In vivo incorporation of unnatural amino acids to probe structure, dynamics and ligand binding in a large protein by Nuclear Magnetic Resonance spectroscopy

Susan E. Cellitti¹, David H. Jones¹, Leanna Lagpacan¹, Xueshi Hao¹, Qiong Zhang¹, Huiyong Hu¹, Scott M. Brittain¹, Achim Brinker¹, Jeremy Caldwell¹, Badry Bursulaya¹, Glen Spraggon¹, Ansgar Brock¹, Youngha Ryu², Tetsuo Uno¹, Peter G. Schultz^{1,2}, Bernhard H. Geierstanger^{1,*}

¹Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121-1125, USA

²Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037

Supplemental Materials

Table S1. DNA sequences of selected OCF_3Phe -specific tRNA synthetases. Nucleotide differences are highlighted in red and underlined. Clones labeled in Bold were evaluated further.

		1	10	20	30	40	50
All		ATGGACGA	ATTTGAAATGA	ATAAAGAGAAA	ACACATCTGAA	ATTATCAGC	GAGGAAGAGTTA
		61	70	80	90	100	110
Library		AGAGAGGTT	TTTAAAAAAAA	GATGAAAAAT(CTGCT <mark>NNN</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
$OCF_3Phe_$	<u>A6</u>	AGAGAGGTT	TTTAAAAAAAA	GATGAAAAAT(CTGCT <mark>GTG</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
OCF ₃ Phe_	_Вб	AGAGAGGTT	TTAAAAAAAA	GATGAAAAAT(CTGCT <mark>GCT</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
$OCF_3Phe_$	в7	AGAGAGGTT	TTTAAAAAAAA	GATGAAAAAT(CTGCT <mark>GTG</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
$OCF_3Phe_$	в10	AGAGAGGTT	TTTAAAAAAAA	GATGAAAAAT(CTGCT <mark>GCT</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
OCF ₃ Phe_	C2	AGAGAGGTT	TTTAAAAAAAA	GATGAAAAAT(CTGCT <mark>GTT</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
OCF ₃ Phe_	_D5	AGAGAGGTT	TTTAAAAAAAA	GATGAAAAAT(CTGCT <mark>GTT</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
OCF ₃ Phe_	_D9	AGAGAGGTT	TTAAAAAAAA	GATGAAAAAT(CTGCT <mark>CTG</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
OCF ₃ Phe_	E7	AGAGAGGTT	TTTAAAAAAAA	GATGAAAAAT(CTGCT <mark>GTG</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
OCF₃Phe_	F6	AGAGAGGTT	ГТТААААААА	GATGAAAAAT(CTGCT <mark>GCT</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
OCF ₃ Phe_	_F7	AGAGAGGTT	TTTAAAAAAAA	GATGAAAAAT(CTGCT <mark>ATT</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
OCF ₃ Phe_	F8	AGAGAGGTT	TTAAAAAAAA	GATGAAAAAT(CTGCT <mark>GTG</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
OCF ₃ Phe_	_G2	AGAGAGGTT	TTTAAAAAAAA	GATGAAAAAT(CTGCT <mark>CAT</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
OCF ₃ Phe_	_G5	AGAGAGGTT	TTTAAAAAAAA	GATGAAAAAT(CTGCT <mark>GTG</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
OCF₃Phe_	H4	AGAGAGGTT	TTTAAAAA <mark>T</mark> AC	GATGAAAAAT(CTGCT <mark>GTG</mark> ATA	GGTTTTGAA	CCAAGTGGTAAA
		121	130	140	150	160	170
All		ATACATTT	AGGGCATTATC	CTCCAAATAA	AAAAGATGATI	GATTTACAA	AATGCTGGATTT
		181	190	200	210	220	230
Library		GATATAATT	TATA <mark>NNN</mark> TTGO	GCTGATTTA <mark>NI</mark>	MGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF₃Phe_	_A6	GATATAATT	TATA <mark>GCT</mark> TTGO	GCTGATTTA <mark>C</mark>	ACGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF ₃ Phe_	В6	GATATAATT	TATA <mark>GCG</mark> TTGO	GCTGATTTA <mark>C</mark>	ACGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF₃Phe_	в7	GATATAATT	TATA <mark>CTG</mark> TTGO	GCTGATTTA <mark>C</mark>	ACGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF ₃ Phe_	в10	GATATAATT	TATA <mark>GCT</mark> TTGC	GCTGATTTA <mark>C</mark>	ATGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF ₃ Phe_	C2	GATATAATT	TTA <mark>GGT</mark> TTGO	GCTGATTTA <mark>C</mark>	ACGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF ₃ Phe_	D5	GATATAATT	TATA <mark>CAT</mark> TTGO	GCTGATTTA <mark>C</mark>	ACGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF ₃ Phe_	D9	GATATAATT	TATA <mark>CCG</mark> TTGO	GCTGATTTA <mark>C</mark>	ATGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF ₃ Phe_	_E7	GATATAATT	TATA <mark>TCG</mark> TTGO	GCTGATTTA <mark>C</mark>	ACGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF₃Phe_	F6	GATATAATT	TATA <mark>AGT</mark> TTGO	GCTGATTTA <mark>C</mark>	ACGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF ₃ Phe_	F7	GATATAATT	TATA <mark>ACT</mark> TTGO	GCTGATTTA <mark>C</mark>	ACGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF ₃ Phe_	F8	GATATAATT	TATA <mark>CAG</mark> TTGO	GCTGATTTA <mark>C</mark>	ATGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF ₃ Phe_	_G2	GATATAATT	TATA <mark>GCG</mark> TTGO	GCTGATTTAAA	ATGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF ₃ Phe_	_G5	GATATAATT	TATA <mark>ACT</mark> TTGO	GCTGATTTA <mark>C</mark>	ACGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
OCF ₃ Phe_	_H4	GATATAATT	TATA <mark>GGG</mark> TTGC	GCTGATTTA <mark>C</mark>	ACGCCTATTTA	AACCAGAAA	GGAGAGTTGGAT
		241	250	260	270	280	290
All		GAGATTAGA	AAAATAGGAG	GATTATAACA	AAAAAGTTTTT	GAAGCAATG	GGGTTAAAGGCA
		301	310	320	330	340	350
Library		AAATATGTT	TATGGAAGT	GAA <mark>NNNNNN</mark> CT	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF ₃ Phe_	_A6	AAATATGTT	TATGGAAGT	GAA <mark>CAGTGG</mark> C	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF ₃ Phe_	_B6	AAATATGTT	TATGGAAGT	GAA <mark>AAGTGG</mark> CT	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF₃Phe_	_В7	AAATATGTT	TATGGAAGTO	GAA <mark>GCTTGG</mark> C	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF₃Phe_	в10	AAATATGTT	TATGGAAGTO	GAA <mark>TGGATG</mark> C	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF ₃ Phe_	_C2	AAATATGTT	TATGGAAGTO	GAAGTGGC	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF ₃ Phe_	_D5	AAATATGTT	TATGGAAGTO	GAAGAGCCTC	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF ₃ Phe_	_D9	AAATATGTT	TATGGAAGTO	GAA <mark>TGGATG</mark> C	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF ₃ Phe_	_E7	AAATATGTT	TATGGAAGT	GAA <mark>ACGCAG</mark> C	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF₃Phe_	_F6	AAATATGTT	TATGGAAGTO	GAACAGGCGC	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF ₃ Phe_	_F7	AAATATGTT	TATGGAAGTO	GAA <mark>CGTTGG</mark> C	TTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF ₃ Phe_	_F8	AAATATGTT	TATGGAAGTO	GAA <mark>AGGGAG</mark> C	TTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF ₃ Phe_	_G2	AAATATGTT	TATGGAAGTO	GAA <mark>TGGATG</mark> CT	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF ₃ Phe_	_G5	AAATATGTT	TATGGAAGTO	GAA <u>TTGGGG</u> C	FTGATAAGGAI	TATACACTG	AATGTCTATAGA
OCF₃Phe_	H4	AAATATGTT	TATGGAAGTO	GAA <mark>CATTAT</mark> C	FTGATAAGGAI	TATACACTG	AATGTCTATAGA

Table S1. Continuation.

	361	370	380	390	400	410
All	TTGGCTTT	AAAAACTACC	TTAAAAAGA	GCAAGAAGGAG	TATGGAACTT	'ATAGCAAGAGAG
	421	430	440	450	460	470
Library	GATGAAAA	TCCAAAGGTT	GCTGAAGTT	ATCTATCCAAT	AATG <mark>NNN</mark> GTT	'AAT <mark>NNNNNN</mark> CAT
OCF ₃ Phe_A6	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>GCGATT</mark> CAT
OCF ₃ Phe_B6	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>GGTATT</mark> CAT
OCF ₃ Phe_B7	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>GGGATT</mark> CAT
OCF ₃ Phe_B10	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>GGTAAT</mark> CAT
OCF ₃ Phe_C2	GATGAAAA	TCCAAAGGTT	GCTGAAGTT	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>GGGATT</mark> CAT
OCF ₃ Phe_D5	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>TCTATT</mark> CAT
OCF ₃ Phe_D9	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>GGTGCT</mark> CAT
OCF ₃ Phe_E7	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>GCGATT</mark> CAT
OCF ₃ Phe_F6	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>GCGATT</mark> CAT
OCF ₃ Phe_F7	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>GCGATT</mark> CAT
OCF ₃ Phe_F8	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATG <mark>TC</mark> GGTT	'AAT <mark>AGTGTG</mark> CAT
OCF ₃ Phe_G2	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>GGTGCG</mark> CAT
OCF ₃ Phe_G5	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>TCGATT</mark> CAT
OCF ₃ Phe_H4	GATGAAAA	TCCAAAGGTT	GCTGAAGTTA	ATCTATCCAAT	AATGCAGGTT	'AAT <mark>GCTATT</mark> CAT
	481	490	500	510	520	530
Library	TAT <mark>NNN</mark> GO	CGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_A6	TAT <mark>AAG</mark> GG	GCGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_B6	TAT <mark>GTT</mark> GG	GCGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_B7	TAT <mark>CAG</mark> GG	GCGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_B10	TATCTTGG	GCGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_C2	TAT <mark>GTG</mark> GG	CGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_D5	TAT <mark>AGT</mark> GO	GCGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_D9	TATCTTGG	GCGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_E7	TAT <mark>GTG</mark> GG	GCGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_F6	TATTATGO	GCGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_F7	TATTCTGG	GCGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_F8	TATCATGO	CGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_G2	TATCTTGG	GGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF ₃ Phe_G5	TAT <mark>AGT</mark> GO	GCGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
OCF_3Phe_H4	TATCATGO	GCGTTGATGTT	GCAGTTGGA	GGATGGAGCA	GAGAAAAATA	CACATGTTAGCA
	541	550	560	570	580	590
All	AGGGAGCI	TTTACCAAAA	AAGGTTGTT	GTATTCACAA	CCCTGTCTTA	ACGGGTTTGGAT
	601	610	620	630	640	650
All	GGAGAAGG	GAAAGATGAGT	TCTTCAAAA	GGAATTTTAT	AGCTGTTGAT	GACTCTCCAGAA
	661	670	680	690	700	710
All	GAGATTAG	GGCTAAGATA	AAGAAAGCAT	TACTGCCCAGC	IGGAGTTGTT	'GAAGGAAATCCA
	721	730	740	750	760	770
All	ATAATGGA	GATAGCTAAA	TACTTCCTT	GAATATCCTTT	ААССАТАААА	AGGCCAGAAAAA
	781	790	800	810	820	830
All	TTTGGTGG	GAGATTTGACA	GTTAATAGC	TATGAGGAGTT	AGAGAGTTTA	TTTAAAAATAAG
	841	850	860	870	880	890
All	GAATTGCA	TCCAATGGAT	ттаааааатс	GCTGTAGCTGA	AGAACTTATA	AAGATTTTAGAG
	901	910	920			
All	CCAATTAG	AAAGAGATTA	TAA			

Table S2. Protein sequences of selected OCF_3Phe -specific tRNA synthetases. Amino acid differences are highlighted in red and underlined. Clones labeled in Bold were evaluated further.

	1	10	20	30	40	50
Library	MDEFEMIKRNTS	EIISEEELREVI	.KKDEKSA <mark>X</mark> I	GFEPSGKIH	LGHYLQIKKM	IDLQNAGF
OCF_3PHE_A6	MDEFEMIKRNTS	EIISEEELREVI	_KKDEKSA <mark>V</mark> I	GFEPSGKIH	LGHYLQIKKM	IDLQNAGF
OCF ₃ PHE_B6	MDEFEMIKRNTS	EIISEEELREVI	.KKDEKSA <mark>A</mark> I	GFEPSGKIH	LGHYLQIKKM	IDLQNAGF
OCF_3PHE_B7	MDEFEMIKRNTS	EIISEEELREVI	_KKDEKSA <mark>V</mark> I	GFEPSGKIH	LGHYLQIKKM	IDLQNAGF
OCF_3PHE_B10	MDEFEMIKRNTS	EIISEEELREVI	KKDEKSA <mark>A</mark> I	GFEPSGKIH	LGHYLQIKKM	IDLQNAGF
OCF ₃ PHE_C2	MDEFEMIKRNTS	EIISEEELREVI	KKDEKSAVI	GFEPSGKIH	LGHYLQIKKM	IDLQNAGF
OCF ₃ PHE_D5	MDEFEMIKRNTS	EIISEEELREVI	KKDEKSAVI	GFEPSGKIH	LGHYLQIKKM	IDLQNAGF
OCF ₃ PHE_D9	MDEFEMIKRNTS	EIISEEELREVI	KKDEKSALI	GFEPSGKIH	LGHYLQIKKM	IDLQNAGF
OCF ₃ PHE E7	MDEFEMIKRNTS	EIISEEELREVI	KKDEKSAVI	GFEPSGKIH	LGHYLOIKKM	IDLONAGF
OCF ₃ PHE_F6	MDEFEMIKRNTS	EIISEEELREVI	KKDEKSAAI	GFEPSGKIH	LGHYLÕIKKM	IDLQNAGF
OCF ₃ PHE F7	MDEFEMIKRNTS	EIISEEELREVI	KKDEKSAII	GFEPSGKIH	LGHYLOIKKM	IDLONAGF
OCF ₃ PHE F8	MDEFEMIKRNTS	EIISEEELREVI	KKDEKSAVI	GFEPSGKIH	LGHYLÕIKKM	IDLONAGF
OCF ₂ PHE G2	MDEFEMIKRNTS	EIISEEELREVI	KKDEKSA <mark>H</mark> I	GFEPSGKIH	LGHYLÕIKKM	IDLONAGE
OCF PHE G5	MDEFEMIKRNTS	ETTSEEELREVI	KKDEKSAVI	GFEPSGKTH	GHYLOTKKM	TDLONAGE
OCF ₃ PHE H4	MDEFEMIKRNTS	EIISEEELREVI	KIDEKSAVI	GFEPSGKIH	LGHYLÕIKKM	IDLONAGF
- J _	61 70	80	90	100	110	~ -
Library		TNOKGELDETRK	TGDYNKKVF	EAMGLKAKY	VYGSEXXLDKI	DYTLNVYR
OCF_PHE A6	DTTTALADIHAY	TINOKGELIDETRK	TGDYNKKVF	FAMGLKAKY	VYGSEOWLDKI	DYTLNVYR
OCF ₂ PHE_B6		TNOKGETDETRK	TGDYNKKVF	EAMGLKAKY	VYGSEKWLDKI	DYTLNVYR
OCF PHE B7	DTTTLADLHAY	TNOKGETDETRK	TGDYNKKVF	EAMGLKAKY	VYGSEAWLDKI	DYTLNVYR
OCF ₂ PHE B10		TINOKGELIDETRK	TGDYNKKVF	FAMGLKAKY	VYGSEWMLDKI	DYTLNVYR
OCF_PHE C2	DTTLGLADLHAY	TNOKGELDETRK	TGDYNKKVF	FAMGLKAKY	VYGSEEWLDKI	DYTLNVYR
OCF_PHE_D5	DITINIADI.HAY	TNOKGELDEIRK	TGDYNKKVF	FAMGLKAKY	VYGSE <mark>EP</mark> LDKI	DYTLNVYR
OCF_PHE D9		TNOKGELDEIRK	TGDYNKKVF	FAMGLKAKY	VYGSEWMLDKI	DYTLNVYR
OCF.DHE E7		TNOKGETDEIKK	TGDVNKKVE	FAMCIKAKV		
OCF_PHE_F6	DITISLADIHAY	TNOKGELDEIRK	TGDYNKKVF	FAMGLKAKY	VYGSE <mark>OA</mark> LDKI	DYTLNVYR
OCF_PHE_E7		TNOKGETDEILK	TGDYNKKVE	FAMGLKAKY	VYGSE <mark>QII</mark> LDKI	DYTLNVYR
OCF_DHE_E8		TNOKGELDEIRK	TGDYNKKVE	FAMCIKAKY	VYCSE <mark>RW</mark> LDKI	
OCF_DHE G2		TNOKGELDEIRK	TGDYNKKVE	FAMCIKAKY	VYCSEWMI.DKI	
OCF DUE C5		TNOKGEIDEIKK	TCDVNKKVE	EANGLIKAKT		
		TNOKGELDEIRK	TCDVNKKVE	FAMCIKAKY	VYCSF <mark>HV</mark> LDKI	
	121 130	140	150	160	170	
Library		SMELTAREDENE	XVAFVIVDI 100	MXXMXXHXX(OPKTHMI.A
OCE PHE A6	T'VI'KLLI'KEVED	SMELIAREDENE SMELIAPEDENE	KUAEVIIII		ZVDVAVCCMF(ORKIHMI.A
OCF_PHE_B6	I.AI.KTTI.KRARR	SMELTAREDENE	KAVEALADI KAVEALADI		ZVDVAVGGME(ORKIHMI.A
	T'VI'KLLI'KEVED	SMELIAREDENE SMELIAPEDENE	KUAEVIIII		ZVDVAVCCMF(ORKIHMI.A
OCE PHE B10	T.AT.KTTI.KPAPP	SMELIAPEDENE	KUVENIADI		ZVDVAVCCMF(
OCF.DHE C2	T'VI'KLLI TTUUUUUU	SMELIAPEDENE	KUV ENIADI		ZVDVAVCCMF(
OCF DUE DE		CMELIAREDENE	KVAEVIIFI			ORKTIMLA
OCF DHE D9	T'VI'KLLI'KEVED	SMELIAREDENE SMELIAPEDENE	KUAEVIIII		ZVDVAVCCMF(ORKIHMI.A
OCF DUE E7		OMELIAREDENE	WUNEVITII			
		OMELIAREDENE	V V AE VIIPI			ORKINMLA
OCF DUE E7		OMET TAREDENE	NVAEVIIEI		JUDVAVGGME	QRRTIMLA
OCF DUE EQ		OMELIAREDENE	VVAEVIIPI		JUDUAUCOME	QRKINMLA
OCF DUE C2		OMET TAREDENE	NVAEVIIFI		JUDUAUCOME	QRRTIMLA
OCF DUE CE		OMELIAREDENE	VVAEVIIPI		JUDUAUCOME	QRKINMLA
OCF3PHE_GS		OMELIAREDENE	VUAEVIIPI		JUDUAUCOME	QRKINMLA
OCF3PRE_R4		SMELIAREDENE	AVAEVIIPI		JVDVAVGGME	QRKIHMLA
7 1 1						
ATT	AUTLEVEN ACTH	ла в а го с о О с о	UNDOOKGINF 1	AVDUSPEETI	XANINAICPA	нолленић
7 1 1		ZOU		ע8∪ ירעים זים עצע אדי	290 שישעים אדתי ו	ייייזאיזייי זרוי
ATT	INF LAVDUSPEEL	RAKIKKAYCPAG	PA A R GIN L T WF	TAKILTEIDI	JIIKKPEKFG(TINSA
	301 310	320	330	WDIG		
ALL	EELESLFKNKEL	hymdlknavaee	ТТКТГĘЬІВ	КККЬХ		

Figure S1. Incorporation of L-OMePhe into FAS-TE Tyr2454TAG using pSUP¹³ (A and B) and pSUPAR3 (C and D). SDS gels of proteins purified by Nickel affinity chromatography from the soluble fraction of cell lysate (A and C) or after extraction of the insoluble pellet with 6 M guanidinium hydrochloride (B and D). 50 mL of *E. coli* culture were grown in TB media at various concentrations of OMePhe. Wild-type FAS-TE was expressed in the presence of the pSUP plasmid carrying the tRNA/tRNA synthetase pair and of 2.5 mM L-OMePhe. Truncated and full-length FAS-TE mutants are indicated by arrows and the size was confirmed by mass spectrometry. The soluble fractions generated with pSUPAR3 do not contain any detectable amounts of truncated FAS-TE as monitored by mass spectrometry.

Figure S2. SDS-Gel (A) and ESI-MS spectra (B and C) of Z-domain expression with and without OCF₃Phe. (A) Incorporation of OCF₃Phe into residue 7 of Z-domain using different OCF₃Phe RS mutants (labeled by their clone number A6, B7, B10, F6 or H4) results in a band at approximately 8 kDa consistent with the expected mass of 7866 Da. The observed mass in the ESI-MS spectrum is 7865 Da (arrow, B). A contaminating *E. coli* protein of 20,846 Da (~20 kD gel band in A) is observed in all samples. In the absence of OCF₃Phe, full-length Z-domain is not observed. The resulting truncated TSVDN peptide is not observed in the SDS-gel (A) or in the ESI-MS spectra (C).

Figure S3. LC-ESI-MS analysis of tryptic digests of Z-domain with OCF₃Phe incorporated. (A) ESI-MS-MS analysis verifies incorporation of OCF₃Phe at the desired location in the tryptic peptide TSVDN(OCF₃Phe)INK. (B) Extracted single ion chromatograms (XIC) of the natural amino acid mutants Y, W, F and OCF₃Phe. Misincorporation of the natural amino acids Tyr, Trp and Phe is undetectable within the dynamic range of the experiment.

Figure S4. ¹H NMR of ${}^{13}C/{}^{15}$ N-OMePhe mutants with before (A) and after addition of tool compound (B).

Figure S5. ¹H NMR of OCF₃Phe mutants before (A) and after addition of tool compound (B).

Figure S6. ¹H NMR of ¹⁵N-oNBTyr mutants before (A) and after UV cleavage (B) and after addition of tool compound (C).

Figure S7. Reverse labeled samples indicating structural integrity of FAS-TE mutants. A) Overlay of ¹H-¹⁵N HSQC spectra of ¹⁵N-labeled FAS-TE with unlabeled oNBTyr incorporated in place of Tyr-2343 before (blue) and after (red) UV-illumination; B) Overlay of UV-cleaved Tyr-2343-oNBTyr FAS-TE (red) with wild-type FAS-TE (black); C) Overlay of UV-cleaved Tyr-2375-oNBTyr mutant (blue) with the spectrum of uniformly ¹⁵N-labeled wild-type FAS-TE (black) and UV-cleaved ¹⁵N-labeled Phe-2375-oNBTyr produced with unlabeled oNBTyr. As expected, the resonance peak of Tyr-2375 is missing from the wild-type spectrum (Phe-2375) and from the reverse labeled Phe-2375-oNBTyr sample but the rest of the spectrum is almost identical.

Figure S8. Wild-type and Tyr-2454-oNBTyr mutant FAS-TE are structurally similar. A) Overlay of ¹H-¹⁵N HSQC data for wild-type protein selectively labeled with ¹⁵N-tyrosine (black) and Tyr-2454-oNBTyr selectively labeled with ¹⁵N-tyrosine and unlabeled oNBTyr at position 2454 before (blue) and after UV-cleavage (red). B) Overlay of wild-type protein (black) and of Tyr-2454-oNBTyr (red) after the addition of tool compound. The wild-type protein has one extra peak for Tyr-2454 that is unlabeled in the Tyr-2454-oNBTyr sample.

Figure S9. ¹H-¹⁵N HSQC spectra of FAS-TE mutants with ¹³C/¹⁵N-labeled OMePhe incorporated at 11 different positions after the addition of four molar equivalent of tool compound. Only six of the 11 mutants show a clear single amide resonance peak (Leu-2222-OMePhe, Thr-2255-OMePhe, Tyr-2347-OMePhe, His-2408-OMePhe, Thr-2450-OMePhe and Tyr-2454-OMePhe) after addition of tool compound.