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Supplemental Experimental Procedures 

ZZ-exchange 

 To improve the precision in determination of kinetic rate constants a quadratic 

approximation to a ratio of cross-peak and auto-peak amplitudes is used. The major 

advantage of this approach is that differences in R1 relaxation rate constants during the 

mixing period, transfer efficiency differences during the preparation period, and 

linewidth differences during the detection period, of the ZZ-exchange experiment are 

suppressed. The ratio does not depend on initial intensities of individual states and hence 

lends itself to global fitting of multiple residues. Individual forward and reverse rate 

constants are obtained by supplying relative populations, obtained from a fully relaxed 

HSQC experiment. 

The general description for the evolution for the auto and cross – peaks under R′ 

is decomposed, 
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In the above k1 and k-1 are the forward and reverse kinetic rate constants, respectively, 

and px are the R1 relaxation rate constants for site X. The characteristic rate for the 

reaction, kex is the sum of forward and reverse rates. Expansion to second order,  
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leads to the following evolutions under R* for the individual resonances, 
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The products of auto and cross – peak resonances to second order, 
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motivate the ratio Ξ(t), where all the factors of the full expression containing e–Dt cancel, 
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Alternatively, the exact ratio is given by, 
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Series expansion shows that Ξ(t) does not depend on state specific R1 relaxation rates up 

to third order in time. Transfer efficiency differences between individual states are 

cancelled by the ratio, thus removing a source of error in systems which have significant 

state specific differences in R2. 



 The specific case of the monomer dimer equilibrium obeys the following 

differential equations, where the factors of two account for transfer of 2 spins / molecule 

between each state (given 100 % isotopic labeling). The amplitude of the resonance 

representing transfer from state X to state Y is aYX(t), the kinetic on-rate and off-rate are 

kon and koff respectively, and [M] is the equilibrium monomer concentration.  
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The quadratic ratio expression is, 
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