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Tissue Samples. Frozen unfixed tissue was obtained from 55
neuropathologically and neurologically normal controls aged
20–99 years, which were categorized into four age ranges: 20–39,
40–59, 60–79, and 80–99 years (Table S1). Brain regions used in
the study were the superior frontal gyrus (SFG), postcentral
gyrus (PCG), hippocampus (HC), and entorhinal cortex (EC),
and cases were preferentially selected where tissue from at least
two brain regions were available from the same individual brain.
Cases were 85% Caucasian and 15% African American, bal-
anced across genders and age ranges to avoid error caused by
racial skewing. A total of 174 tissue samples were obtained from
seven well established National Institute on Aging Alzheimer’s
Disease brain banks located at the University of California
Irvine, Sun Health Research Institute, University of Rochester,
Johns Hopkins University, the National Institute of Child Health
and Human Development Brain and Tissue Bank for Develop-
mental Disorders at the University of Maryland, University of
Pennsylvania, and the University of Southern California. Inclu-
sion and exclusion criteria are indicated in Table S9.

Tissue Dissection, Processing, Gene-Chip Hybridization, and Quality
Control. Tissue was obtained from the SFG (crest/superior sur-
face at the genu of the corpus callosum), HC (body of the HC
at the level of the lateral geniculate nucleus), EC (crest of the
parahippocampal gyrus at the level of the anterior hippocam-
pus), and PCG (crest/superior surface of the PCG where the
gyrus meets the superior-most portion of the saggital fissure).
Total RNA was extracted from 10–200 mg of frozen, unfixed
tissue by using TRIzol reagent (Invitrogen), and purified by
using quick spin columns (Qiagen). RNA quality was assessed by
using the Agilent BioAnalyzer (Agilent Technologies) and UV
spectrophotometer for the presence of sharp peaks and 28S/18S
RNA. Each sample was individually hybridized to high-density
oligonucleotide gene chips from Affymetrix (human genome
Hg-U133 plus 2.0), which measures the expression of �50,000
transcripts and variants, including 38,500 characterized human
genes. A total of 174 microarrays were processed at the Uni-
versity of California Irvine DNA and Protein MicroArray Fa-
cility, using a robotic system and following manufacturer’s
recommendations. Briefly, total RNA (10 �g) from each sample
was used to generate first-strand cDNA by using a T7-linked-
(dT)24 primer, followed by in vitro transcription using the ENZO
BioArray High-Yield RNA transcript labeling kit to generate
biotin-labeled cRNA target. Using a robotics system (Biomek
FX MicroArray Plex SA System; Beckman Coulter) to optimize
consistency in processing and minimize handling variability, each
fragmented, biotin-labeled cRNA sample (30 mg) was individ-
ually hybridized to an Affymetrix Hg-U133 plus 2.0 chip for 16 h
and rotated at 13 rpm at 50°C. The chips were washed and
stained on a fluidics station and scanned.

After scanning, CEL files were assessed manually for grid
alignment and to ascertain absence of scratches and bubbles.
Quality control was assessed by using Affymetrix Expression
Console software, following sample and chip quality guidelines
from Affymetrix, including recommendation that background
levels not exceed 100, and that noise not exceed 4. For all cell
files, background levels were �100 (range 35.9- 74.3) and noise
was �4 (range 1.72–3.86). Detection of BioB control cRNA is
another indicator of chip and sample quality: this control is
spiked in at the detection threshold (1.5 pM) and should receive
a present detection call in at least 50% of samples, reflecting low

noise. In this study, BioB control cRNA received a present call
in all samples, indicating good detection levels of even low-
abundance transcripts and low noise. Similarly, all other spike-in
controls, BioC, BioD and Bio-cre, which are spiked-in at in-
creasing concentrations, had a present detection call in all
samples and showed increasing expression across BioC
� BioD � Bio-cre, as expected. Most important are 3� end to 5�
end signal intensity ratios for housekeeping genes such as
GAPDH. Because degradation is more likely to occur at the 5�
end of the mRNA molecule that is not protected by a poly(A) tail
a high 3�/5� ratio suggests sample degradation. Affymetrix
indicates that housekeeping 3�/5� ratios should ideally be no
higher than 4. GAPDH 3�/5� ratios in our samples were all �3
(range 0.8–2.6), indicating high RNA integrity for all samples.
Finally, the percent of genes with present detection call was
within the expected range, with all chips showing percentage
present call between 45% and 63%. To minimize technical error,
chips were all obtained from the same chip set lot and were run
in batches consisting of a random distribution of all samples
across tissues, gender, and age ranges.

Microarray Analysis. For low-level processing of Affymetrix Ge-
neChip data, we used two different model-based algorithms
(GC-RMA and PLIER) to separately derived two expression
values for each probe set represented on each and every array
within our experimental design. PLIER and GC-RMA are
model-based algorithms that fit a robust linear model to the
probe-level data, analyzing the performance of each of the
individual probes that make up a specific probe set across each
hybridized array in the experiment, applying an error model that
assumes that error depends on the individual probes that make
up a probe set, rather than on the signal alone. Model-based
algorithms such as GC-RMA and PLIER can thus detect
abnormally behaving probes more efficiently than nonmodel-
based algorithms (such as MAS 5) and generate gene expression
values with more reproducible values.

PLIER values were calculated from raw CEL files using
Expression Console v1.1 software (Affymetrix) and subse-
quently exported for analysis in GeneSpring GX software (Agi-
lent Technologies). GC-RMA values, based on the RMA soft-
ware by Irizarry et al. (1, 2), were calculated from raw CEL files
within GeneSpring GX. Two different algorithms were used to
calculate gene expression values to avoid possible error that can
occur with the use of only one method. It is now well understood
that the use of different algorithms can result in different
calculated gene expression levels for a specific probe set when
starting with same originating data scan (e.g., the scanned DAT
files). Consequently, depending on the algorithm used to deter-
mine the expression levels, a dissimilar set of genes might be
identified as being differentially expressed by each method, with
varying degrees of resulting overlap found between the two sets.
Thus, rather than relying on a single algorithm, a more conser-
vative approach is to use the overlap between multiple algo-
rithms to identify differentially affected genes, which can be used
to narrow down a list of new candidate genes by 64–73% (3). We
note that while the stringency of the overlapping list reduces false
positives, it is also likely that a number of true positives may have
also been rejected, whereas the number of false positive and false
negatives rejected by the stringency set in the overlapping list is
unknown.

In GeneSpring, GC-RMA- and PLIER-derived expression
values were processed in parallel, using default settings for
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per-chip and per-gene normalization, followed by log-
transformation of the geometric mean of expression values. To
generate a list of reliably detectable probe sets, probe sets were
first filtered on Flag detection calls to remove probe sets that
were absent on �50% of the chips for a given region (assignment
of detection calls was based on probe-pair intensities for which
one probe is a perfect match of the reference sequence and the
other is a mismatch probe for which the 13th base (of the 25
oligonucleotide reference sequence is changed). Filtering on
Flag detection call at the 50% present level reduces probe sets
with unreliable signal and very effectively reduces the incidence
of false positives (4). This step reduced the probe sets size from
�50,000 probe sets to �34,000 for each brain region, and is
referred to as the reliable probe set list. Unsupervised clustering
of groups and cases for expression across the brain was per-
formed by using Pearson correlation (average linkage algorithm
with separation ratio 1, minimum distance 0.001) on the reliable
probe set list and cases that had values for multiple brain regions.
Subsequently, the reliable probe set list was analyzed in parallel
for significant probe sets based on GC-RMA and PLIER
determined expression values, with the significance threshold set
at P � 0.01 using group sizes balanced for region/age/sex, as
indicated in Table S2. To increase the internal consistency of the
data, only cases where samples were available from at least three
brain regions from the same case were used. Variance measures
were based on the cross-gene error model in GeneSpring, which
estimates measurements of precision by combining variability of
gene expression data based on replicate samples. This error
model assumes that variability between replicates is comparable
for all genes with similarly determined expression levels and uses
this information to calculate standard deviation, which is then
used in subsequent statistical calculations. Before fitting the
error model, the genes are ordered by their control strengths. A
median standard deviation and median control strength are
calculated for each nonoverlapping set of 11 genes.

To generate a final stringent list of robust probe sets, signif-
icant lists based on GC-RMA (P � 0.01) and PLIER (P � 0.01
derived data were compared, and the probe sets identified as
significant when using both methods were selected as robust
genes for further analysis. The genes were then filtered on
confidence in GeneSpring, using a confidence level of 95% with
the Benjamini and Hochberg false discovery rate applied for
multiple testing correction, confirming that 90–98% of the probe

sets identified in the stringent list met this additional stringency
level.

Lists were data-mined by using bioinformatics software in
GeneSpring to identify pathways and functional categories that
were significantly represented in our gene lists from each brain
region. The P values were calculated by using a hypergeometric
distribution where P represents the probability of particular
mapping arising by chance, given the numbers of genes consti-
tuting a list of differentially expressed genes, relative to the set
of all genes in the category. The relative weight of each repre-
sented pathway is indicated, making highly significant pathways
and functions immediately apparent.

PCR Validation. Aging-dependent changes in immune and inflam-
mation-related genes were validated by RT-PCR using hip-
pocampal RNA a subset of the young (20–59 years, n � 10) and
aged (60–99 years, n � 10) cases used in the microarray analysis,
focusing on several key factors including complement compo-
nent C3, CD14, TLR 2, TLR 4, TLR 7, and TOLLIP (Fig. S4).
Quantitative RT-PCR was undertaken at the University of
Rochester Functional Genomics Center, using the TaqMan
Gene Expression Assays (Applied Biosystems) and a GUSB
Endogenous control assay. Each TaqMan Gene Expression
Assay is preformulated consisting of two unlabeled PCR primers
at a final concentration of 900 nM and one FAM dye-labeled
TaqMan MGB of 250 nM final concentration. Sequences of the
primers and probe are proprietary information. For each sam-
ple, 3.0 �g total RNA was reverse-transcribed by using the High
Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems). Two microliters of a 1:5 dilution for cDNA was combined
with TaqMan Universal PCR Master Mix No AmpErase UNG
(Applied Biosystems) and the Taqman Gene Expression Assay
in a 10-�l reaction set up by the CAS-1200 liquid handling
system. The real-time RT-PCR amplifications were run on an
ABI PRISM 7900 HT Sequence Detection System (Applied
Biosystems). Universal thermal cycling conditions were as fol-
lows: 10 min at 95°C, 40 cycles of denaturation at 95°C for 15 s,
and annealing and extension at 60°C for 1 min. Amplification
efficiencies were close to 100% for all assays according to
analyses of a number of different dilutions of the cDNA.
Calculations were done assuming that 1 delta Ct equals a 2-fold
difference in expression. Statistical significance was determined
by t tests for each probe by using Statview software.
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Fig. S1. Unsupervised hierarchical clustering of cases with multiple brain regions based on Pearson correlation of probe sets with present call across �50% of
chips (�33,000 probe sets) reveals that �80% of cases separate into distinct clusters of young (20–59 years) or old (60–99 years) cases. Four of 22 young cases
and 5 of 25 aged cases showed closer similarity to the nonrespective age group.
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Fig. S2. Unsupervised hierarchical clustering suggests that each brain region has a distinct signature gene expression change with aging across the four age
groups (20–39, 40–59, 60–79, and 80–99 years). Age was a more dominant clustering factor than region for the superior frontal gyrus (SFG) and postcentral gyrus
(PCG), whereas the hippocampus (HC) and entorhinal cortex (EC) clustered first by region than by age. In all regions, the youngest age groups (20–39 and 40–59
year) clustered and the two older cohorts (60–79 and 80–99 years) clustered.
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Fig. S3. Genes show sexually dimorphic patterns of expression across aging. In females, a large number of genes undergo a striking transient change in
expression levels in the fourth and fifth decades of life, in the postcentral gyrus (PCG). In the male PCG, these genes do not follow a similar expression pattern.
Each line represents the average expression level of one probe set at each of the four age groups (20–39, 40–59, 60–79, and 80–99 years).
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Fig. S4. RT-PCR confirmed aging-dependent changes in immune- and inflammation-related genes in the HC. Both RT-PCR and microarray revealed
up-regulation of complement component C3, as well as CD14 and TLRs (TLR2, TLR4, and TLR 7) and down-regulation of TOLLIP, an inhibitor of the Toll-like
signaling pathway, in aging. Values were compared between young (20–59 years) vs. aged (60–99 years) and were normalized to respective young expression
levels. Similar aging-depending changes were detected by microarray and RT-PCR. Averages � SEM: *, P � 0.05, **, P � 0.01, #, P � 0.001, �, P � 0.005, �, P �
0.0001, compared with respective young group.
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