339(2) & 9729(2) & 2938(2) & 46(1) \\ C(30) & 8273(2) & 9970(2) & 2061(2) & 52(1) \\ C(31) & 8033(2) & 9330(2) & 1813(2) & 55(1) \\ C(32) & 7823(2) & 8502(2) & 2380(2) & 45(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(34) & 8596(3) & 11240(2) & 2609(3) & 68(1) \\ C(35) & 8579(3) & 11470(2) & 1743(3) & 75(1) \\ C(36) & 8416(3) & 10845(2) & 1477(2) & 69(1) \\ C(37) & 7486(3) & 7865(2) & 2109(2) & 49(1) \\ C(38) & 8236(3) & 7198(2) & 1908(2) & 59(1) \\ C(39) & 7910(3) & 6623(2) & 1646(2) & 70(1) \\ C(40) & 6874(4) & 6669(3) & 1592(2) & 73(1) \\ C(41) & 6149(3) & 7342(2) & 1781(2) & 72(1) \\ C(42) & 6432(3) & 7145(3) & 2533(4) & 134(2) \\ C(43) & 9418(3) & 7115(3) & 1920(3) & 76(1) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(45) & 10221(4) & 7318(4) & 987(3) & 142(2) \\ C(46) & 6521(5) & 6017(3) & 1324(3) & 177(3) \\ C(48) & 5667(6) & 5510(4) & 1922(4) & 206(4) \\ C(49) & 5594(3) & 8666(2) & 2230(3) & 69(1) \\ C(50) & 5534(4) & 9403(3) & 1375(3) & 113(2) \\ C(51) & 4437(3) & 8347(2) & 2779(3) & 83(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(18) | 7651(3)            | 6241(2)              | 7454(2)            | 70(1)            |     |
| $\begin{array}{ccccccc} C(20) & 7332(4) & 5319(2) & 7704(3) & 96(1) \\ C(21) & 3890(5) & 6992(4) & 9281(3) & 147(2) \\ C(22) & 3414(6) & 6313(5) & 9506(5) & 244(5) \\ C(23) & 3836(5) & 7495(5) & 9815(3) & 186(3) \\ C(24) & 5535(3) & 9137(2) & 6259(2) & 67(1) \\ C(25) & 4361(3) & 9429(3) & 6220(3) & 115(2) \\ C(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ C(27) & 7930(2) & 8272(2) & 3239(2) & 44(1) \\ C(28) & 8233(2) & 8837(2) & 3519(2) & 43(1) \\ C(29) & 8339(2) & 9790(2) & 2038(2) & 46(1) \\ C(30) & 8273(2) & 9970(2) & 2061(2) & 52(1) \\ C(31) & 8033(2) & 9330(2) & 1813(2) & 55(1) \\ C(32) & 7823(2) & 8502(2) & 2380(2) & 45(1) \\ C(33) & 8485(2) & 10404(2) & 2609(3) & 68(1) \\ C(35) & 8579(3) & 11240(2) & 2609(3) & 68(1) \\ C(36) & 8416(3) & 10845(2) & 1477(2) & 69(1) \\ C(37) & 7486(3) & 7865(2) & 1098(2) & 59(1) \\ C(38) & 8226(3) & 7198(2) & 1908(2) & 59(1) \\ C(38) & 8226(3) & 7198(2) & 1908(2) & 59(1) \\ C(39) & 7910(3) & 6623(2) & 1646(2) & 70(1) \\ C(40) & 6874(4) & 6669(3) & 1592(2) & 73(1) \\ C(41) & 6149(3) & 7342(2) & 1781(2) & 72(1) \\ C(42) & 6432(3) & 7949(2) & 2043(2) & 58(1) \\ C(43) & 9418(3) & 7115(3) & 1920(3) & 76(1) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(45) & 10221(4) & 7318(4) & 987(3) & 114(2) \\ C(46) & 6521(5) & 6017(3) & 1324(3) & 114(2) \\ C(47) & 6843(6) & 6203(4) & 422(3) & 177(3) \\ C(48) & 5667(6) & 5510(4) & 1922(4) & 206(4) \\ C(49) & 5594(3) & 8666(2) & 2230(3) & 69(1) \\ C(50) & 5534(4) & 9403(3) & 1375(3) & 113(2) \\ C(51) & 4437(3) & 8347(2) & 2779(3) & 83(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(19) | 8355(4)            | 6237(3)              | 8016(3)            | 106(2)           |     |
| $\begin{array}{ccccccc} C(21) & 3890(5) & 6992(4) & 9281(3) & 147(2) \\ C(22) & 3414(6) & 6313(5) & 9506(5) & 244(5) \\ C(23) & 3836(5) & 7495(5) & 9815(3) & 186(3) \\ C(24) & 5535(3) & 9137(2) & 6259(2) & 67(1) \\ C(25) & 4361(3) & 9429(3) & 6220(3) & 115(2) \\ C(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ C(27) & 7930(2) & 8272(2) & 3239(2) & 44(1) \\ C(28) & 8233(2) & 8837(2) & 3519(2) & 43(1) \\ C(30) & 8273(2) & 9729(2) & 2938(2) & 46(1) \\ C(30) & 8273(2) & 9970(2) & 2061(2) & 52(1) \\ C(31) & 8033(2) & 9330(2) & 1813(2) & 55(1) \\ C(32) & 7823(2) & 8502(2) & 2380(2) & 45(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(34) & 8596(3) & 11240(2) & 2609(3) & 68(1) \\ C(35) & 8579(3) & 11470(2) & 1743(3) & 75(1) \\ C(36) & 8416(3) & 10845(2) & 1477(2) & 69(1) \\ C(37) & 7486(3) & 7865(2) & 2109(2) & 49(1) \\ C(38) & 8236(3) & 7198(2) & 1908(2) & 59(1) \\ C(39) & 7910(3) & 6623(2) & 1646(2) & 70(1) \\ C(40) & 6874(4) & 6669(3) & 1592(2) & 73(1) \\ C(41) & 6149(3) & 7342(2) & 1781(2) & 72(1) \\ C(42) & 6432(3) & 7949(2) & 2043(2) & 58(1) \\ C(43) & 9418(3) & 7115(3) & 1920(3) & 76(1) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(45) & 10221(4) & 7318(4) & 987(3) & 1242(2) \\ C(46) & 6521(5) & 6017(3) & 1324(3) & 114(2) \\ C(47) & 6843(6) & 6203(4) & 422(3) & 177(3) \\ C(48) & 5667(6) & 5510(4) & 1922(4) & 206(4) \\ C(49) & 5594(3) & 8666(2) & 2230(3) & 69(1) \\ C(50) & 5534(4) & 9403(3) & 1375(3) & 113(2) \\ C(51) & 4437(3) & 8347(2) & 2779(3) & 83(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(20) | 7332(4)            | 5319(2)              | 7704(3)            | 96(1)            |     |
| $\begin{array}{ccccccc} C(22) & 3414(6) & 6313(5) & 9506(5) & 244(5) \\ C(23) & 3836(5) & 7495(5) & 9815(3) & 186(3) \\ C(24) & 5535(3) & 9137(2) & 6259(2) & 67(1) \\ C(25) & 4361(3) & 9429(3) & 6220(3) & 115(2) \\ C(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ C(27) & 7930(2) & 8272(2) & 3239(2) & 44(1) \\ C(28) & 8233(2) & 8837(2) & 3519(2) & 43(1) \\ C(29) & 8339(2) & 9729(2) & 2938(2) & 46(1) \\ C(30) & 8273(2) & 9970(2) & 2061(2) & 52(1) \\ C(31) & 8033(2) & 9330(2) & 1813(2) & 55(1) \\ C(32) & 7823(2) & 8502(2) & 2380(2) & 45(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(34) & 8596(3) & 11240(2) & 2609(3) & 68(1) \\ C(35) & 8579(3) & 11470(2) & 1743(3) & 75(1) \\ C(36) & 8416(3) & 10845(2) & 1477(2) & 69(1) \\ C(37) & 7486(3) & 7865(2) & 2109(2) & 49(1) \\ C(38) & 8236(3) & 7198(2) & 1908(2) & 59(1) \\ C(39) & 7910(3) & 6623(2) & 1646(2) & 70(1) \\ C(41) & 6149(3) & 7342(2) & 1781(2) & 72(1) \\ C(42) & 6432(3) & 7949(2) & 2043(2) & 58(1) \\ C(43) & 9418(3) & 7115(3) & 1920(3) & 76(1) \\ C(44) & 9709(4) & 6213(3) & 2533(4) & 134(2) \\ C(45) & 10221(4) & 7318(4) & 987(3) & 1242(2) \\ C(46) & 6521(5) & 6017(3) & 1324(3) & 114(2) \\ C(47) & 6843(6) & 6203(4) & 422(3) & 177(3) \\ C(48) & 5667(6) & 5510(4) & 1922(4) & 206(4) \\ C(49) & 5594(3) & 8666(2) & 2230(3) & 69(1) \\ C(50) & 5534(4) & 9403(3) & 1375(3) & 113(2) \\ C(51) & 4437(3) & 8347(2) & 2779(3) & 83(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(21) | 3890(5)            | 6992(4)<br>6212(F)   | 9281(3)            | 147(2)           |     |
| $\begin{array}{c} C(23) & 3636(3) & 7493(3) & 9613(3) & 166(3) \\ C(24) & 5535(3) & 9137(2) & 6259(2) & 67(1) \\ C(25) & 4361(3) & 9429(3) & 6220(3) & 115(2) \\ C(26) & 6011(4) & 9824(3) & 6403(3) & 115(2) \\ C(27) & 7930(2) & 8272(2) & 3239(2) & 44(1) \\ C(28) & 8233(2) & 8837(2) & 3519(2) & 43(1) \\ C(29) & 8339(2) & 9729(2) & 2938(2) & 46(1) \\ C(30) & 8273(2) & 9970(2) & 2061(2) & 52(1) \\ C(31) & 8033(2) & 9330(2) & 1813(2) & 55(1) \\ C(32) & 7823(2) & 8502(2) & 2380(2) & 45(1) \\ C(33) & 8485(2) & 10404(2) & 3195(2) & 55(1) \\ C(34) & 8596(3) & 11240(2) & 2609(3) & 68(1) \\ C(35) & 8579(3) & 11470(2) & 1743(3) & 75(1) \\ C(36) & 8416(3) & 10845(2) & 1477(2) & 69(1) \\ C(37) & 7486(3) & 7865(2) & 2109(2) & 49(1) \\ C(38) & 8236(3) & 7198(2) & 1908(2) & 59(1) \\ C(40) & 6874(4) & 6669(3) & 1592(2) & 73(1) \\ C(41) & 6149(3) & 7342(2) & 1781(2) & 72(1) \\ C(42) & 6432(3) & 7949(2) & 2043(2) & 58(1) \\ C(43) & 9418(3) & 7115(3) & 1920(3) & 76(1) \\ C(44) & 9709(4) & 6213(3) & 253(4) & 134(2) \\ C(45) & 10221(4) & 7318(4) & 987(3) & 142(2) \\ C(46) & 6521(5) & 6017(3) & 1324(3) & 114(2) \\ C(47) & 6843(6) & 6203(4) & 422(3) & 177(3) \\ C(48) & 5667(6) & 5510(4) & 1922(4) & 206(4) \\ C(49) & 5594(3) & 8666(2) & 2230(3) & 69(1) \\ C(50) & 5534(4) & 9403(3) & 1375(3) & 113(2) \\ C(51) & 4437(3) & 8347(2) & 2779(3) & 83(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(22) | 3414(0)<br>2026(E) | 0313(5)<br>7405(5)   | 9506(5)            | 244(5)<br>196(2) |     |
| C(24)D35(3)D429(2)C20(3)115(2)C(26) $6011(4)$ $9824(3)$ $6403(3)$ $115(2)$ C(27) $7930(2)$ $8272(2)$ $3239(2)$ $44(1)$ C(28) $8233(2)$ $8837(2)$ $3519(2)$ $43(1)$ C(29) $8339(2)$ $9729(2)$ $2938(2)$ $46(1)$ C(30) $8273(2)$ $9970(2)$ $2061(2)$ $52(1)$ C(31) $8033(2)$ $9330(2)$ $1813(2)$ $55(1)$ C(32) $7823(2)$ $8502(2)$ $2380(2)$ $45(1)$ C(33) $8485(2)$ $10404(2)$ $3195(2)$ $55(1)$ C(34) $8596(3)$ $11240(2)$ $2609(3)$ $68(1)$ C(36) $8416(3)$ $10845(2)$ $1477(2)$ $69(1)$ C(37) $7486(3)$ $7865(2)$ $2109(2)$ $49(1)$ C(38) $8236(3)$ $7198(2)$ $1908(2)$ $59(1)$ C(41) $6149(3)$ $7342(2)$ $1781(2)$ $72(1)$ C(42) $6432(3)$ $7949(2)$ $2043(2)$ $58(1)$ C(43) $9418(3)$ $7115(3)$ $1920(3)$ $76(1)$ C(44) $9709(4)$ $6213(3)$ $253(4)$ $134(2)$ C(45) $10221(4)$ $7318(4)$ $987(3)$ $142(2)$ C(46) $6521(5)$ $6017(3)$ $1324(3)$ $114(2)$ C(47) $6843(6)$ $6203(4)$ $422(3)$ $177(3)$ C(48) $5667(6)$ $5510(4)$ $1922(4)$ $206(4)$ C(47) $6843(6)$ $6203(4)$ $422(3)$ $177(3)$ <td>C(23)</td> <td>5535(3)</td> <td>7495(5)<br/>9137(2)</td> <td>5015(3)<br/>6259(2)</td> <td>100(3)<br/>67(1)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(23) | 5535(3)            | 7495(5)<br>9137(2)   | 5015(3)<br>6259(2) | 100(3)<br>67(1)  |     |
| C(26)C(14)9824(3)C(13)115(2)C(27)7930(2)8272(2)3239(2)44(1)C(28)8233(2)9837(2)3519(2)43(1)C(29)8339(2)9729(2)2938(2)46(1)C(30)8273(2)9970(2)2061(2)52(1)C(31)8033(2)9330(2)1813(2)55(1)C(32)7823(2)8502(2)2380(2)45(1)C(33)8485(2)10404(2)3195(2)55(1)C(34)8596(3)11240(2)2609(3)68(1)C(35)8579(3)11470(2)1743(3)75(1)C(36)8416(3)10845(2)1477(2)69(1)C(37)7486(3)7865(2)2109(2)49(1)C(38)8236(3)7198(2)1908(2)59(1)C(40)6874(4)6669(3)1592(2)73(1)C(41)6149(3)7342(2)1781(2)72(1)C(42)6432(3)7949(2)2043(2)58(1)C(44)9709(4)6213(3)2533(4)134(2)C(44)9709(4)6213(3)2533(4)144(2)C(44)9709(4)6213(3)2533(4)144(2)C(47)6843(6)6203(4)422(3)177(3)C(48)5667(6)5510(4)1922(4)206(4)C(47)6843(6)6203(4)422(3)177(3)C(48)5667(6)5510(4)1922(4)206(4)C(47)6843(6)6203(4)422(3)177(3)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(25) | 4361(3)            | 9429(3)              | 6220(2)            | 115(2)           |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(26) | 6011(4)            | 9824(3)              | 6403(3)            | 115(2)           |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(27) | 7930(2)            | 8272(2)              | 3239(2)            | 44(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(28) | 8233(2)            | 8837(2)              | 3519(2)            | 43(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(29) | 8339(2)            | 9729(2)              | 2938(2)            | 46(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(30) | 8273(2)            | 9970(2)              | 2061(2)            | 52(1)            |     |
| C(32) $7823(2)$ $8502(2)$ $2380(2)$ $45(1)$ $C(33)$ $8485(2)$ $10404(2)$ $3195(2)$ $55(1)$ $C(34)$ $8596(3)$ $11240(2)$ $2609(3)$ $68(1)$ $C(35)$ $8579(3)$ $11470(2)$ $1743(3)$ $75(1)$ $C(36)$ $8416(3)$ $10845(2)$ $1477(2)$ $69(1)$ $C(37)$ $7486(3)$ $7865(2)$ $2109(2)$ $49(1)$ $C(38)$ $8236(3)$ $7198(2)$ $1908(2)$ $59(1)$ $C(39)$ $7910(3)$ $6623(2)$ $1646(2)$ $70(1)$ $C(40)$ $6874(4)$ $6669(3)$ $1592(2)$ $73(1)$ $C(41)$ $6149(3)$ $7342(2)$ $1781(2)$ $72(1)$ $C(42)$ $6432(3)$ $7949(2)$ $2043(2)$ $58(1)$ $C(43)$ $9418(3)$ $7115(3)$ $1920(3)$ $76(1)$ $C(44)$ $9709(4)$ $6213(3)$ $2533(4)$ $134(2)$ $C(45)$ $10221(4)$ $7318(4)$ $987(3)$ $142(2)$ $C(46)$ $6521(5)$ $6017(3)$ $1324(3)$ $114(2)$ $C(47)$ $6843(6)$ $6203(4)$ $422(3)$ $177(3)$ $C(48)$ $5667(6)$ $5510(4)$ $1922(4)$ $206(4)$ $C(49)$ $5594(3)$ $8666(2)$ $2230(3)$ $69(1)$ $C(50)$ $5534(4)$ $9403(3)$ $1375(3)$ $113(2)$ $C(51)$ $4437(3)$ $8347(2)$ $2779(3)$ $83(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(31) | 8033(2)            | 9330(2)              | 1813(2)            | 55(1)            |     |
| C(33) $8485(2)$ $10404(2)$ $3195(2)$ $55(1)$ $C(34)$ $8596(3)$ $11240(2)$ $2609(3)$ $68(1)$ $C(35)$ $8579(3)$ $11470(2)$ $1743(3)$ $75(1)$ $C(36)$ $8416(3)$ $10845(2)$ $1477(2)$ $69(1)$ $C(37)$ $7486(3)$ $7865(2)$ $2109(2)$ $49(1)$ $C(38)$ $8236(3)$ $7198(2)$ $1908(2)$ $59(1)$ $C(39)$ $7910(3)$ $6623(2)$ $1646(2)$ $70(1)$ $C(40)$ $6874(4)$ $6669(3)$ $1592(2)$ $73(1)$ $C(41)$ $6149(3)$ $7342(2)$ $1781(2)$ $72(1)$ $C(42)$ $6432(3)$ $7949(2)$ $2043(2)$ $58(1)$ $C(43)$ $9418(3)$ $7115(3)$ $1920(3)$ $76(1)$ $C(44)$ $9709(4)$ $6213(3)$ $2533(4)$ $134(2)$ $C(45)$ $10221(4)$ $7318(4)$ $987(3)$ $142(2)$ $C(46)$ $6521(5)$ $6017(3)$ $1324(3)$ $114(2)$ $C(47)$ $6843(6)$ $6203(4)$ $422(3)$ $177(3)$ $C(48)$ $5667(6)$ $5510(4)$ $1922(4)$ $206(4)$ $C(49)$ $5594(3)$ $8666(2)$ $2230(3)$ $69(1)$ $C(50)$ $5534(4)$ $9403(3)$ $1375(3)$ $113(2)$ $C(51)$ $4437(3)$ $8347(2)$ $2779(3)$ $83(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(32) | 7823(2)            | 8502(2)              | 2380(2)            | 45(1)            |     |
| C(34) $8596(3)$ $11240(2)$ $2609(3)$ $68(1)$ $C(35)$ $8579(3)$ $11470(2)$ $1743(3)$ $75(1)$ $C(36)$ $8416(3)$ $10845(2)$ $1477(2)$ $69(1)$ $C(37)$ $7486(3)$ $7865(2)$ $2109(2)$ $49(1)$ $C(38)$ $8236(3)$ $7198(2)$ $1908(2)$ $59(1)$ $C(39)$ $7910(3)$ $6623(2)$ $1646(2)$ $70(1)$ $C(40)$ $6874(4)$ $6669(3)$ $1592(2)$ $73(1)$ $C(41)$ $6149(3)$ $7342(2)$ $1781(2)$ $72(1)$ $C(42)$ $6432(3)$ $7949(2)$ $2043(2)$ $58(1)$ $C(43)$ $9418(3)$ $7115(3)$ $1920(3)$ $76(1)$ $C(44)$ $9709(4)$ $6213(3)$ $2533(4)$ $134(2)$ $C(45)$ $10221(4)$ $7318(4)$ $987(3)$ $142(2)$ $C(46)$ $6521(5)$ $6017(3)$ $1324(3)$ $114(2)$ $C(47)$ $6843(6)$ $6203(4)$ $422(3)$ $177(3)$ $C(48)$ $5667(6)$ $5510(4)$ $1922(4)$ $206(4)$ $C(49)$ $5594(3)$ $8666(2)$ $2230(3)$ $69(1)$ $C(50)$ $5534(4)$ $9403(3)$ $1375(3)$ $113(2)$ $C(51)$ $4437(3)$ $8347(2)$ $2779(3)$ $83(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(33) | 8485(2)            | 10404(2)             | 3195(2)            | 55(1)            |     |
| C(35) $8579(3)$ $11470(2)$ $1743(3)$ $75(1)$ $C(36)$ $8416(3)$ $10845(2)$ $1477(2)$ $69(1)$ $C(37)$ $7486(3)$ $7865(2)$ $2109(2)$ $49(1)$ $C(38)$ $8236(3)$ $7198(2)$ $1908(2)$ $59(1)$ $C(39)$ $7910(3)$ $6623(2)$ $1646(2)$ $70(1)$ $C(40)$ $6874(4)$ $6669(3)$ $1592(2)$ $73(1)$ $C(41)$ $6149(3)$ $7342(2)$ $1781(2)$ $72(1)$ $C(42)$ $6432(3)$ $7949(2)$ $2043(2)$ $58(1)$ $C(43)$ $9418(3)$ $7115(3)$ $1920(3)$ $76(1)$ $C(44)$ $9709(4)$ $6213(3)$ $2533(4)$ $134(2)$ $C(45)$ $10221(4)$ $7318(4)$ $987(3)$ $142(2)$ $C(46)$ $6521(5)$ $6017(3)$ $1324(3)$ $114(2)$ $C(47)$ $6843(6)$ $6203(4)$ $422(3)$ $177(3)$ $C(48)$ $5667(6)$ $5510(4)$ $1922(4)$ $206(4)$ $C(49)$ $5594(3)$ $8666(2)$ $2230(3)$ $69(1)$ $C(50)$ $5534(4)$ $9403(3)$ $1375(3)$ $113(2)$ $C(51)$ $4437(3)$ $8347(2)$ $2779(3)$ $83(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(34) | 8596(3)            | 11240(2)             | 2609(3)            | 68(1)<br>75(1)   |     |
| C(36) $6416(3)$ $10843(2)$ $1477(2)$ $69(1)$ $C(37)$ $7486(3)$ $7865(2)$ $2109(2)$ $49(1)$ $C(38)$ $8236(3)$ $7198(2)$ $1908(2)$ $59(1)$ $C(39)$ $7910(3)$ $6623(2)$ $1646(2)$ $70(1)$ $C(40)$ $6874(4)$ $6669(3)$ $1592(2)$ $73(1)$ $C(41)$ $6149(3)$ $7342(2)$ $1781(2)$ $72(1)$ $C(42)$ $6432(3)$ $7949(2)$ $2043(2)$ $58(1)$ $C(43)$ $9418(3)$ $7115(3)$ $1920(3)$ $76(1)$ $C(44)$ $9709(4)$ $6213(3)$ $2533(4)$ $134(2)$ $C(45)$ $10221(4)$ $7318(4)$ $987(3)$ $142(2)$ $C(46)$ $6521(5)$ $6017(3)$ $1324(3)$ $114(2)$ $C(47)$ $6843(6)$ $6203(4)$ $422(3)$ $177(3)$ $C(48)$ $5667(6)$ $5510(4)$ $1922(4)$ $206(4)$ $C(49)$ $5594(3)$ $8666(2)$ $2230(3)$ $69(1)$ $C(50)$ $5534(4)$ $9403(3)$ $1375(3)$ $113(2)$ $C(51)$ $4437(3)$ $8347(2)$ $2779(3)$ $83(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(35) | 85/9(3)            | 114/0(2)<br>10945(2) | 1/43(3)            | 75(1)<br>69(1)   |     |
| C(37) $7100(3)$ $7003(2)$ $2100(2)$ $19(1)$ $C(38)$ $8236(3)$ $7198(2)$ $1908(2)$ $59(1)$ $C(39)$ $7910(3)$ $6623(2)$ $1646(2)$ $70(1)$ $C(40)$ $6874(4)$ $6669(3)$ $1592(2)$ $73(1)$ $C(41)$ $6149(3)$ $7342(2)$ $1781(2)$ $72(1)$ $C(42)$ $6432(3)$ $7949(2)$ $2043(2)$ $58(1)$ $C(43)$ $9418(3)$ $7115(3)$ $1920(3)$ $76(1)$ $C(44)$ $9709(4)$ $6213(3)$ $2533(4)$ $134(2)$ $C(45)$ $10221(4)$ $7318(4)$ $987(3)$ $142(2)$ $C(46)$ $6521(5)$ $6017(3)$ $1324(3)$ $114(2)$ $C(47)$ $6843(6)$ $6203(4)$ $422(3)$ $177(3)$ $C(48)$ $5667(6)$ $5510(4)$ $1922(4)$ $206(4)$ $C(49)$ $5594(3)$ $8666(2)$ $2230(3)$ $69(1)$ $C(50)$ $5534(4)$ $9403(3)$ $1375(3)$ $113(2)$ $C(51)$ $4437(3)$ $8347(2)$ $2779(3)$ $83(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(30) | 7486(3)            | 7865(2)              | 2109(2)            | 49(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(38) | 8236(3)            | 7198(2)              | 1908(2)            | 59(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(39) | 7910(3)            | 6623(2)              | 1646(2)            | 70(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(40) | 6874(4)            | 6669(3)              | 1592(2)            | 73(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(41) | 6149(3)            | 7342(2)              | 1781(2)            | 72(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(42) | 6432(3)            | 7949(2)              | 2043(2)            | 58(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(43) | 9418(3)            | 7115(3)              | 1920(3)            | 76(1)            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(44) | 9709(4)            | 6213(3)              | 2533(4)            | 134(2)           |     |
| C(46) $6521(5)$ $6017(3)$ $1324(3)$ $114(2)$ $C(47)$ $6843(6)$ $6203(4)$ $422(3)$ $177(3)$ $C(48)$ $5667(6)$ $5510(4)$ $1922(4)$ $206(4)$ $C(49)$ $5594(3)$ $8666(2)$ $2230(3)$ $69(1)$ $C(50)$ $5534(4)$ $9403(3)$ $1375(3)$ $113(2)$ $C(51)$ $4437(3)$ $8347(2)$ $2779(3)$ $83(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(45) | 10221(4)           | 7318(4)              | 987(3)             | 142(2)           |     |
| C(47) $6843(6)$ $6203(4)$ $422(3)$ $177(3)$ $C(48)$ $5667(6)$ $5510(4)$ $1922(4)$ $206(4)$ $C(49)$ $5594(3)$ $8666(2)$ $2230(3)$ $69(1)$ $C(50)$ $5534(4)$ $9403(3)$ $1375(3)$ $113(2)$ $C(51)$ $4437(3)$ $8347(2)$ $2779(3)$ $83(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(46) | 6521(5)            | 6017(3)              | 1324(3)            | 114(2)           |     |
| C(40)5007(0)5510(4)1922(4)200(4)C(49)5594(3)8666(2)2230(3)69(1)C(50)5534(4)9403(3)1375(3)113(2)C(51)4437(3)8347(2)2779(3)83(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(47) | 6843(6)<br>F667(6) | 62U3(4)              | 422(3)             | $\pm 1 / (3)$    |     |
| C(49) $5594(5)$ $6000(2)$ $2230(3)$ $69(1)$ $C(50)$ $5534(4)$ $9403(3)$ $1375(3)$ $113(2)$ $C(51)$ $4437(3)$ $8347(2)$ $2779(3)$ $83(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(48) | 500/(0)<br>5504/2) | $55 \pm 0(4)$        | ⊥922(4)<br>2220(2) | 200(4)           |     |
| C(50) $4437(3)$ $8347(2)$ $2779(3)$ $83(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(49) | 5524(3)<br>5521(1) | 0000(2)<br>9403(3)   | ∠∠3U(3)<br>1375(3) | (⊥)<br>113(2)    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(51) | 4437(3)            | 8347(2)              | 2779(3)            | 83(1)            |     |

| C(52) | 9287(5) | 3993(5) | 4166(5) | 235(5) |
|-------|---------|---------|---------|--------|
| C(53) | 9195(5) | 3515(5) | 5005(5) | 167(3) |
| C(54) | 8144(6) | 3123(5) | 6524(5) | 178(3) |
| C(55) | 7196(6) | 3367(4) | 7138(4) | 147(2) |
| C(56) | 231(5)  | 5122(5) | 9557(3) | 136(2) |
| C(57) | 489(8)  | 6027(6) | 9223(6) | 213(4) |
| C(58) | 1133(8) | 6212(6) | 8266(8) | 283(5) |
| F(1)  | 3678(2) | 7735(2) | 5467(2) | 140(1) |
| F(2)  | 4495(2) | 6951(2) | 6437(2) | 118(1) |
| F(3)  | 3113(2) | 6487(2) | 6387(2) | 142(1) |
| N(1)  | 5831(2) | 7012(2) | 4571(2) | 54(1)  |
| Na(1) | 6803(1) | 4676(1) | 5237(1) | 64(1)  |
| 0(1)  | 6693(1) | 7867(1) | 5066(1) | 45(1)  |
| 0(2)  | 7821(2) | 7400(1) | 3781(1) | 47(1)  |
| 0(3)  | 4222(2) | 6420(2) | 4615(2) | 76(1)  |
| 0(4)  | 5166(2) | 5554(1) | 5698(1) | 62(1)  |
| O(5)  | 8250(2) | 3705(2) | 5636(2) | 88(1)  |
| 0(6)  | 6811(2) | 5405(2) | 3772(2) | 85(1)  |
| P(1)  | 6955(1) | 7043(1) | 4744(1) | 47(1)  |
| S(1)  | 7641(1) | 6028(1) | 5442(1) | 59(1)  |
| S(2)  | 4895(1) | 6405(1) | 5127(1) | 59(1)  |
|       |         |         |         |        |

| C(1) -F(2) $C(1) -F(3)$ $C(1) -F(1)$ $C(1) -S(2)$ $C(2) -C(3)$ $C(2) -C(7)$ $C(3) -C(4)$ $C(3) -C(28)$ $C(4) -C(8)$ $C(4) -C(5)$ $C(5) -C(6)$ $C(5) -C(11)$ $C(6) -C(7)$ $C(7) -C(12)$ $C(8) -C(9)$ $C(9) -C(10)$ $C(10) -C(11)$ $C(12) -C(13)$ $C(12) -C(13)$ $C(12) -C(14)$ $C(13) -C(14)$ $C(13) -C(14)$ $C(15) -C(16)$ $C(15) -C(21)$ $C(15) -C(16)$ $C(15) -C(21)$ $C(16) -C(17)$ $C(17) -C(24)$ $C(18) -C(20)$ $C(18) -C(20)$ $C(21) -C(22)$ $C(24) -C(25)$ $C(24) -C(26)$ $C(27) -C(28)$ $C(27) -C(28)$ $C(27) -C(28)$ $C(27) -C(28)$ | 1.310(5) $1.318(4)$ $1.327(5)$ $1.823(5)$ $1.378(4)$ $1.400(3)$ $1.419(4)$ $1.435(4)$ $1.435(4)$ $1.445(4)$ $1.425(4)$ $1.425(4)$ $1.425(4)$ $1.425(4)$ $1.425(4)$ $1.408(4)$ $1.414(4)$ $1.363(4)$ $1.497(4)$ $1.364(4)$ $1.364(4)$ $1.396(5)$ $1.354(5)$ $1.387(4)$ $1.417(4)$ $1.417(5)$ $1.518(5)$ $1.386(6)$ $1.361(5)$ $1.523(6)$ $1.523(6)$ $1.527(5)$ $1.528(5)$ $1.528(5)$ $1.528(5)$ $1.536(5)$ $1.379(4)$ $1.390(3)$ $1.410(4)$ | C(31) - C(32) $C(32) - C(37)$ $C(33) - C(34)$ $C(34) - C(35)$ $C(35) - C(36)$ $C(37) - C(42)$ $C(37) - C(42)$ $C(37) - C(43)$ $C(38) - C(43)$ $C(39) - C(40)$ $C(40) - C(41)$ $C(40) - C(41)$ $C(40) - C(41)$ $C(40) - C(42)$ $C(42) - C(49)$ $C(43) - C(45)$ $C(43) - C(44)$ $C(46) - C(47)$ $C(46) - C(47)$ $C(46) - C(48)$ $C(49) - C(50)$ $C(52) - C(53)$ $C(53) - O(5)$ $C(54) - O(5)$ $C(54) - O(5)$ $C(54) - C(55)$ $C(56) - C(57)$ $C(57) - C(58)$ $N(1) - S(2)$ $N(1) - P(1)$ $Na(1) - O(4)$ $Na(1) - O(3) # 2$ $Na(1) - C(4)$ $Na(1) - S(1)$ $O(1) - P(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.357(4) $1.499(4)$ $1.364(4)$ $1.365(5)$ $1.365(5)$ $1.365(5)$ $1.390(4)$ $1.401(4)$ $1.524(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(5)$ $1.527(6)$ $1.517(5)$ $1.540(5)$ $1.319(7)$ $1.409(6)$ $1.426(7)$ $1.429(7)$ $1.346(10)$ $1.452(9)$ $1.497(11)$ $1.527(2)$ $1.603(2)$ $2.321(3)$ $2.344(3)$ $2.351(2)$ $2.420(3)$ $2.8671(15)$ $1.612(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C(24)-C(26)<br>C(27)-C(28)<br>C(27)-C(22)<br>C(27)-C(32)<br>C(28)-C(29)<br>C(29)-C(33)<br>C(29)-C(30)<br>C(30)-C(31)<br>C(30)-C(36)<br>)                                                                                                                                                                                                                                                                                                                                                                                                     | 1.536(5) $1.379(4)$ $1.390(3)$ $1.419(4)$ $1.433(4)$ $1.423(4)$ $1.425(4)$ $1.413(4)$ $1.415(4)$                                                                                                                                                                                                                                                                                                                                           | Na(1)-O(4)<br>Na(1)-S(1)<br>O(1)-P(1)<br>O(2)-P(1)<br>O(3)-S(2)<br>O(3)-Na(1)#2<br>O(4)-S(2)<br>P(1)-S(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.420(3)<br>2.8671(15)<br>1.612(2)<br>1.598(2)<br>1.429(2)<br>2.351(2)<br>1.436(2)<br>1.9175(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} F(2) - C(1) - F(3) \\ F(2) - C(1) - F(1) \\ F(3) - C(1) - F(1) \\ F(2) - C(1) - S(2) \\ F(3) - C(1) - S(2) \\ F(1) - C(1) - S(2) \\ C(3) - C(2) - O(1) \\ C(3) - C(2) - O(1) \\ C(3) - C(2) - C(7) \\ O(1) - C(2) - C(7) \\ O(1) - C(2) - C(7) \\ C(2) - C(3) - C(4) \\ C(2) - C(3) - C(28) \\ C(4) - C(3) - C(28) \\ C(4) - C(3) - C(28) \\ C(8) - C(4) - C(5) \\ C(8) - C(4) - C(3) \\ C(5) - C(4) - C(3) \\ C(5) - C(1) \end{array}$                                                                                    | 108.1(4)<br>108.7(4)<br>108.0(4)<br>111.0(3)<br>110.0(3)<br>110.9(4)<br>118.1(3)<br>124.3(3)<br>117.6(2)<br>117.7(3)<br>120.7(3)<br>121.5(3)<br>118.0(3)<br>123.1(3)<br>118.8(3)<br>122.1(3)                                                                                                                                                                                                                                               | $C(6)-C(5)-C(4) \\ C(11)-C(5)-C(4) \\ C(7)-C(6)-C(5) \\ C(6)-C(7)-C(2) \\ C(6)-C(7)-C(12) \\ C(2)-C(7)-C(12) \\ C(9)-C(8)-C(4) \\ C(8)-C(9)-C(10) \\ C(11)-C(10)-C(9) \\ C(10)-C(11)-C(5) \\ C(13)-C(12)-C(17) \\ C(13)-C(12)-C(7) \\ C(12)-C(13)-C(14) \\ C(12)-C(13)-C(18) \\ C(14)-C(13)-C(18) \\ C(14)-C(13)-C(18) \\ C(14)-C(13)-C(18) \\ C(14)-C(13)-C(18) \\ C(12)-C(13)-C(18) \\ C(14)-C(13)-C(18) \\ C(14)-C(14)-C(18) \\ C(14)-C(18)-C(18) \\ C(14)-C$ | $118.8(3) \\ 119.1(3) \\ 123.6(3) \\ 116.0(3) \\ 119.7(3) \\ 124.2(3) \\ 120.6(3) \\ 121.1(3) \\ 120.9(3) \\ 119.9(3) \\ 121.1(3) \\ 120.9(3) \\ 121.1(3) \\ 118.7(3) \\ 118.7(3) \\ 123.6(3) \\ 117.6(3) \\ 119.1(3) \\ 119.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) \\ 110.1(3) $ |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122.8(3)<br>119.3(3)<br>111.4(3)<br>110.6(4)<br>111.5(3)<br>124.4(5)<br>113.8(4)<br>118.2(4)<br>111.1(3)<br>113.4(3)<br>109.1(3)<br>116.0(6) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.3(3)<br>111.4(3)<br>110.6(4)<br>111.5(3)<br>124.4(5)<br>113.8(4)<br>118.2(4)<br>111.1(3)<br>113.4(3)<br>109.1(3)<br>116.0(6)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.4(3)<br>110.6(4)<br>111.5(3)<br>124.4(5)<br>113.8(4)<br>118.2(4)<br>111.1(3)<br>113.4(3)<br>109.1(3)<br>116.0(6)                         |
| C(15) - C(16) - C(17) $123.3(4)$ $C(45) - C(43) - C(44)$ $C(16) - C(17) - C(12)$ $118.4(3)$ $C(38) - C(43) - C(44)$ $C(16) - C(17) - C(24)$ $119.8(3)$ $C(47) - C(46) - C(48)$ $C(12) - C(17) - C(24)$ $121.7(3)$ $C(47) - C(46) - C(40)$ $C(13) - C(18) - C(20)$ $112.9(3)$ $C(48) - C(46) - C(40)$ $C(13) - C(18) - C(19)$ $111.5(3)$ $C(42) - C(49) - C(50)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110.6(4)<br>111.5(3)<br>124.4(5)<br>113.8(4)<br>118.2(4)<br>111.1(3)<br>113.4(3)<br>109.1(3)<br>116.0(6)                                     |
| $C(16) - C(17) - C(12)$ $118 \cdot 4(3)$ $C(38) - C(43) - C(44)$ $C(16) - C(17) - C(24)$ $119 \cdot 8(3)$ $C(47) - C(46) - C(48)$ $C(12) - C(17) - C(24)$ $121 \cdot 7(3)$ $C(47) - C(46) - C(40)$ $C(13) - C(18) - C(20)$ $112 \cdot 9(3)$ $C(48) - C(46) - C(40)$ $C(13) - C(18) - C(19)$ $111 \cdot 5(3)$ $C(42) - C(49) - C(50)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.5(3)<br>124.4(5)<br>113.8(4)<br>118.2(4)<br>111.1(3)<br>113.4(3)<br>109.1(3)<br>116.0(6)                                                 |
| C(16) - C(17) - C(24) $110.4(3)$ $C(30) - C(43) - C(44)$ $C(16) - C(17) - C(24)$ $119.8(3)$ $C(47) - C(46) - C(48)$ $C(12) - C(17) - C(24)$ $121.7(3)$ $C(47) - C(46) - C(40)$ $C(13) - C(18) - C(20)$ $112.9(3)$ $C(48) - C(46) - C(40)$ $C(13) - C(18) - C(19)$ $111.5(3)$ $C(42) - C(49) - C(50)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.3(3)<br>124.4(5)<br>113.8(4)<br>118.2(4)<br>111.1(3)<br>113.4(3)<br>109.1(3)<br>116.0(6)                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 113.8(4)<br>118.2(4)<br>111.1(3)<br>113.4(3)<br>109.1(3)<br>116.0(6)                                                                         |
| $\begin{array}{c} C(12) - C(17) - C(24) \\ C(13) - C(18) - C(20) \\ C(13) - C(18) - C(19) \\ C(13) -$                                                                                                                                                   | $113.2(4) \\ 118.2(4) \\ 111.1(3) \\ 113.4(3) \\ 109.1(3) \\ 116.0(6)$                                                                       |
| $\begin{array}{c} C(13) - C(13) - C(13) - C(13) \\ C(13) - C(13) - C(19) \\ 111.5(3) \\ C(42) - C(43) - C(50) \\ C(42) - C(50) \\ C(50$ | 110.2(4)<br>111.1(3)<br>113.4(3)<br>109.1(3)<br>116.0(6)                                                                                     |
| $C(13) - C(13) - C(13)$ $111 \cdot S(3)$ $C(42) - C(43) - C(50)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.1(3)<br>113.4(3)<br>109.1(3)<br>116.0(6)                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 113.4(3)<br>109.1(3)<br>116.0(6)                                                                                                             |
| C(20) - C(10) - C(19) $IIU(2(3))$ $C(42) - C(49) - C(51)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.1(3)<br>116 0(6)                                                                                                                         |
| C(22) - C(21) - C(23) $I28.3(5)$ $C(50) - C(49) - C(51)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |
| C(22) - C(21) - C(15) 118.2(5) $C(52) - C(53) - O(5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111 0(5)                                                                                                                                     |
| C(23) - C(21) - C(15) 111.9(5) $O(5) - C(54) - C(55)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111.2(5)                                                                                                                                     |
| C(17) - C(24) - C(25) 113.4(3) $C(56) + 1 - C(56) - C(57)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.9(9)                                                                                                                                     |
| C(17) - C(24) - C(26) 110.3(3) $C(56) - C(57) - C(58)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 104.8(7)                                                                                                                                     |
| C(25)-C(24)-C(26) 110.2(3) $S(2)-N(1)-P(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130.39(17)                                                                                                                                   |
| C(28)-C(27)-O(2) 119.6(3) $O(6)-Na(1)-O(5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.81(12)                                                                                                                                   |
| C(28)-C(27)-C(32) 123.9(3) $O(6)-Na(1)-O(3)#2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91.15(10)                                                                                                                                    |
| O(2)-C(27)-C(32) 116.3(3) $O(5)-Na(1)-O(3)#2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94.28(10)                                                                                                                                    |
| C(27)-C(28)-C(29) 117.7(3) $O(6)-Na(1)-O(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89.25(9)                                                                                                                                     |
| C(27)-C(28)-C(3) 122.0(3) $O(5)-Na(1)-O(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 147.01(12)                                                                                                                                   |
| C(29)-C(28)-C(3) 120.3(3) $O(3)#2-Na(1)-O(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92.41(9)                                                                                                                                     |
| C(33)-C(29)-C(30) 117.3(3) $O(6)-Na(1)-S(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 97.46(8)                                                                                                                                     |
| C(33)-C(29)-C(28) 123.4(3) $O(5)-Na(1)-S(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90.28(8)                                                                                                                                     |
| C(30)-C(29)-C(28) 119.2(3) $O(3)#2-Na(1)-S(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 166.04(9)                                                                                                                                    |
| C(31)-C(30)-C(36) 122.1(3) $O(4)-Na(1)-S(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76.80(6)                                                                                                                                     |
| C(31)-C(30)-C(29) 118.7(3) $C(2)-O(1)-P(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.22(17)                                                                                                                                   |
| C(36)-C(30)-C(29) 119.2(3) $C(27)-O(2)-P(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125.54(17)                                                                                                                                   |
| C(32)-C(31)-C(30) 123.0(3) $S(2)-O(3)-Na(1)#2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 129.96(14)                                                                                                                                   |
| C(31)-C(32)-C(27) 117.0(3) $S(2)-O(4)-Na(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.89(13)                                                                                                                                   |
| C(31)-C(32)-C(37) 121.2(3) $C(53)-O(5)-C(54)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113.7(4)                                                                                                                                     |
| C(27) - C(32) - C(37) 121.8(3) $C(53) - O(5) - Na(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122.7(4)                                                                                                                                     |
| C(34) - C(33) - C(29) 120.8(3) $C(54) - O(5) - Na(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122.3(3)                                                                                                                                     |
| C(33) - C(34) - C(35) 122.0(3) $O(2) - P(1) - N(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105.49(12)                                                                                                                                   |
| C(36) - C(35) - C(34) 119.0(3) $O(2) - P(1) - O(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102.75(10)                                                                                                                                   |
| C(35) - C(36) - C(30) 121.5(3) $N(1) - P(1) - O(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101.83(12)                                                                                                                                   |
| C(42) - C(37) - C(38) 120 3(3) $O(2) - P(1) - S(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107 34(9)                                                                                                                                    |
| C(42) = C(37) = C(32) 119 6(3) $N(1) = D(1) = C(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.09(10)                                                                                                                                   |
| C(32) = C(37) = C(32) 120 0(3) $C(1) = C(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115 40(8)                                                                                                                                    |
| C(30) - C(32) - C(32) 119 1(3) $D(1) - S(1) - Na(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 68(5)                                                                                                                                    |
| C(30) - C(30) - C(31) 119 $C(3)$ $C(30) - C(30) - C(30)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 115 08(14)                                                                                                                                   |
| C(37) - C(38) - C(43) 121 9(3) $C(37) - C(38) - C(47)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111 69(15)                                                                                                                                   |
| C(A0) = C(20) = C(20) 122. $C(3)$ $C(3) = C(2) = V(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116 02(11)                                                                                                                                   |
| C(10) = C(30) = C(30) = 122.0(3) = O(1) = O(2) = C(1) = O(2) =                                                                                                                                                                                                                                                                      | 102 2/21                                                                                                                                     |
| $C(32) = C(10) = C(11) \qquad 111.3(3) \qquad O(3) = S(2) = C(1) \\ C(20) = C(40) = C(46) \qquad 121.0(4) \qquad O(4) = C(2) = C(1) \\ C(32) = C(10) = C(11) \\ C(40) = C(10) = C(11) \\ C(40) = C(11) \\ C(11) \\ C(11) = C(11) \\ C(11$                                                                                                                     | 102 6(2)                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101 10(17)                                                                                                                                   |
| C(41) - C(40) - C(40) = 120.7(4) = N(1) - S(2) - C(1)<br>C(40) = C(40) = 120.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104.19(1/)                                                                                                                                   |
| (40) - (41) - (42) = 122.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                              |

Table 4. Anisotropic displacement parameters  $[\text{\AA}^2 \times 10^3]$  for Chch03. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[\text{h}^2a^{*2}U_{11}+\ldots+2\text{hka}^*b^*U_{12}]$ 

|                | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub>  | U <sub>13</sub>  | U <sub>12</sub>     |
|----------------|-----------------|-----------------|-----------------|------------------|------------------|---------------------|
| C(1)           | 61(3)           | 92(4)           | 122(4)          | -55(3)           | 10(3)            | -26(3)              |
| C(2)           | 36(2)           | 47(2)           | 52(2)           | -26(2)           | -10(2)           | -1(1)               |
| C(3)           | 44(2)           | 40(2)           | 45(2)           | -21(2)           | -10(2)           | -3(1)               |
| C(4)           | 40(2)           | 46(2)           | 54(2)           | -24(2)           | -11(2)           | -3(1)               |
| C(5)           | 49(Z)<br>61(2)  | 52(2)<br>60(2)  | $0 \perp (2)$   | -20(2)           | -21(2)           | $\perp (2)$<br>1(2) |
| C(0)           | 45(2)           | 48(2)           | 49(2)           | -25(2)           | -20(2)           | $\Gamma(2)$         |
| C(8)           | 42(2)           | 59(2)           | 62(2)           | -23(2)           | -14(2)           | -5(2)               |
| C(9)           | 43(2)           | 76(3)           | 79(3)           | -27(2)           | -11(2)           | -13(2)              |
| C(10)          | 55(2)           | 86(3)           | 98(3)           | -36(2)           | -36(2)           | -9(2)               |
| C(11)          | 58(2)           | 78(3)           | 74(3)           | -32(2)           | -27(2)           | -7(2)               |
| C(12)          | 53(2)           | 61(2)           | 44(2)           | -28(2)           | -3(2)            | -9(2)               |
| C(13)          | 71(2)           | 65(2)           | 47(2)           | -26(2)           | -10(2)           | -6(2)               |
| C(14)          | 105(3)          | 85(3)           | 47(2)           | -23(2)           | -3(2)            | -23(3)              |
| C(15)          | 88(3)           | 101(3)          | 67(3)           | -47(3)           | 19(2)            | -24(3)              |
| C(16)          | 63(2)           | 92(3)           | 71(3)           | -44(3)           | 7(2)             | -7(2)               |
| C(17)          | 53(2)           | 74(Z)<br>70(2)  | 59(Z)<br>51(2)  | -40(2)           | -4(Z)<br>01(0)   | -0(2)               |
| C(10)<br>C(19) | 123(4)          | 123(4)          | 31(2)<br>83(3)  | -20(2)<br>-43(3) | -21(2)<br>-52(3) | 22(3)               |
| C(20)          | 125(4)          | 63(3)           | 75(3)           | -14(2)           | -18(3)           | 22(3)               |
| C(21)          | 153(5)          | 166(5)          | 90(4)           | -70(4)           | 72(3)            | -90(4)              |
| C(22)          | 217(8)          | 184(7)          | 209(8)          | -88(6)           | 148(6)           | -96(6)              |
| C(23)          | 145(5)          | 296(9)          | 91(4)           | -102(5)          | 46(4)            | -34(5)              |
| C(24)          | 62(2)           | 66(2)           | 68(2)           | -33(2)           | -11(2)           | 10(2)               |
| C(25)          | 70(3)           | 134(4)          | 123(4)          | -40(3)           | -31(3)           | 23(3)               |
| C(26)          | 131(4)          | 79(3)           | 141(4)          | -43(3)           | -42(3)           | -12(3)              |
| C(27)          | 37(2)           | 44(2)           | 45(2)           | -16(2)           | -4(1)            | -3(1)               |
| C(28)          | 36(2)           | 45(2)           | 45(2)           | -19(2)           | -4(1)            | -6(1)               |
| C(29)          | 36(Z)<br>45(2)  | 48(Z)<br>55(2)  | 52(2)           | -1/(2)<br>-15(2) | -7(2)            | -8(1)<br>-9(2)      |
| C(30)          | 55(2)           | 55(2)<br>67(2)  | 43(2)           | -19(2)           | -12(2)           | -9(2)               |
| C(32)          | 41(2)           | 49(2)           | 43(2)           | -19(2)           | -5(1)            | -3(1)               |
| C(33)          | 52(2)           | 53(2)           | 62(2)           | -21(2)           | -18(2)           | -8(2)               |
| C(34)          | 78(3)           | 52(2)           | 86(3)           | -21(2)           | -37(2)           | -12(2)              |
| C(35)          | 85(3)           | 50(2)           | 90(3)           | -7(2)            | -40(2)           | -14(2)              |
| C(36)          | 73(2)           | 63(2)           | 60(2)           | -4(2)            | -23(2)           | -15(2)              |
| C(37)          | 53(2)           | 55(2)           | 41(2)           | -20(2)           | -9(2)            | -8(2)               |
| C(38)          | 64(2)           | 62(2)           | 51(2)           | -29(2)           | -3(2)            | -10(2)              |
| C(39)          | 78(3)           | 68(2)           | 63(2)           | -38(2)           | -1(2)            | -7(2)               |
| C(40)          | 94(3)           | /6(3)           | 59(Z)<br>69(2)  | -40(2)           | -10(2)           | -20(2)              |
| C(41)<br>C(42) | 63(2)           | 62(2)           | 55(2)           | -25(2)           | -27(2)<br>-16(2) | -14(2)              |
| C(43)          | 59(2)           | 86(3)           | 89(3)           | -54(2)           | -7(2)            | 5(2)                |
| C(44)          | 101(4)          | 97(4)           | 218(6)          | -61(4)           | -78(4)           | 32(3)               |
| C(45)          | 80(3)           | 223(6)          | 123(4)          | -100(4)          | 29(3)            | -39(4)              |
| C(46)          | 172(5)          | 114(4)          | 82(3)           | -65(3)           | -14(3)           | -50(3)              |
| C(47)          | 306(9)          | 177(6)          | 91(4)           | -57(4)           | -48(5)           | -114(6)             |
| C(48)          | 297(9)          | 217(7)          | 122(5)          | -107(5)          | 60(5)            | -189(7)             |
| C(49)          | 58(2)           | 67(2)           | 90(3)           | -35(2)           | -26(2)           | 1(2)                |
| C(50)          | $\pm 00(4)$     | 84(3)           | ⊥3⊥(4)          | -16(3)           | -39(3)           | TO(3)               |
| C(ST)          | 00(3)           | 10(3)           | TUA(3)          | -42(Z)           | -22(2)           | -3(2)               |

| C(52) | 133(6)  | 229(8) | 133(6)  | 38(6)    | 49(5)   | 68(5)  |
|-------|---------|--------|---------|----------|---------|--------|
| C(53) | 88(4)   | 182(7) | 190(7)  | -70(6)   | -13(5)  | 38(4)  |
| C(54) | 171(6)  | 221(8) | 146(6)  | -97(6)   | -73(5)  | 96(6)  |
| C(55) | 222(7)  | 122(4) | 112(4)  | -41(4)   | -57(5)  | -33(5) |
| C(56) | 132(5)  | 153(5) | 135(5)  | -68(6)   | -49(5)  | 17(4)  |
| C(57) | 265(10) | 205(9) | 154(7)  | -69(7)   | -3(7)   | -86(8) |
| C(58) | 236(11) | 197(9) | 386(17) | -113(11) | -47(11) | -10(8) |
| F(1)  | 103(2)  | 97(2)  | 212(3)  | -83(2)   | -16(2)  | 16(2)  |
| F(2)  | 115(2)  | 141(2) | 108(2)  | -83(2)   | 15(2)   | -39(2) |
| F(3)  | 79(2)   | 150(2) | 182(3)  | -97(2)   | 41(2)   | -40(2) |
| N(1)  | 53(2)   | 52(2)  | 59(2)   | -18(1)   | -16(1)  | -15(1) |
| Na(1) | 58(1)   | 60(1)  | 74(1)   | -23(1)   | -18(1)  | -10(1) |
| 0(1)  | 38(1)   | 53(1)  | 45(1)   | -21(1)   | -5(1)   | -11(1) |
| 0(2)  | 52(1)   | 44(1)  | 46(1)   | -21(1)   | -7(1)   | -6(1)  |
| 0(3)  | 62(2)   | 71(2)  | 104(2)  | -22(1)   | -37(1)  | -20(1) |
| 0(4)  | 56(1)   | 57(1)  | 67(2)   | -18(1)   | -8(1)   | -20(1) |
| 0(5)  | 72(2)   | 74(2)  | 114(2)  | -30(2)   | -29(2)  | 3(2)   |
| 0(6)  | 85(2)   | 91(2)  | 74(2)   | -28(2)   | -15(1)  | -20(2) |
| P(1)  | 48(1)   | 49(1)  | 47(1)   | -20(1)   | -9(1)   | -11(1) |
| S(1)  | 65(1)   | 55(1)  | 60(1)   | -18(1)   | -22(1)  | -10(1) |
| S(2)  | 50(1)   | 58(1)  | 73(1)   | -28(1)   | -12(1)  | -13(1) |
|       |         |        |         |          |         |        |

|                  | Х            | У     | Z            | U(eq)      |  |
|------------------|--------------|-------|--------------|------------|--|
| н(б)             | 8448         | 8186  | 6694         | 65         |  |
| H(8)             | 10317        | 9131  | 3217         | 65         |  |
| H(9)             | 11839        | 9386  | 3457         | 80         |  |
| H(10)            | 11854        | 9151  | 4890         | 89         |  |
| H(11)            | 10341        | 8656  | 6088         | 79         |  |
| H(14)            | 5823         | 6130  | 8779         | 99         |  |
| H(16)            | 4149         | 8369  | 7820         | 94         |  |
| H(18)            | 8118         | 6430  | 6820         | 83         |  |
| H(19A)           | 8581         | 6827  | 7833         | 159        |  |
| H(19B)           | 9007         | 5838  | 7928         | 159        |  |
| H(19C)           | 7925         | 6043  | 8645         | 159        |  |
| H(20A)           | 6955         | 5083  | 8343         | 144        |  |
| H(20B)           | 7994         | 4946  | 7556         | 144        |  |
| H(20C)           | 6842         | 5335  | 7373         | 144        |  |
| H(22A)           | 3732         | 5826  | 9921         | 366        |  |
| H(22B)           | 3508         | 6176  | 8978         | 366        |  |
| H(22C)           | 2630         | 6407  | 9794         | 366        |  |
| H(23A)           | 3827         | 8117  | 9454         | 279        |  |
| H(23B)           | 44/9         | /332  | 10032        | 279        |  |
| H(23C)           | 3167         | /3//  | 10322        | 279        |  |
| H(24)<br>H(25)   | 5987         | 9099  | 5009         | 80<br>170  |  |
| H(25A)           | 4073         | 0002  | 6110<br>5720 | 172<br>172 |  |
| H(256)           | 4337         | 9995  | 6797         | 172        |  |
| H(26A)           | 5580         | 9880  | 6976         | 172        |  |
| H(26B)           | 5984         | 10387 | 5925         | 172        |  |
| H(26C)           | 6775         | 9644  | 6399         | 172        |  |
| H(31)            | 8017         | 9487  | 1221         | 66         |  |
| н(33)            | 8504         | 10270 | 3782         | 65         |  |
| н(34)            | 8687         | 11678 | 2799         | 82         |  |
| H(35)            | 8680         | 12053 | 1342         | 90         |  |
| H(36)            | 8399         | 11002 | 886          | 83         |  |
| Н(39)            | 8428         | 6180  | 1497         | 84         |  |
| H(41)            | 5433         | 7395  | 1730         | 86         |  |
| H(43)            | 9490         | 7554  | 2159         | 91         |  |
| H(44A)           | 9673         | 5771  | 2301         | 202        |  |
| H(44B)           | 9187         | 6095  | 3130         | 202        |  |
| H(44C)           | 10453        | 6195  | 2561         | 202        |  |
| H(45A)           | 10086        | 6961  | 700          | 213        |  |
| H(45B)           | 10974        | 7189  | 1023         | 213        |  |
| H(45C)           | 10120        | 7937  | 639          | 213        |  |
| H(46)            | /123         | 5560  | 1448         | 136        |  |
| п(4/А)<br>п(47в) | 0899<br>7560 | 5005  | 3U3<br>1 E 2 | 205<br>265 |  |
| п(ч/В)<br>ц(47С) | 6301         | 6620  | 155<br>167   | 200<br>265 |  |
| н(ч/с)<br>н(48л) | 5152         | 5511  | 1617         | 300        |  |
| H(48R)           | 5284         | 5746  | 2396         | 309        |  |
| H(48C)           | 5955         | 4911  | 2179         | 309        |  |
| H(49)            | 5841         | 8908  | 2581         | 83         |  |
| H(50A)           | 6261         | 9628  | 1037         | 169        |  |
| H(50B)           | 5014         | 9872  | 1516         | 169        |  |
| H(50C)           | 5286         | 9185  | 1020         | 169        |  |
| H(51A)           | 3967         | 8811  | 2970         | 124        |  |

Table 5. Hydrogen coordinates [ x  $10^4$  ] and isotropic displacement parameters [Å  $^2$  x  $10^3$  ] for Chch03.

| H(51B) | 4482  | 7832 | 3302 | 124 |
|--------|-------|------|------|-----|
| H(51C) | 4126  | 8194 | 2414 | 124 |
| H(52A) | 8807  | 3785 | 3961 | 352 |
| H(52B) | 10049 | 3945 | 3803 | 352 |
| H(52C) | 9072  | 4603 | 4110 | 352 |
| H(53A) | 9848  | 3584 | 5139 | 200 |
| H(53B) | 9208  | 2894 | 5079 | 200 |
| H(54A) | 8807  | 3126 | 6682 | 214 |
| H(54B) | 8089  | 2523 | 6567 | 214 |
| H(55A) | 7238  | 3968 | 7082 | 221 |
| H(55B) | 7165  | 2975 | 7745 | 221 |
| H(55C) | 6535  | 3325 | 7008 | 221 |
| H(56A) | -284  | 5058 | 9277 | 163 |
| Н(56В) | 907   | 4750 | 9416 | 163 |
| H(57A) | 931   | 6111 | 9551 | 255 |
| H(57B) | -190  | 6414 | 9281 | 255 |
| H(58A) | 1875  | 5933 | 8223 | 424 |
| H(58B) | 1176  | 6843 | 7956 | 424 |
| H(58C) | 769   | 5980 | 7992 | 424 |
|        |       |      |      |     |

| O(1) - C(2) - C(3) - C(4)                          | -172.2(2)   | C(33) - C(29) - C(30) - C(31)        | -174.5(3)        |
|----------------------------------------------------|-------------|--------------------------------------|------------------|
| C(7) = C(2) = C(3) = C(4)                          | 10 3 (4)    | C(28) - C(29) - C(30) - C(31)        | 4 1 (4)          |
| C(7) C(2) C(3) C(1)                                | 10.3(1)     | C(20) C(20) C(30) C(31)              | 1.1(1)           |
| O(1) - C(2) - C(3) - C(28)                         | 10.3(4)     | C(33) - C(29) - C(30) - C(36)        | 3.6(4)           |
| C(7) - C(2) - C(3) - C(28)                         | -167.2(3)   | C(28)-C(29)-C(30)-C(36)              | -177.8(3)        |
| C(2) - C(3) - C(4) - C(8)                          | 170.2(3)    | C(36) - C(30) - C(31) - C(32)        | -175.7(3)        |
| a(29) a(3) a(4) a(9)                               | 10.2(3)     | a(20) $a(20)$ $a(21)$ $a(22)$        | 2,3 <b>1</b> (5) |
| C(20) - C(3) - C(4) - C(0)                         | -12.3(4)    | C(29) - C(30) - C(31) - C(32)        | 2.4(5)           |
| C(2) - C(3) - C(4) - C(5)                          | -6.7(4)     | C(30)-C(31)-C(32)-C(27)              | -4.4(4)          |
| C(28) - C(3) - C(4) - C(5)                         | 170.8(3)    | C(30) - C(31) - C(32) - C(37)        | 175.2(3)         |
| C(8) = C(4) = C(5) = C(6)                          | -178 1(3)   | C(28) = C(27) = C(32) = C(31)        | -0.2(4)          |
| C(0) - C(4) - C(5) - C(0)                          | -1/0.1(3)   | C(20) = C(21) = C(32) = C(31)        | -0.2(4)          |
| C(3) - C(4) - C(5) - C(6)                          | -1.1(4)     | O(2) - C(27) - C(32) - C(31)         | -173.8(2)        |
| C(8) - C(4) - C(5) - C(11)                         | 3.3(4)      | C(28)-C(27)-C(32)-C(37)              | -179.7(3)        |
| C(3) - C(4) - C(5) - C(11)                         | -1797(3)    | O(2) - C(27) - C(32) - C(37)         | 6.7(4)           |
| a(11) a(5) a(6) a(7)                               | 175 0(0)    | a(20) a(20) a(22) a(24)              | 22(4)            |
| C(11) - C(5) - C(6) - C(7)                         | -1/5.2(3)   | C(30) - C(29) - C(33) - C(34)        | -2.3(4)          |
| C(4) - C(5) - C(6) - C(7)                          | 6.2(5)      | C(28)-C(29)-C(33)-C(34)              | 179.1(3)         |
| C(5) - C(6) - C(7) - C(2)                          | -3.1(4)     | C(29)-C(33)-C(34)-C(35)              | -0.4(5)          |
| C(5) = C(6) = C(7) = C(12)                         | -1785(3)    | C(33) = C(34) = C(35) = C(36)        | 1 9(6)           |
| C(3) - C(0) - C(7) - C(12)                         | -1/0.5(3)   | C(33) - C(34) - C(33) - C(30)        | 1.9(0)           |
| C(3) - C(2) - C(7) - C(6)                          | -5.5(4)     | C(34) - C(35) - C(36) - C(30)        | -0.5(5)          |
| O(1) - C(2) - C(7) - C(6)                          | 177.1(2)    | C(31)-C(30)-C(36)-C(35)              | 175.8(3)         |
| C(3) - C(2) - C(7) - C(12)                         | 169.7(3)    | C(29) - C(30) - C(36) - C(35)        | -2.2(5)          |
| O(1)  O(2)  O(7)  O(12)                            | 7 9 ( 1 )   | C(21) - C(22) - C(27) - C(42)        |                  |
| O(1) - C(2) - C(7) - C(12)                         | -7.8(4)     | C(31) - C(32) - C(37) - C(42)        | 105 0(2)         |
| C(5) - C(4) - C(8) - C(9)                          | -2.2(4)     | C(27) - C(32) - C(37) - C(42)        | 105.8(3)         |
| C(3) - C(4) - C(8) - C(9)                          | -179.1(3)   | C(31)-C(32)-C(37)-C(38)              | 105.2(4)         |
| C(4) - C(8) - C(9) - C(10)                         | 0.3(5)      | C(27)-C(32)-C(37)-C(38)              | -75.3(4)         |
| C(8) = C(9) = C(10) = C(11)                        | 0 5(6)      | C(42) = C(37) = C(38) = C(39)        | -0.2(5)          |
|                                                    | 0.5(0)      | C(12) C(37) C(30) C(39)              | 170 1(2)         |
| C(9) - C(10) - C(11) - C(5)                        | 0.7(6)      | C(32) - C(37) - C(38) - C(39)        | -179.1(3)        |
| C(6)-C(5)-C(11)-C(10)                              | 178.8(3)    | C(42)-C(37)-C(38)-C(43)              | 176.4(3)         |
| C(4) - C(5) - C(11) - C(10)                        | -2.6(5)     | C(32)-C(37)-C(38)-C(43)              | -2.5(5)          |
| C(6) - C(7) - C(12) - C(13)                        | -687(4)     | C(37) - C(38) - C(39) - C(40)        | -1 4(5)          |
| C(0) C(7) C(12) C(13)                              | 116 2(4)    | a(42) $a(22)$ $a(20)$ $a(40)$        | 170 1(3)         |
| C(2) - C(7) - C(12) - C(13)                        | 110.3(4)    | C(43) - C(30) - C(39) - C(40)        | -1/0.1(3)        |
| C(6) - C(7) - C(12) - C(17)                        | 105.4(3)    | C(38)-C(39)-C(40)-C(41)              | 2.3(5)           |
| C(2)-C(7)-C(12)-C(17)                              | -69.6(4)    | C(38)-C(39)-C(40)-C(46)              | -178.5(3)        |
| C(17)-C(12)-C(13)-C(14)                            | -1.2(5)     | C(39) - C(40) - C(41) - C(42)        | -1.8(5)          |
| C(7) = C(12) = C(13) = C(14)                       | 172 8(3)    | C(46) = C(40) = C(41) = C(42)        | 179 0(3)         |
| C(17) C(12) C(13) C(11)                            | 170.4(2)    | C(10) C(10) C(11) C(12)              | 1/2:0(5)         |
| C(17) - C(12) - C(13) - C(18)                      | 1/8.4(3)    | C(38) - C(37) - C(42) - C(41)        | 0.6(5)           |
| C(7)-C(12)-C(13)-C(18)                             | -7.5(5)     | C(32)-C(37)-C(42)-C(41)              | 179.5(3)         |
| C(12)-C(13)-C(14)-C(15)                            | 0.4(5)      | C(38) - C(37) - C(42) - C(49)        | -178.6(3)        |
| C(18) - C(13) - C(14) - C(15)                      | -1792(4)    | C(32) - C(37) - C(42) - C(49)        | 0 3 (5)          |
| C(10) C(13) C(11) C(13)                            |             | C(32) C(37) C(12) C(13)              | 0.3(5)           |
| C(13) - C(14) - C(15) - C(16)                      | 0.0(0)      | C(40) - C(41) - C(42) - C(37)        | 0.4(5)           |
| C(13)-C(14)-C(15)-C(21)                            | -179.5(4)   | C(40)-C(41)-C(42)-C(49)              | 179.6(3)         |
| C(14)-C(15)-C(16)-C(17)                            | -0.8(6)     | C(39) - C(38) - C(43) - C(45)        | 65.5(5)          |
| C(21) - C(15) - C(16) - C(17)                      | $179\ 2(4)$ | C(37) - C(38) - C(43) - C(45)        | -1112(4)         |
| Q(1E) Q(16) Q(17) Q(12)                            | 0 1 (6)     | a(20) $a(20)$ $a(42)$ $a(44)$        |                  |
| C(15) - C(16) - C(17) - C(12)                      | 0.1(8)      | C(39) - C(30) - C(43) - C(44)        | -50.7(4)         |
| C(15) - C(16) - C(17) - C(24)                      | -176.6(4)   | C(37) - C(38) - C(43) - C(44)        | 124.7(4)         |
| C(13)-C(12)-C(17)-C(16)                            | 1.0(5)      | C(39)-C(40)-C(46)-C(47)              | -81.2(6)         |
| C(7) - C(12) - C(17) - C(16)                       | -173.2(3)   | C(41) - C(40) - C(46) - C(47)        | 98.0(6)          |
| C(13) - C(12) - C(17) - C(24)                      | 177 6(3)    | C(39) = C(40) = C(46) = C(48)        | 119 2(6)         |
|                                                    | 177.0(3)    | C(33) - C(40) - C(40) - C(40)        | 119.2(0)         |
| C(7) - C(12) - C(17) - C(24)                       | 3.3(4)      | C(41) - C(40) - C(46) - C(48)        | -61.6(7)         |
| C(12)-C(13)-C(18)-C(20)                            | -130.2(3)   | C(37)-C(42)-C(49)-C(50)              | 99.5(4)          |
| C(14)-C(13)-C(18)-C(20)                            | 49.5(4)     | C(41) - C(42) - C(49) - C(50)        | -79.7(4)         |
| C(12) - C(13) - C(18) - C(19)                      | 105 2(4)    | C(37) - C(42) - C(49) - C(51)        | -1372(3)         |
| C(14) = C(12) = C(10) = C(10)                      | -75 0(4)    | C(A1) = C(A2) = C(A2) = C(A1)        | 12 6/11          |
| C(1+1) = C(1+3) = C(1+0) = C(1+3)                  | -/5.2(4)    | C(41) - C(42) - C(43) - C(31)        | HJ.0(4)          |
| C(16) - C(15) - C(21) - C(22)                      | 119.5(8)    | C(50) # - C(50) - C(57) - C(58)      | 1/2.4(8)         |
| C(14)-C(15)-C(21)-C(22)                            | -60.4(9)    | C(3)-C(2)-O(1)-P(1)                  | 71.8(3)          |
| C(16) - C(15) - C(21) - C(23)                      | -73.7(7)    | C(7)-C(2)-O(1)-P(1)                  | -110.5(2)        |
| C(14) - C(15) - C(21) - C(23)                      | 106 3(6)    | C(28) - C(27) - O(2) - P(1)          | 63 1 (3)         |
| a(16) a(17) a(24) a(25)                            |             | C(20) C(21) - O(2) - F(1)            |                  |
| C(16) - C(17) - C(24) - C(25)                      | -34.2(5)    | C(32) - C(27) - O(2) - P(1)          | -123.0(2)        |
| C(12)-C(17)-C(24)-C(25)                            | 149.3(3)    | O(6)-Na(1)-O(4)-S(2)                 | -25.69(15)       |
| C(16)-C(17)-C(24)-C(26)                            | 90.0(4)     | O(5)-Na(1)-O(4)-S(2)                 | 141.53(17)       |
| C(12) - C(17) - C(24) - C(26)                      | -865(4)     | O(3) # 2 - Na(1) - O(4) - S(2)       | -116 81(15)      |
| O(2) = O(27) O(20) O(20)                           | 170 0/01    | $S(1) = N_2(1) = O(4) = O(2)$        | 70 10/1/1        |
| (2) = (2) = (2) = (2) = (2)                        | 1/2.8(2)    | S(1) = Ma(1) = O(4) = S(2)           | /2.13(14)        |
| C(32) - C(27) - C(28) - C(29)                      | 6.4(4)      | C(52)-C(53)-O(5)-C(54)               | 175.0(7)         |
| O(2)-C(27)-C(28)-C(3)                              | -3.8(4)     | C(52)-C(53)-O(5)-Na(1)               | 7.8(9)           |
| C(32) - C(27) - C(28) - C(3)                       | -177.1(3)   | C(55) - C(54) - O(5) - C(53)         | 177.7(5)         |
| C(2) - C(3) - C(28) - C(27)                        | -521(4)     | C(55) - C(54) - O(5) - Na(1)         | -15 0(8)         |
| a(4) a(2) a(20) a(27)                              |             | $O(6)$ No(1) $O(5)^{-1}O(5)$         | 10.0(0)          |
| $C(\frac{1}{2}) = C(\frac{1}{2}) = C(\frac{1}{2})$ | 100.0(3)    | O(0) = IVa(1) = O(0) = C(03)         | 0.0(4)           |
| C(2)-C(3)-C(28)-C(29)                              | 124.3(3)    | O(3)#2−Na(1)−O(5)−C(53)              | 94.1(4)          |
| C(4) - C(3) - C(28) - C(29)                        | -53.1(4)    | O(4)-Na(1)-O(5)-C(53)                | -164.8(4)        |
| C(27) - C(28) - C(29) - C(33)                      | 170.3(3)    | S(1) - Na(1) - O(5) - C(53)          | -99.1(4)         |
| C(3) - C(28) - C(29) - C(23)                       | -6 2(4)     | O(6) - Na(1) - O(5) - C(54)          | -166 1(4)        |
| a(27) = a(28) = a(29) = a(29)                      |             | $O(3) + 2$ $M_{O}(1) = O(3) - O(34)$ |                  |
| C(27) - C(28) - C(29) - C(30)                      | -8.2(4)     | $U(3)_{\#2} - Na(1) - U(5) - C(54)$  | -/2.0(4)         |
| C(3) - C(28) - C(29) - C(30)                       | 175.3(3)    | O(4) - Na(1) - O(5) - C(54)          | 29.2(5)          |

| S(1)-Na(1)-O(5)-C(54)      | 94.8(4)     |
|----------------------------|-------------|
| C(27) - O(2) - P(1) - N(1) | 82.2(2)     |
| C(27)-O(2)-P(1)-O(1)       | -24.1(2)    |
| C(27) - O(2) - P(1) - S(1) | -146.2(2)   |
| S(2) - N(1) - P(1) - O(2)  | 149.4(2)    |
| S(2)-N(1)-P(1)-O(1)        | -103.6(2)   |
| S(2)-N(1)-P(1)-S(1)        | 26.8(3)     |
| C(2) - O(1) - P(1) - O(2)  | -63.1(2)    |
| C(2) - O(1) - P(1) - N(1)  | -172.21(19) |
| C(2) - O(1) - P(1) - S(1)  | 53.3(2)     |
| O(2)-P(1)-S(1)-Na(1)       | -96.54(8)   |
| N(1)-P(1)-S(1)-Na(1)       | 25.19(13)   |
| O(1)-P(1)-S(1)-Na(1)       | 149.62(8)   |
| O(6)-Na(1)-S(1)-P(1)       | 36.23(9)    |
| O(5)-Na(1)-S(1)-P(1)       | 159.41(9)   |
| O(3)#2-Na(1)-S(1)-P(1)     | -91.4(3)    |
| O(4)-Na(1)-S(1)-P(1)       | -51.23(7)   |
| Na(1)#2-O(3)-S(2)-O(4)     | 14.0(2)     |
| Na(1)#2-O(3)-S(2)-N(1)     | 150.40(17)  |
| Na(1)#2-O(3)-S(2)-C(1)     | -98.2(2)    |
| Na(1)-O(4)-S(2)-O(3)       | 91.53(17)   |
| Na(1)-O(4)-S(2)-N(1)       | -42.5(2)    |
| Na(1)-O(4)-S(2)-C(1)       | -156.44(19) |
| P(1)-N(1)-S(2)-O(3)        | -161.8(2)   |
| P(1)-N(1)-S(2)-O(4)        | -26.3(3)    |
| P(1)-N(1)-S(2)-C(1)        | 87.3(3)     |
| F(2)-C(1)-S(2)-O(3)        | 178.9(3)    |
| F(3)-C(1)-S(2)-O(3)        | 59.3(4)     |
| F(1)-C(1)-S(2)-O(3)        | -60.2(3)    |
| F(2)-C(1)-S(2)-O(4)        | 58.5(4)     |
| F(3)-C(1)-S(2)-O(4)        | -61.1(4)    |
| F(1)-C(1)-S(2)-O(4)        | 179.4(3)    |
| F(2)-C(1)-S(2)-N(1)        | -64.3(4)    |
| F(3)-C(1)-S(2)-N(1)        | 176.1(4)    |
| F(1)-C(1)-S(2)-N(1)        | 56.7(4)     |

|        |         | Current I<br>NAME<br>EXPNO<br>PROCNO                                     | Data Parameters<br>6Ph<br>1<br>1                                                                                              |
|--------|---------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 0,     |         | F2 - Acq<br>Date<br>Time<br>INSTRUM<br>PROBHD                            | uisition Parameters<br>20080210<br>23.33<br>spemt<br>5 mm QNP 1H                                                              |
|        |         | TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE | 40076<br>40076<br>CCC13<br>15<br>0<br>8012.820 Hz<br>0.166670 Hz<br>2.999924 sec<br>64<br>62.400 usec<br>4.50 usec<br>300.0 K |
|        |         | D1<br>NUC1<br>P1<br>PL1<br>SE01                                          | 3.0000000 sec<br>==== CHANNEL f1 ======<br>1H<br>9.50 usec,<br>0.00 dB<br>500 1325006 MHz                                     |
|        |         | F2 - Pro<br>SI<br>SF<br>WDW<br>SS8<br>LB<br>GB<br>PC                     | cessing parameters<br>65536<br>500.1300191 MHz<br>EM<br>0<br>0.30 Hz<br>0<br>1.00                                             |
| ,<br>1 | k and h | 1D NMR p<br>CX<br>F1P<br>F1<br>F2P<br>F2<br>PPMCM<br>HZCM                | lot parameters<br>20.00 cm<br>10.000 ppm<br>5001.30 Hz<br>-1.000 ppm<br>-500.13 Hz<br>0.55000 ppm(r<br>275.07150 Hz/cm        |





|     |         |          | Current Da<br>NAME<br>EXPND<br>PROCNO | ata Parameters<br>4C1-sub<br>1<br>1 |
|-----|---------|----------|---------------------------------------|-------------------------------------|
|     |         |          | F2 - Acous                            | isition Parameters                  |
|     |         |          | Date                                  | 20080201                            |
|     |         |          | Time                                  | 22 32                               |
|     |         |          | INSTRUM                               | spect                               |
|     |         |          | PROBHD                                | 5 mm BBT 1H-BB                      |
|     | U [^ I] |          | PULPBOS                               | 70                                  |
|     |         |          | TD                                    | 45044                               |
|     | $\sim$  |          | COL VENT                              | 00013                               |
|     | í Í ľ   |          | NC                                    | 8                                   |
|     |         |          | NS DE                                 | 0                                   |
|     |         |          | DS                                    | 7507 507 147                        |
|     | •       |          | 510050                                | 0 466674 Hz                         |
|     |         |          | FIDRES                                | U.1666/1 HZ                         |
|     | 7d      |          | AU                                    | 2.9999004 Sec                       |
|     |         |          | HG                                    | 90.5                                |
|     |         |          | UW                                    | 66.600 USEC                         |
|     |         |          | UE                                    | 4.50 USEC                           |
|     |         |          | IE                                    | 300.0 K                             |
|     |         |          | Ul                                    | 1.0000000 Sec                       |
|     |         |          |                                       | CHANNEL f1 ======                   |
|     |         |          | NUC1                                  | 1H                                  |
|     |         |          | P1                                    | 5.80 usec                           |
|     |         |          | PL1                                   | 0.00 dB                             |
|     |         |          | SF01                                  | 499.8779993 MHz                     |
|     |         |          | F2 - Proc                             | essing parameters                   |
|     |         |          | SI                                    | 32768                               |
| ¥ 1 |         |          | SF                                    | 499.8750146 MHz                     |
|     |         |          | WDW                                   | EM                                  |
|     |         |          | SSB                                   | 0                                   |
| 11  |         |          | LB                                    | 0.30 Hz                             |
|     |         |          | GB                                    | 0                                   |
|     |         |          | PC                                    | 1.00                                |
| 11  |         |          | 1D NMA pl                             | ot parameters                       |
| 11  |         |          | CX                                    | 20.00 cm                            |
| 11  |         |          | CY                                    | 2.00 cm                             |
| 11  |         |          | F1P                                   | 10.000 ppm                          |
| 11  |         | . 1      | F1                                    | 4998.75 Hz                          |
| 11  |         |          | F2P                                   | -1.000 ppm                          |
| 11  | 1       |          | F2                                    | -499.87 Hz                          |
| 11  | 1       | 4 4 6 6  | PPMCM                                 | 0.55000 ppm/cm                      |
|     | 1       | ALA LA . | HZCM                                  | 274.93124 Hz/cm                     |
|     |         |          |                                       | 2                                   |











