Supporting Information

Rohmer et al. 10.1073/pnas.0805696105

Fig. S1. Structural formula of protein-bound PCB shown in the ZZZssa geometry, as assumed for the Pr state.

Fig. S2. Domain architecture (*Left*) and chromophore pocket (*Right*) in Cph1 Δ 2 (1). This figure was made by PyMol (2).

Essen LO, Maillet J, Hughes J (2008) The structure of a complete phytochrome sensory module in the Pr ground state. Proc Natl Acad Sci USA 105:14709–14714.
DeLano WL (2002). The PyMOL Molecular Graphics System. www.pymol.org (DeLano

Scientific, San Carlos, CA).

Fig. S3. Enlarged contour plot of the 2D 13 C DARR NMR spectra of u-[13 C, 15 N]-PCB-Cph1 Δ 2 in the Pr (green) and Pfr states (red). The spectra were recorded with a proton mixing times of 5 ms at 233 K and a spinning frequency of 9 kHz.

Fig. S5. Contour plot of 2D heteronuclear dipolar correlation spectra of the methine bridge region obtained from u-[¹³C, ¹⁵N]-PCB-Cph1 Δ 2 in the the Pr (green) and Pfr (red) states at a magnetic field of 9.4 T, 10 kHz and 243 K. The asterisks indicate the position of protein backbone signals in natural abundance.

Fig. S6. Contour plot of the 2D ¹³C-¹³C DARR NMR spectra of u-[¹³C, ¹⁵N]-PCB-*phyA*65 in the Pr (green) and Pfr states (red). The spectra were recorded with proton mixing times of 5 ms at 233 K and a spinning frequency of 9 kHz.

Fig. 57. Electrostatic surface properties of the photosensory modules Cph1 Δ 2 and *phy*A65. A homology model for *phy*A65 was generated by MODELLER version 9 (1) using the cph1 Δ 2 structure as template. Electrostatic surface potentials were calculated with the apoproteins structures by APBS (2) using an ionic strength of 0.1 M and mapped onto the molecular surface (top) and the PCB-harboring cavity (below; blue: +5 kcal/e, white: 0 kcal/e, red: -5 kcal/e). Of 35 residues surrounding the PCB chromophore within a distance of 5 Å, 23 are identical in Cph1 Δ 2 and *phy*A65. The remaining 12 residues are either from the divergent N termini (Cph1 Δ 2 \rightarrow *phy*A65: L15T, I20H), surface exposed (Y458D), conservatively exchanged (S206T, S255A, Y257H, L264M, T274V, L469M) or have slightly larger aliphatic side chains (A256P, A288V, A457P). The P1 subdomain of *phy*A65 (light green) is a unique and structurally not yet characterized N-terminal extension of plant phytochromes. This figure was made by PyMol (3).

1. Eswar N, et al. (2006) Comparative protein structure modeling with MODELLER. Curr Protocols Bioinformatics Supplement 15:5.6.1–5.6.30.

Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041.
DeLano WL (2002). The PyMOL Molecular Graphics System. www.pymol.org (DeLano Scientific, San Carlos, CA).

	Cph1∆2			phyA65			
Atom	Pr	Pfr	Pr-Pfr	Pr	Pfr	Pr-Pfr	
1a	182.7	182.9	-0.2	182.6	182.5	+ 0.1	
1b	184.1		+ 1.2				
2	37.1	37.3	-0.2	36.8	37.0	-0.2	
2a	38.0		+ 0.7				
2 ¹	17.4	18.2	-0.8	17.7	17.7	0	
3	53.3	54.3	-1.0	53.9	53.9	0	
3 ¹	47.5	49.7	-2.2	47.6	49.1	-1.5	
3¹a				45.8		-3.3	
3 ²	22.0	21.2	+ 0.8	21.7	21.3	+ 0.4	
3²b				23.0		+ 1.7	
4	153.9	153.5	+ 0.4				
5	87.1	88.5	-1.4	85.8	87.1	-1.3	
6	149.5	149.3	+ 0.2				
7	125.5	126.3	-0.8	124.7	124.6	+ 0.1	
7 ¹	9.3	9.2	+ 0.1	7.2	7.5	-0.3	
8	145.2	143.8	+ 1.4	146.4	143.4	+ 3.0	
8 ¹ a	22.8	22.9	-0.1	21.8	23.0	-1.2	
81b	21.8		-1.1				
8 ² a	42.9	41.8	+ 1.1	41.5	41.1	+ 0.4	
8²b	41.4		-0.4				
8³a	180.0	180.5	-0.5	179.9	179.7	+ 0.2	
8³b	179.3		-1.2				
9	127.7	130.9	-3.2	127.7	130.6	-2.9	
10	112.8	112.4	+ 0.4	113.0	111.9	+ 1.1	
11	127.7	130.9	-3.2	127.7	130.6	-2.9	
12	145.2	145.8	-0.6	146.4	144.5	+ 1.9	
12 ¹	20.4	20.5	-0.1	21.8	21.0	+ 0.8	
12 ²	38.1	38.4	-0.3	41.5	39.0	+ 2.5	
12 ³	179.0	175.3	+ 3.7	177.5	174.7	+ 2.8	
13	126.4	130.7	-4.3	123.7	130.1	-6.4	
13 ¹	11.4	11.6	-0.2	10.0	12.1	-2.1	
14	145.9	152.0	-6.1	146.6	150.5	-3.9	
15	93.2	91.6	+ 1.6	93.3	92.3	+ 1.0	
16	145.9	151.6	-6.7	146.6	150.5	-3.9	
17	142.1	137.5	+ 4.6	142.6	138.6	+ 4.0	
17 ¹	9.9	10.0	-0.1	10.3	10.3	0	
18	134.1	140.5	-6.4	133.3	140.1	-6.8	
18 ¹	16.5	15.7	+ 0.8	16.6			
18 ²	13.2	13.3	-0.1				
19	172.7	169.1	+ 3.6	172.4	169.6	+ 2.8	

Table S1. The ¹³C chemical shift assignments obtained in the present work

PNAS PNAS

Table S2. The $^1\mathrm{H}$ and $^{15}\mathrm{N}$ chemical shift assignments obtained in the present work

PNAS PNAS

	Pr			Pfr	
δ _N (ppm) 160.5 158.1 147.0 131.9	Atom N22, N23 N21 N24	δ _н (ppm) 10.9, 11.7 10.9 9.9	δ _N (ppm) 158.6 155.8 142.6 138.0	Atom N22, N23 N21 N24	δ _н (ppm) 11.7, 11.7 10.6 9.6