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Information Theoretical Analysis of SARs. Over the last decade,
statistical science has been moving away from the classical Null
Hypotheses Testing (NHT, refs. 1, 2) framework. In the present
study, nonnested SAR models are subject to selection which
raises methodological issues: hypothesis testing is problematic in
this context, and the use of classical tools such as the adjusted
coefficient of multiple determination (R2) is not advocated as it
has no strong theoretical justification (3). The information-
theoretic framework for model-selection departs from the NHT
paradigm as it is based on the evaluation of multiple working
hypotheses. This evaluation of concurring hypotheses each rep-
resented by a different model is achieved through the estimation
of Kullback-Leibler (K-L) information (or distance, ref. 4):

fx)

I(fg) = ff(x)10g<g(x|0)) dx [1]

is the “information” lost when the model g (with parameters 6)
is used as an approximation of the full reality or truth f. Similarly,
I(f,g) is interpreted as the distance from the approximating
model to full reality (5). The principle of information theoretical
model selection is to find within a predefined set of models the
one that minimizes /(f,g). However, because it requires knowl-
edge both of full reality and the parameters for each candidate
model, the calculation of the K-L distance remains intractable.
Akaike (6) developed a method to approximate /(f,g) based on
the empirical log-likelihood function: the Akaike Information
Criterion (AIC):

AIC = —2log(L(y|0)) + 2p [2]

where 6 is the maximum likelihood estimate of the vector of
parameters, L(y | 0) is the logarithm of the likelihood of the data
evaluated at 0 = 0, and p is the number of estimated parameters
in the model (which includes the estimated variance).
Although AIC constitutes the foundation of the information-
theoretic model selection framework, it may perform poorly
when the sample size n is small (more precisely when n/P < 40,
ref. 5). To account for this potential source of bias, Sugiura (7)
derived the corrected Akaike’s information criterion (41Cc):

2p(p + 1)

AlCc = AIC + .
n—p-—1

[3]

Equivalently, in the context of nonlinear regression (under
assumption of normality of residuals and homoscedasticity, ref.
S5):

n

RSS
AICc = nlog + 2npn [4]

n —np — 1

where RSS is the residual sum of squares.
Information-theoretic Criteria (IC such as AIC and AICc) are
built such that the first term, representing the lack of fit of the
model to the observed data, is penalized by the second term,
which captures model complexity. The lower the IC associated
with a model, the better this model is considered in explaining
the data. In the present study, we used AIC or AICc when
appropriate. Because AIC and AICc produce relative measures,
absolute values are not relevant to compare models and the
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selection is usually based on Akaike weights. For a fitted model
i, its weight w; is given by:

e*l/ZA:
Wy = [5]

M
Eefl/2Ar
r=1

where M is the number of models in the set and A, is defined as
A; = IC; — IC i, with IC;, the IC value for the best model.
Akaike’s weights are interpreted in terms of probabilities of a
given model being the best in explaining the data within a
predefined set of alternative models. When the data support
more than a single model (i.e., no w; is higher than 0.9; ref. 5),
robust inferences can be carried out by averaging inferences
within the set of models with respect to their w;. As advocated
for non-nested models, we obtained multimodel SARs by aver-
aging the model predictions with respect to their weight:

M
8= D 8w; (61

where § is the multimodel averaged species richness and S; is the
vector of species richness inferred from model i.

Confidence Intervals and Ecoregion Ranking. The biological richness
(generally expressed as the number of species, of endemic
species or of threatened species) of regions with varying size
should be compared by controlling for the effect of area. Since
the beginning of the study of the SAR, richness has been
recognized to increase with area at a decreasing rate (8). Thus,
to control for the effect of area, the use of species-area ratios
(e.g., ref. 9) has been found to be problematic (10, 11) as this
method implicitly assumes a linear relationship between richness
and area and thus produces over-estimated relative diversity for
the smallest areas (12). Indeed, accounting for the non-linearity
of the SAR through the use of a log-linear power SAR rescaling
(a linear relationship is assumed between the logarithm of
richness and the logarithm of area) dramatically changes the
ranking of regions with respect to their biological richness.
Furthermore, this prioritization scales in better agreement with
previous studies and knowledge of global biodiversity patterns
(10, 11). Although the power model is generally assumed, it may
not hold at all scales (13) and its use may not be ubiquitously
appropriate (14-16). Moreover, it has been shown that the
choice of the SAR model affects the identification of hotspots
(17-19). Consequently, one step further in the rescaling of
biological richness with respect to area is the incorporation of the
uncertainty about the best fitting SAR model (17, 18).

The detection of biodiversity hotspots by SARs is achieved by
ranking regions with respect to their displacement above the
regression line (17-20). How to quantify the displacement above
the SAR is still controversial. The residuals of the SAR have
been used repeatedly (17-20) but fail to provide a formal
criterion for when to select a region as being a hotspot (21). The
use of the 95% confidence limits of the intercept of the log-linear
power SAR (21) is also problematic as it relies on the assumption
that the dataset could adequately be described by a linearized
power SAR.

Devising a ranking methodology robust to the processes that
underlie species-area patterns we compared the regions with
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respect to their position in a confidence interval of the multi-
model SAR. The confidence interval was constructed such that
it incorporates uncertainty regarding both model selection and
parameter estimation.

We used the percentile method following a non parametric
bootstrap scheme (22, 23) to generate a high number of resa-
mples in the following manner:

1. One of the SAR models included in the analysis was selected
with a probability equal to its weight as calculated from Eq. 6 on
the observed dataset.

2. The selected model was fitted to the observed dataset under
study.

3. The vectors of inferred species richness (regression line) and
residuals were obtained from the regression and the residuals
were standardized in the sense of ref. 24.

4. The residuals were sampled completely at random with
replacement until sample size reached that of the dataset to form
a vector of modified residuals.

5. The vector of modified residuals was added to the vector of
inferred species richness to form the resample (bootstrap set of
pseudo responses).
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For each observed dataset, we obtained a collection of 9,999
multimodel SARs inferred from each of the resamples by
applying the whole procedure of model selection and averaging.
For each ecoregion in the dataset the 9,999 bootstrap estimates
of species richness were sorted in ascending order to provide the
percentile confidence intervals (23): the limits of an approximate
(1 — «)100% confidence interval are given by choosing the rth
and sth values in the ordered vector of bootstrap estimates such
thatr = (b + 1)aands = (b + 1)(1 — «). In the present study,
the limits of a 95% confidence interval for a point estimate of
species richness are given by the 250th and the 9,750th values.

In so doing, we were able to rank the ecoregions of a dataset
with respect to their biological richness by positioning their
observed richness in the associated vectors of ordered bootstrap
species richness estimates: the higher the position of the ob-
served species richness in the vector of bootstrap estimates the
higher the ecoregion in the ranking. Note that when several
ecoregions fell in the same position, they were ranked using the
vertical distance (expressed as species richness) to the closest
inferior bootstrap resample: the higher the distance the higher
the ecoregion in the ranking.
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Fig.S1. SAR model selection patterns for the BIC analysis. Patterns of model selection are presented in each biome for amphibians (Amp.), reptiles (Rep.), birds
(Avi.), mammals (Mam.), total vertebrates (Tot.), and vascular plants (Vas.). The height of each fraction of the colored band is proportional to the probability
(Akaike weight) that each model [see color legend, exponential (expo.), negative exponential (neg. expo.), rational function (rational func.)] is the best in
explaining the dataset. A lack of colored band means that none of the eight SAR models was statistically valid for the corresponding dataset.

Guilhaumon et al.Jlwww.pnas.org/cgi/content/short/0803610105| 30f8



http://www.pnas.org/cgi/content/short/0803610105

SINPAS

Table S1. Description of the dataset

Biome  Number of ecoregions Area, km? Amphibians  Reptiles Mammals Birds Total vertebrates  Vascular plants
1 228 14.4-746,652.7 0-227 0-257 0-272 0-785 1-1,413 30-10,000
2 54 101.5-318,937.1 0-68 0-217 0-183 0-491 6-745 110-4,300
3 17 39.4-222,334 0-114 0-214 0-309 0-470 180-918 167-4,900
4 83 145.9-850,317.2 0-67 0-162 0-145 0-585 1-833 225-5,000
5 53 2,901.9-358,833.4 0-70 0-84 0-169 0-673 80-947 459-5,000
6 28 2,035.4-3,922,554.7 0-11 0-7 4-79 70-270 75-366 258-1,600
7 47 14.7-3,042,451.4 0-84 0-191 0-241 4-712 4-1225 30-6,500
8 42 167.4-997,072.7 0-42 0-131 0-134 6-458 6-585 90-3,500
9 25 628.4-178,951.6 0-36 0-90 14-143 139-508 230-767 80-1,700
10 49 1,238.7-629,190.4 0-93 0-118 0-203 0-538 50-786 400-3,800
1 34 877-71,040,235.6 0-5 0-3 0-50 0-208 2-261 24-1,000
12 39 2,867.9-358,243.2 0-31 0-136 10-121 103-337 125-517 400-6,300
13 93 7.7-4,629,416.3 0-41 0-191 0-162 0-405 4-717 80-4,850
Number of ecoregions, area range, and richness ranges for each taxa are presented for all biomes studied. See Fig. S1 for biome names.
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Table S2. Forms of SAR used in the study

Lo L

Name Formula Number of parameters Shape Asymptotic nature
Power S = cA? 2 Convex No
Exponential S = ¢ + zlog(A) 2 Convex No
Negative exponential S = c(1 - exp(-zA)) 2 Convex Yes
Monod S=(cA)/(z+A) 2 Convex Yes
Rational function S=(c+zA) /(1 + fA) 3 Sigmoid Yes
Logistic S=c/(1+ exp(-zA + f) 3 Sigmoid Yes

" Lomolino S =c/ 1+ (zloaf/A) 3 Sigmoid Yes
Cumulative Weibull S = c(1 - exp(-zAf)) 3 Sigmoid Yes

=
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Table S3. R? values for multimodel inferences

Biomes
1 2 3 4 5 6 7 8 9 10 1 12 13 Means
Amp 0.17 0.02 0.36 - - 0.34 0.3 - 0.1 0.06 - 0.21 - 0.2
Rep 0.3 0.06 0.56 - - 0.15 0.43 0.1 - 0.04 0.25 0.21 0.06 0.22
Avi - 0.51 0.47 - - 0.45 0.58 0.44 0.33 - 0.29 0.39 0.1 0.4
Mam 0.46 0.33 0.4 0.45 0.22 0.52 0.38 0.46 0.24 0.02 0.21 0.38 - 0.34
Tot - 0.45 0.37 - - 0.49 0.69 0.56 0.42 - 0.23 0.47 0.14 0.42
Vas - - 0.69 0.25 0.14 0.47 0.41 0.27 0.23 - 0.26 0.16 - 0.32
Means 0.31 0.27 0.48 0.35 0.18 0.4 0.47 0.37 0.27 0.04 0.25 0.3 0.1 0.32
See Fig. S1 for biomes names and taxa description. Dash cells correspond to biome-taxon datasets that could not be fit by any of the models.
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Table S4. Model selection procedure results

Biome Higher taxa power expo neg. expo. Monod rational func. logistic Lomolino Weibull
1 Amp - - 1 - - - - -

1 Rep 0.454 0.106 wi < 10e-4 0.006 0.002 0.078 0.177 0.176
1 Avi - - - - - - - -

1 Mam - 1 - - - - - -

1 Tot - - - - - - - -

1 Vas - - - - - - - -

2 Amp 0.437 0.467 - - - 0.096 - -

2 Rep - - 0.377 0.313 0.09 - 0.111 0.109
2 Avi 0.05 0.26 0.054 0.212 0.066 0.102 0.135 0.122
2 Mam - 0.079 0.298 0.266 0.082 0.093 0.085 0.097
2 Tot 0.014 0.079 0.282 0.303 0.094 - 0.096 0.133
2 Vas - - - - - - - -

3 Amp 0.181 0.237 0.261 0.267 0.013 0.012 0.014 0.014
3 Rep 0.302 0.192 - 0.414 0.03 - 0.03 0.031
3 Avi 0.387 0.171 0.007 - 0.141 0.168 0.063 0.063
3 Mam 0.223 0.146 0.231 0.215 0.04 0.066 0.039 0.04
3 Tot 0.137 0.135 0.212 0.206 0.072 0.142 0.039 0.057
3 Vas 0.384 0.039 0.118 0.232 0.041 0.031 0.077 0.078
4 Amp - - - - - - - -

4 Rep - - - - - - - -

4 Avi - - - - - - - -

4 Mam 0.089 0.22 0.095 0.437 0.145 0.014 - -

4 Tot - - - - - - - -

4 Vas - - 0.253 0.445 0.148 - 0.154 -

5 Amp - - - - - - - -

5 Rep - - - - - - - -

5 Avi - - - - - - - -

5 Mam - - 0.281 0.549 0.17 - - -

5 Tot - - - - - - - -

5 Vas - - 1 - - - - -

6 Amp 0.122 0.237 0.183 0.249 0.059 0.036 0.06 0.054
6 Rep 0.285 0.249 0.137 0.167 0.025 0.053 0.042 0.042
6 Avi 0.442 0.165 - - - 0.169 0.112 0.112
6 Mam 0.357 0.361 0.007 0.041 0.01 0.027 0.1 0.098
6 Tot 0.505 0.193 - - - 0.046 0.128 0.128
6 Vas 0.332 0.362 0.018 0.067 0.017 0.024 0.09 0.089
7 Amp 0.037 0.1 0.183 0.288 0.084 0.103 0.086 0.119
7 Rep 0.007 0.034 0.304 0.245 0.072 0.152 0.074 0.112
7 Avi 0.229 0.456 - - - - 0.171 0.144
7 Mam 0.253 0.51 - - - 0.024 0.108 0.105
7 Tot 0.111 0.257 - 0.031 0.009 wi < 10e-4 0.314 0.277
7 Vas 0.47 0.19 - - - 0.015 0.162 0.163
8 Amp - - - - - - - -

8 Rep - 0.278 - 0.362 0.103 0.152 0.104 -

8 Avi 0.102 0.302 0.12 0.241 0.071 - 0.09 0.073
8 Mam 0.111 0.263 0.167 0.231 0.068 0.046 0.07 0.043
8 Tot 0.068 0.23 0.111 0.303 0.089 0.013 0.103 0.083
8 Vas 0.08 0.147 0.271 0.213 0.063 0.076 0.071 0.08
9 Amp 0.372 - - 0.329 0.07 0.07 0.079 0.079
9 Rep - - - - - - - -

9 Avi 0.212 0.157 - - - 0.581 - 0.051
9 Mam 0.326 0.209 - - - 0.308 0.078 0.078
9 Tot 0.218 0.13 - - - 0.547 0.052 0.052
9 Vas 0.331 0.211 0.041 0.075 0.018 0.164 0.079 0.079
10 Amp 0.121 0.125 0.361 0.231 0.063 - - 0.099
10 Rep 0.156 0.159 0.238 0.198 0.055 0.037 0.088 0.07
10 Avi - - - - - - - -

10 Mam - - - - - 0.501 0.499 -

10 Tot - - - - - - - -

10 Vas - - - - - - - -

11 Amp - - - - - - - -

11 Rep 0.196 0.221 0.324 0.259 wi < 10e-4 wi < 10e-4 wi < 10e-4 wi < 10e-4
1 Avi - - 0.362 0.243 0.065 0.152 0.072 0.105
11 Mam 0.046 0.072 0.337 0.216 0.058 0.113 0.067 0.091
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Biome Higher taxa power expo neg. expo. Monod rational func. logistic Lomolino Weibull
11 Tot 0.05 0.084 0.305 0.233 0.064 0.107 0.07 0.086
11 Vas - 0.133 0.205 0.227 0.062 0.214 0.066 0.093
12 Amp 0.017 0.024 0.486 0.169 0.047 0.001 0.108 0.148
12 Rep - - 0.343 0.513 0.144 - - -

12 Avi 0.012 0.021 0.228 0.164 0.047 0.427 - 0.101
12 Mam 0.034 0.072 0.285 0.227 0.065 0.162 0.067 0.088
12 Tot 0.007 0.015 0.297 0.15 0.043 0.394 - 0.094
12 Vas 0.027 0.033 0.428 0.22 0.063 0.003 0.097 0.128
13 Amp - - - - - - - -

13 Rep - - 1 - - - - -

13 Avi 0.247 0.281 0.081 0.131 0.044 0.038 0.091 0.087
13 Mam - - - - - - - -

13 Tot - 0.177 0.616 0.207 - - -

13 Vas - - - - - - - -

For each biome, values correspond to model weights (wi) that are equivalent to model probabilities in being the best to fit the dataset (see Fig. S1 for biome
names, taxa, and model description). Dash cells correspond to biome-taxon datasets that could not be fit by any of the models.
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