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The nucleotide sequence of polymerase 1 (P1) gene of a human influenza virus
(A/WSN/33) has been determined by using cDNA clones, except for the last 83
nucleotides, which were obtained by primer extension. The WSN P1 gene
contains 2,341 nucleotides and codes for a protein of 757 amino acids (M, =
86,500). P1 gene possesses a striking tandem repeat of 12 nucleotides (nucleotide
position 2,188 to 2,199, 2,200 to 2,211) and a corresponding tandem repeat of
tetrapeptide in the P1 protein. The deduced sequence of P1 protein is enriched in
basic amino acids, particularly arginine. In addition, it also contains clusters of
basic amino acids which may provide sites for the interaction with the template
virion RNA capped primer as well as with other proteins involved in viral
replication and transcription. A secondary structure prediction, using Chou and
Fasman analyses (Annu. Rev. Biochem. 47:251-276, 1978), shows that the P1
protein possesses some unique features, viz., one ‘‘four-helical supersecondary
structure”’ and four ‘‘polypeptide double helices’’ (antiparallel B-pleated sheets)
which are considered important in RNA binding.

It is now well known that the segmented
genome of influenza virus is transcribed and
replicated by using the gene products of three
polymerase (P1, P2, and P3) genes and also,
possibly, of the nucleoprotein (NP) gene (41,
42). These events, especially the primary tran-
scription process, have been reported to occur
in the nucleus of the host cell just after infection
(22, 34) and do not require either the host or viral
protein synthesis (20, 46). Also, it has been
reported that since influenza transcripts use the
5’ end of the capped host RNAs as primers (6,
14, 30, 45), the virus-specific transcription proc-
ess requires a continuous function of the host
RNA polymerase II (22). Furthermore, the in-
volvement of splicing enzyme in the processing
and maturation of some viral messengers has
also been reported (32, 33). Additionally, poly-
merase genes have been found to play another
important role in the biology of influenza virus,
namely, all defective interfering (DI) influenza
viral RNAs studied to date appear to originate
from the polymerase genes (11, 12, 38).

Clearly, an understanding of the structure and
function of polymerase proteins will be required
to elucidate their role in the processes of viral
transcription and replication and in the forma-
tion of DI RNAs. As a first step towards this
objective, we have already determined the pri-

mary sequences of the P3 gene (28) of WSN
virus. In this report, we present the complete
sequence of the P1 gene as well as the predicted
primary and secondary structures of P1 protein
of A/WSN/33 virus.

MATERIALS AND METHODS

Virus and cells. The procedures for growing WSN
virus by using MDBK cells, for purifying the virus by
using sucrose velocity gradients, and for isolating the
viral RNA used for cloning have been described
previously (10). £s52 virus (a group II temperature-
sensitive mutant of A/WSN/33 virus) grown in MDBK
cells at 34°C was used in these studies.

Recombinant DNA cloning and DNA sequencing of P1
gene. The procedures for DNA cloning and for identi-
fying P1 clones have been reported (10, 28). Briefly,
virion RNA enriched in polymerase genes was reverse
transcribed with the avian myeloblastosis virus re-
verse transcriptase into cDNA (plus strand). cDNAs
of full length were isolated on 1.4% alkaline agarose
gels and used for the synthesis of double-stranded
DNA, using the foldback loop at the 3’ end as the self-
primer. Subsequently, double-stranded DNA frag-
ments were treated with S1 nuclease and fractionated
on neutral agarose gels to determine their size. Finally,
approximately 20 deoxycytidine residues were added
to their 3’ ends. These double-stranded DNAs were
then inserted into the Ps:l site of pBR322 DNA to
which approximately 20 deoxyguanidine residues had
been added. Escherichia coli x1774 cells were trans-
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formed. Clones which were resistant to tetracycline
but sensitive to ampicillin were analyzed for insert
size. Clones containing inserts of approximately 2.2 to
2.4 kilobases were tentatively designated as clones of
polymerase genes, and analyzed for identification as
being of P1, P2, or P3 origin.

The nucleotide sequence of the insert DNA was
carried out by the methods of Maxam and Gilbert (36,
37), employing asymmetric cleavage by a second re-
striction enzyme to obtain DNA fragments uniquely
labeled at one 5’ end. Some doubly labeled fragments
were strand separated according to Maxam and Gil-
bert (37) and then sequenced. The sequence at the 3’
end of cRNA (plus strand) was completed by using a
primer extension procedure (23).

Computer analysis of the sequence and secondary
structure prediction. Computer analysis of the nucleo-
tide and amino acid sequence was performed by using
the program of Queen and Korn (48). Secondary
structure prediction of the P1 protein from the amino
acid sequence was done according to Chou and Fas-
man (9), utilizing the computer programs provided by
Nancy Woods (University of California, Los Angeles
[UCLA]). The helical hydrophobic moment ((x.H)) and
the mean hydrophobicity ((H)) were determined by
using the hydrophobic values of amino acids (27)
according to Eisenberg, Weiss, and Terwilliger of
UCLA (personal communication), utilizing the com-
puter program provided by Robert M. Weiss (UCLA).

RESULTS

Identification of DNA clones of the P1 gene.
Several selection criteria were employed to
identify clones containing an insert of P1 origin.
(i) All clones belonging to this group contained
inserts of approximately 2.2 to 2.4 kilobases,
which is larger than the expected size of any
influenza gene except the polymerase genes. (ii)
Only the combined polymerase gene RNAs iso-
lated from gels—and no other viral RNA seg-
ments—hybridized to these clones, demonstrat-
ing that these clones were of polymerase gene
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origin. (iii) Furthermore, these clones were clas-
sified into three groups by restriction analyses,
as expected for three polymerase genes. (iv)
Hybridization to specific DI RNAs originating
from known polymerase genes was used to
identify clones of specific polymerase genes.
For example, DI RNAs L3 and L2b of P1 origin
hybridized only to the DNA from 1-39b and 1-
72b clones. These DI RNAs are easily separable
by gel electrophoresis and have been extensive-
ly characterized (11, 12, 39). (v) Finally, the
sequences at the 5’ and 3’ ends of the plus
strands of these clones were compared with the
previously reported end sequence of P1 gene to
confirm clones of P1 origin (49). Thus, 1-39b and
1-72b clones were identified as clones of P1
origin and used for detailed sequence analyses.

Sequencing strategy. The sequencing strategy
and restriction sites which were used in se-
quencing are shown in Fig. 1. All of these sites
that were used as either the site of labeling or the
site of second cleavage were also read through
from another site to verify the continuity of
overlaps. Additionally, all EcoRII (BstNI) sites
were verified by sequencing through these sites
on both strands as well as by mapping the BstNI
sites.

The nucleotide sequence was first obtained
from two P1 gene clones, viz., 1-39b and 1-72b,
and completed by primer extension (23). The
entire sequence of 1-39b insert was first deter-
mined. It has the entire 5’ end of the comple-
mentary DNA, including the dodecadeoxynu-
cleotide primer used for reverse transcription,
and ends at position 2,103 at the 3’ end. Hence,
this clone is incomplete and is missing 238
nucleotides. The clone 1-72b has the entire se-
quence of 1-39b and 157 additional nucleotides
at the 3’ end. Finally, the sequence of the P1
gene was completed by isolating a primer frag-
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FIG. 1. Sequencing strategy of cloned P1 DNA. Vertical bars represent the restriction sites which were used
for end labeling. Solid line arrows represent the length of sequences obtained from the corresponding restriction

sites through overlapping gels.
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ment, Hinfl to Bglll (nucleotide position 2,215
to 2,258), from the 1-72b insert uniquely labeled
at the Hinfl site and extended with avian mye-
loblastosis virus reverse transcriptase, using the
total virion RNA as the template (23). The
sequence obtained by the primer extension was
81 nucleotides. Later, these sequences were
confirmed with the direct P1 gene virion RNA
end sequences and also with the DI RNA (L2b
and L3) end sequences which we obtained inde-
pendently from different DNA clones (39).

Nucleotide sequence of A/WSN/33 P1 gene. The
complete nucleotide sequence of the viral RNA
and the complementary RNA of the WSN P1
gene are shown in Fig. 2. It contains 2,341
nucleotides, including conserved sequences of
13 nucleotides at the 5’ and 3’ ends. The plus
strand at the 5' region contains 24 untranslated
nucleotides before the first AUG. From the
nucleotide position 25 to 2,295, there is an open
reading frame of 2.271 kilobases with a coding
capacity of 757 amino acids ending with two
consecutive in-phase termination codons (UAG,
UGA). The other two reading frames contain
numerous termination codons which are rather
evenly scattered throughout the entire se-
quence. The 46 nucleotides at the 3’ end are not
translated and contain the proposed polyadena-
tion site (2,321 to 2,325) of the mRNA (50).

An analysis of the frequency of codon usage in
the P1 mRNA showed that 60 codons, with the
exception of CGC, are used to translate the P1
protein. Although 36 of 61 codons are used more
than 10 times, the frequency of CG-containing
codons and of CG dinucleotide even outside the
codon, as reported for other eucaryotic genes, is
low (28).

Amino acid sequence of P1 protein. The P1
protein, as predicted from our sequence data, is
probably the largest protein of influenza virus.
Although it contains 757 amino acids and is 2
amino acids shorter than the predicted P3 pro-
tein, the P1 protein has a slightly larger molecu-
lar weight (86,500) than the WSN P3 protein
(85,800). The size of the P1 protein predicted
from our sequence is somewhat smaller than the
estimated molecular weight (M, = 96,000) of the
P1 protein by polyacrylamide gel electrophore-
sis analysis (43, 53). An analysis of the predicted
amino acid composition (Table 1) indicates that
it is a basic protein, as has been previously
reported (25). Among the basic amino acids, the
arginine content is high. Among the hydropho-
bic amino acids, the content of the alanine and
valine is low, whereas the content of isoleucine
and methionine is high when compared with the
average composition of proteins (13). It is also
low in cysteine.

Of the 757 amino agids of the P1 protein, 113
amino acid residues are basic (53 Arg, 48 Lys, 12
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His) and 80 are acidic (32 Asp, 48 Glu). Charge
calculations indicate that the P1 protein is more
basic than nucleoprotein and matrix proteins but
slightly less basic than the P3 protein. At pH 6.5,
the WSN P1 protein has a net charge of +27,
compared with +29 for A/WSN/33 P3 (28), +14
for PR/8 NP (60), and +9.5 for PR/8 M proteins
(59).

A striking feature of the P1 amino acid se-
quence is an iterative tetrapeptide beginning at
the amino acid residue 722 (Ala-Arg-Ile-Asp-
Ala-Arg-Ile-Asp). The RNA which codes this
region is equally iterative, with only a single
nucleotide mismatch, and is suggestive of a
duplication event in the history of the P1 gene.
This octapeptide is predicted to form an a-helix.
Iterative tetrapeptide has also been found in the
amino acid sequence of EcoRI endonuclease
(18, 40).

Secondary structure of the P1 protein. The
secondary and supersecondary structure of P1
protein was determined according to the analy-
ses of Chou and Fasman (9). Although the
accuracy of these analyses is about 80%, the
procedure has been used to predict the second-
ary structure of a number of proteins (3, 8, 18,
40) and is a first step towards understanding the
structure-function relationship of a protein. Fig-
ure 3 shows the predicted secondary structure of
P1 protein. It consists of 33% predicted a-
helices, 26% B-pleated sheets, 23% B-reverse
turn, and 18% undefined structure. Further-
more, it contains four antiparallel a-helices,
known as ‘‘four-helical supersecondary struc-
ture’ (1) between the amino acid residues 341
and 415, and four pairs of antiparallel B-pleated
sheets (otherwise known as ‘‘polypeptide dou-
ble helix’’ [S]) at the amino acid residues 17 to
49, 434 t0 451, 447 to 477, and 555 to 572 (Fig. 3).
Figure 4 shows the mean plot of helical hydro-
phobic moments of predicted a-helices against
their average hydrophobicities. The mean heli-
cal hydrophobic moments are defined as the
mean vector sum of the side chains of a helix,
and the values were estimated by the method of
Eisenberg, Weiss, and Terwilliger (personal
communication). None of the a-helices of the P1
protein are of transmembrane type (the trans-
membrane helices of hemagglutinin are plotted
for comparison). The majority of the a-helices of
P1 protein have medium hydrophobic moments
and low mean hydrophobicities, which are char-
acteristic of soluble globular proteins, except for
one a-helix (amino acid residue 695 to 700)
which possesses a larger hydrophobic moment
than that of typical globular protein a-helices
and has the characteristics of amphiphilic or
surface-seeking helices, i.e., one face is moder-
ately hydrophilic but the other is moderately
hydrophobic.



324

SIVASUBRAMANIAN AND NAYAK

A/WSN/33  F1 PULYMERASE UENE

VKNA
CRNA

GGA
ccu

PRO

ccu
GGA

GLY

CGG
GCC

ALA

Capa
Guw

VAL

AAC
uue

LEU

AGU
uca

SER

ucu
AGA

ARG

ucu
AGA

ACA
uGu

cys

AGA
ucu

SER

uGu
ACA

THK

wuc
AAG

LYSs

3
'

AUA
UAU

TYR

ucu
AGA

ARG

Guu
Can

GLN

Capn
Guu

VAL

CG6
GCC

ALA

UAC
AUG

MET

uGu
ACA

ccc
GGG

GLY

cuc
GAG

GLY

Guc
CAG

GLN

AUA
UAu

TYK

cee
GHG

oy

UGA
ACU

ACC
uGe

uGy
ACA

THR

Guc
CAG

GLN

uue
AAC

ASN

uue
AAC

vau
AUA

ILE

uuc
AAG

uuu
AAA

LYS

cuG
GAC

ASH

uau
ALA

nEeE

AUl
UAC

Trk

ccu
GGA

GLY

uGu
ACA

THR

Cua
GAU

ASF

Guu
CAA

GLN

uGu
ACA

THR

uuu
ARA

CCA
GGU

GLY

GAU
CuA

LEU

GAA
cuu

LEU

uGA
acu

IHK

UGG
ACC

THR

UVAC
AUG

MeT

CuG
GAC

uGu
ACA

THK

ACA
uGu

cys

uGuy
ACA

UAU
AUA

ILE

cuu
GAA

GLU

uuu
AAA

uuu
AAA

LYS

cuu
GAA

cuu
GAA

GLU

ucu
AGA

ARG

AAA
wuu

213

GLA
ccu

FRO

uuG
AAC

ASN

Cau

GUA

VAL

GCu
CGA

ARG

cuu
GAA

G6LUY

Cuu
GAA

ucc
AGG

ARG

GCcC
CGG

Guu
ChAA

GLN

UAA
AUU

UuA
AAU

ALN

e
GAG

nlu

GGA
ccu

#RO

UGG
ACC

THR

AAC
uuG

LEU

CaC
GUG

VAL

CaC
GUG

VAL

UAC
AUG

MET

uuc
ARG

LYS

ucu
AGA

AGU
uca

SEK

AGA
ucu

E SER

Guc
CAG

GULN

uce
AGC

LEKR

UCGCUUUCGUCCGUUUGGUAAALY
AGCGARAGLALGLAAAL LAULULA

AUG
UAC

YR

Cuu
GaA

60
GLu

Ccuu
GAA

GLu

CuG
GAC
120
ASF

AAG
uuc
150
FHE

cuc
GAG
180
GLU

Guc
CAG
210
GLN

CcGu
GCa
240
ALA

ccu
GGA
270
GLY

ARG
uuc
300
FHE

GGG
cee
330
FKO

uuc
AGG
300
Lrs

VAL
AUG

s}

[UNE)
AGC

uGA
ACU

cGu
GCA

ALA

uuc
AAG

LYS

ucu
AGA

ARG

UAG
AUC

ILE

ucu
AGA

uAA
AUU

ILE

ARC
uuG

uLG
ACC

THR

cuu
UAA

GLU

uca
ALY

HER

30
cua
LAy

ASH
120

LUA
CAU

X HIS

210
ccu
GGA

GLY
300
UAC
AUG
MET
390
GAC
cue
LEU
480
AGU
uca
SER
570

uGy
ACA

660
AAC
uuu

LEU
7%0
ceu
GCa
ALA
840
GGU
cca
#RO
930
UAG
AUC

ILE

1020

acc
UGG

TRF

1110

UAC
AL

met

UAL
LuL

vaL

cuu
)

GLy

Leu
Gua

ALA

C66
Gee

ALA

uGy
ACA

THR

UuA
LLU

ASN

uGA
ACY

THK

uuG
AAC

ASN

UGG
ALL

THR

caA
sUY

VAL

UGA
ACU

THR

AAG
uue

FHE

vuy
AhA

LYS

uda
AAU

ALN

UGy
ACA

GGC
Lee

FKO

AAG
uuc

FHE

Guu
CAa

GLN

cCo
GGC

GLY

GUA
CAU

HIS

uuu
ARA

LYS

66U
[He)

FRO

ccu
66A

GLY

ccu
uGA

ucu
AGA

UAA
Auy

ILE

Ll
o

rRO

Ly
LuA

X 6Ly

Guu
ChA

GULN

GAA
cuy

LEU

cce
GGC

GLY

GAG
cuc

LEU

ARA
uuu

FHE

ucc
AGG

ARG

ccc
LLG

GLY

cc6
GGC

GLY

Cua
GAU

ASF

uua
ARU

ASN

uey
AGA

AKG

oA
AaCyY

ueu
ACA

THR

GAG
e

LEU

cuc

GAG

6Ly

GCu
CGA

ARG

uGC
ACG

THR

Guc
CAG

GLN

uca
AGU

SER

UAC
AUG

MET

uuA
AAL

ASN

uue
AAL

ASN

CAA
Guu

VAL

UGA
ALy

THR

ARY
UuA

< Lt

Ly
LLUA

LLY

[UTTOR

AAL

ASN

cuu
GAA

GLU

Guc
CAG

CGG
GCC

ALA

ucu
AGA

ARG

AUA
UAU

Guy
CaAa

GLN

cue
6AL

GLU

UGG
ACL

THR

GAU
CuA

LEU

6uy
can

GLN

UAHA
oy

LEU

AUG
UAL

AGG
ucc

SER

[Uelc)
ACC

THR

uuA
AAU

ASN

uuc
AAG

LYS

GAU
cua

LEU

VAU
AuA

ILE

uuc
AAG

LYS

uuy
AAA

LYS

uca
AGU

SER

vau
AUA

ILe

AAL
uue

HHe

uhs
fLL

THK

uAA
AUU

ILE

GUA
cau

HIS

AUA
uau

TYR

cuu
GAA

GLU

ucu
AGA

ARG

UAA
AUU

ucc
AGG

ARG

uuu
AAA

LYs

ACC
uGe

TRE

UAA
AUU

LGA
ccu

FRO

AAU
uuA

v
LEU

UAC
Al

nel

LuUA
GAU

s

GGA
ccu
100
FRO

CuG
GAC
130
ASP

AGG
ucc
160
SER

GCu
CGA
190
ARG

ucc
AGG
220
AKG

ccc
GGG
250
GLY

o1}
6Ca
280
ALA

uuG
AAC
310
ASN

CGA
GCu
340
ALA

coy
GCA
370
ALA

uuu
AAA

Lys

LuA
GAY

CCA
GGU

ACC
UGG

ccu
GGA

6Ly

CAC
GUG

VAL

c6u
GCA

ALA

AAA
uuu

uuc
AAG

LYS

cuuy
GAA

GLU

GGU
cca

FRO

tuu
GAA

GLYU

60
LAC
LUG

VAL
150

uGA
ALU

* THR

240
66U
cca

FKO
330
UAG
auc
ILE
420
uGA
acu
THR
510
uce
AGG
AKG
600
ucy
AGA
AKG
690
AAC
uue
LEU
780
cAu
GUA
VAL
870
AAC
uuG
LEU
960
uuA
AAU

ASN

1050

UAU
AUA

ILE

1140

UAC
AUG

MET

GLU
cea

FRu

LAG
6ucC

VAL

GAC
CuG

LEU

AAA
uuu

FHE

GAU
CuA

LEU

GAG
cuc

LEU

CcuG
GAC

ASF

UGG
ACC

THR

AUG
UAC

TYR

c6u
GCA

ALA

GuC
CAG

UAC
AUG

GAU
cua

LEU

[&:1V]
6CA

ALA

wuL
AAC

ASN

GGY
cca

cuc
GAG

uuA
AAU

ASN

uau
AUA

ILE

uuA
AAU

GAC
Ccue

ARA
uuu

FHE

uua
AAU

ASN

uuG
AAC

ASN

AAG
uuc

c6u
GCA

ALA

LUy
Chh

GLN

uce
AGG

AKG

cuu
GAA

GLu

UGG
ACC

THR

ucc
AGG

ARG

CuG
GAC

ASF

UAC
AUG

MET

uuG
AARC

ASN

Can
Guu

VAL

CAA
Guu

VAL

GGA
ccu

AGU
uca

SER

uce
AGC

SER

UUA
AAU

AN

usy
ACA

THKR

cue
GAC

ASP

AGC
uce

SER

uuG
AAC

ASN

AAG
uuc

FHE

UGA
ACU

uGsu
ACA

THR

cuc
GAG

GLY

Cau
GUA

VAL

GCC
CGG

ARG

uuG
AAC

ASN

UAG
AUC

ILE

CGA
6Ly

ALA

GuA
cau

HIS

uua
AAU

ACA
UGy

Ccys

Guc
CAG

GLN

GAA
cuu

LEVY

uuc
ARG

LYS

UAC
AUG

MET

uGu
ACA

ucc
AGG

AKG

UAC
AUG

uuu
ARA

LYS

cua
GAU

ASF

L
AUA

ILE

GucC
CAG

GLN

cuu
GAA

GLU

GAA
cuu

LEU

GGA
ccu

PKRO

uuc
AAG

LYS

uuuy
ARA

LYS

UGG
ACC

GAU
Cua

LEY

uuc
AAG

LYS

ARA
uuy

UAC
AUG

MET

AAC
uuG

LEU

uce
AGL

SEK

AUG
UAC

TYR

GBU
cca

PRO

cuu
GAA

GLY

CGA
GCu

ALA

cua
Gau

ASF

UAC
AUG

MET

uuu
AAA

LYs

Cou
GCA

ALA

UAC
AUG

MET

AAC
uue

LEU

CGC
GC6

uuy
AAA

LYsS

1.

usu

ACA
20

THI

AGU
uca

SER

uca
AGU

SER

uGC
ACG
110
THR

CcGu
GCA
140
ALA

CAU
GUA
170
vaL

CAC
GUG

VAL

cua
GAU
230
ASP

ucc
AGG
260
ARG

UAC
AUG
290
MET

CG6
GCC
320
ALA

ucu
AGA
350
ARG

AUG
UAC
380
TYR

VIROL.

90
UGA AAG
ACU UUC

180
Cuu ucc
GAA AGOG

270
CCA AUA
GGU UAU

GLY TYR

360
UAC CuC
AUG GAG

450
UGy CGu
ACA GCA

THR ALA

540
UAC CucC
AUG GAG

630
UGU GuC
ACA CAG

720
CGA CuC
GCU GAG

ALA GLU
810
UCA UAU
AGU AUA
SER ILE
900

UGG uuA
ACC AAU

990
UAC UAG
AUG AUC

MET ILE

1080
GAC CcCu
CUG GGA
LEU GLY

1170
AAG UUA
uuc aau
PHE ASN

FIG. 2. P1 gene of A/WSN/33. The nucleotide sequences of both the minus (VRNA) and the plus (c(RNA)
strands are shown. Numbering of the nucleotides is from the 5’ end of the plus strand. Also shown is the amino
acid sequence of the P1 protein as deduced from the nucleotide sequence, starting from the first AUG of the plus
strand.

Comparison with other influenza A P1 genes
and proteins. A comparison of WSN P1 se-
quence with those of A/PR/8/34 and A/NT/60/68,
which have been recently reported (2, 61),

shows a remarkable conservation of the struc-
ture of P1 gene and P1 protein. The P1 gene of all
three viruses contains 2,341 nucleotides and
codes for 757 amino acids. Also, amino acid
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changes were relatively few: 15 between A/
WSN/33 and A/PR/8/34, 20 between A/PR/8/34
and A/NT/60/68, and 18 between A/WSN/33 and
A/NT/60/68. The variation observed between
the WSN and the PR/8 sequences probably does
not reflect the variation in the original isolates
but may be attributed to the varying growth and
selection procedures that these two viruses have
undergone over the last 50 years in laboratories.
Similar changes have been observed in the se-
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(Continued.)

quences of P3, hemagglutinin, and neuramini-
dase of these two viruses (15, 23, 24, 28, 62).

The secondary structures of the P1 proteins of
all three viruses are essentially the same. All of
the cysteine and proline residues, as well as the
basic amino acid clusters, are in identical posi-
tion. Finally, the supersecondary features such
as the four antiparallel a-helices and the BB
antiparallel pleated sheets implicated in RNA
binding also remain unaltered.
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TABLE 1. Amino acid composition (frequency and
moles percent) of P1 protein (A/WSN/33) as deduced
from the nucleic acid sequence

. . Av,
Amino acid Frequency Mol% pr ote?n"

Alanine 41 5.4 8.6
Arginine 53 7.0 4.9
Asparagine 51 6.7 4.3
Aspartic acid 32 4.2 5.5
Cysteine 10 1.3 2.9
Glutamine 31 6.3 6.0
Glutamic acid 48 4.1 3.9
Glycine 46 6.1 8.4
Histidine 12 1.6 2.0
Isoleucine 49 6.5 4.5
Leucine 56 7.4 7.4
Lysine 48 6.3 6.6
Methionine 37 4.9 1.7
Phenylalanine 33 4.3 3.6
Proline 32 4.2 5.2
Serine 49 6.5 7.0
Threonine 62 8.2 6.1
Tryptophan 9 1.2 1.3
Tyrosine 24 32 34
Valine 34 4.5 6.6

“ The average amino acid composition of proteins
(13) is included for comparison.

DISCUSSION

Sequence analysis shows that the WSN P1
gene contains 2,341 nucleotides and is one of the
two largest polymerase genes of influenza virus
(2, 15, 28, 61). Both P1 and P3 genes contain an
identical number of nucleotides and code for

+ [ -

s ,../W\A_/\/\N\ MWW

J. VIrOL.

basic proteins of essentially similar length (2, 15,
28, 61). However, a comparison of P1 and P3 at
the level of nucleotide or amino acid sequences
shows no significant homology. This suggests
against a possible convergent evolutionary proc-
ess in the origin of multiple polymerase genes of
influenza viruses.

Genetic studies involving temperature-sensi-
tive mutants have shown that P1 and P3 proteins
are involved in the complementary RNA synthe-
sis and that the P2 and nucleoproteins are most
probably involved in the synthesis of virion
RNA (31, 52, 53). Ulmanen and his colleagues
(55) have recently divided the viral transcription
process into different steps. Firstly, the P3 pro-
tein recognizes the Capl structures of host
mRNAs, and a viral endonuclease complex
(possibly P3 and P1 proteins) cleaves RNA
containing the Capl structures at some selective
sites to generate primers for the viral transcrip-
tion process. Secondly, the initiation of tran-
scripts via the addition of a G residue to the
primer is possibly catalyzed by the P1 protein.
Thus, the P1 protein may be involved in both the
cleavage of the primers from the host and also
the initiation of viral transcription.

A comparison of the amino acid groups among
the basic polymerase proteins of influenza virus,
MS?2 replicase (16), and poliovirus P3-1b (29)
proteins shows that they possess a similar pat-
tern, including short stretches (six residues or
less) of amino acid homologies (data not shown).
However, although all of these proteins are
involved in nucleic acid binding and synthesis
and are basic proteins, the content of arginine
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FIG. 3. Schematic diagram of the secondary structure predicted for the P1 protein. Symbols: 2w« , a-helix
structures; m, B-pleated sheets; - - - - - , B-turns (chain reversals); ——, random or undefined structure; + and

—, positive and negative charges, respectively; SH, location of cysteine residues; — <, regions of a four-helical
supersecondary structure; | |, region of antiparallel 8 sheets; O, the helix having large hydrophobic moment
((wH)) with moderate hydrophobicity ((H)) (see Fig. 4).
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FIG. 4. A hydrophobic moment plot for the predicted a-helical regions of P1 protein of influenza virus. The
abscissa gives the mean hydrophobicity ((H)) of each a-helix, and the ordinate gives the corresponding value of
helical hydrophobic moment ((wH)) as defined in the text. The circles represent the a-helices of the P1 protein;
the open circle represents the a-helix with large hydrophobic moment and moderate hydrophobicity. The arrows
indicate two of the helices of four-helical supersecondary structure: the one on the right (amino acid position 407
to 415) is the most hydrophobic, and the other, on the far left (amino acid position 386 to 393), is the most
hydrophilic. The open squares represent the membrane-penetrating a-helices (185 to 208, 527 to 550) of influenza

hemagglutinin (47, 57). “GLOBULAR,"’ “‘SURFACE

,”” and *“‘MEMBRANE?"’ indicate the regions of the graph

where a-helices with corresponding functions plot (Eisenberg, Weiss, and Terwilliger, personal communication).

(the most preferred basic amino acid) is high in
the basic proteins of influenza virus. Arginine
residues, as in most conserved arginine-rich
histones (H3, H4) of eucaryotic cells (4), might
play an important role in organizing the nucleo-
protein complex in virions as well as in the
intracellular replication and the transcription
complexes. The possible sites of RNA-protein
interaction were further revealed from the sec-
ondary structure prediction by using Chou-Fas-
man analyses (9). (i) The P1 protein showed
many clusters of basic amino acids in regions
predicted to be devoid of secondary structures
(e.g., amino acids in regions starting from 187,
207, 429, and 479) as well as in the a-helical
regions. These clusters contain three to four
arginine and lysine residues in close proximity
without being interrupted by acidic residues.
These clusters of basic amino acids are similar to
those present in the P3 protein (28) but are much
more pronounced than those reported for the
PR/8 NP (56, 60) and M (59) proteins and may
provide sites for interaction with the template
viral RNA during the initiation of transcription.
Similar RNA-protein interaction via clusters of
basic amino acids has been proposed for influen-
za P3 (28), influenza NP (60), Semliki Forest
virus nucleocapsid (17), VP1 of simian virus 40
(58) and of polyoma virus (54), and the core
antigen of hepatitis virus (44). (ii) Additionally,

the four-helical supersecondary structure which
occurs once in the P1 protein and not in the P3
protein may be involved in RNA protein bind-
ing. Similar supersecondary structures have
been shown to be present in other proteins
involved in either RNA or DNA interaction,
e.g., tobacco mosaic virus protein (7, 21), tyro-
syl-tRNA synthetase (26), and E. coli DNA
polymerase I (3). These structures also contain
many positive charges, supporting their possible
involvement in RNA binding. Furthermore, the
most hydrophilic (charged) a-helix (amino acid
residues 386 to 393) and the most hydrophobic
a-helix (amino acid residues 407 to 415), as
determined by ‘‘helix wheel’’ plot (51) and heli-
cal hydrophobic moment plot analyses (see Fig.
4) of P1 protein, constitute two of the a-helices
of this supersecondary structure. (iii) P1 protein
also contains four polypeptide double helices
(antiparallel BB dimer) which are also proposed
to be involved in the interaction with the minor
groove of RNA helix (5, 19) and are found in
DNA polymerase I (3) and Lac repressor (9).
Recently, intrasegmental complementation
among the temperature-sensitive mutants of P1
gene in A/Udorn/72 (H3N2) virus has been dem-
onstrated (35). Localization of the defect in
these mutants may identify the functional do-
mains in the secondary structure of the P1
protein.
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