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Methods

Microfluidics. The overall design of our microfluidic device was
based on the Tesla microfluidic chamber design developed in ref.
1 for use with Saccharomyces cerevisiae. The original Tesla
microchemostat (TuC) design implemented the classic Tesla
diode loop (2-4) modified for imaging a monolayer culture of
growing yeast cells. We made several modifications to adapt it
for application to E. coli (Fig. S1A4). First, we lowered the height
of the diode side-arm, which forms the shallow trapping region
capable of constraining a population of cells to a common focal
plane. For imaging yeast cells, the cell-trapping region was
fabricated to be 4 wm high, which is the approximate diameter
of a yeast cell. For imaging E. coli cells, we lowered this height
to 1 um, which is the approximate diameter of a cylindrical E.
coli cell of the K-12 MG1655 strain. To maintain the proper
resistance ratio for flow splitting, we also lowered the delivery
channel height to 3 um. Last, the cell-trapping region was split
into three parallel channels for simultaneous observation of
three isolated E. coli colonies. The width of each parallel
chamber was limited to 30 wm so as not to exceed the width/
height aspect ratio of 30 for PDMS and risk structural collapse
of the chamber “ceilings.”

To achieve long experimental runs, a critical design objective
was to avoid clogging between the media inlet and the trapping
region. We developed a three-port chip design in which the main
channel extending from the cell port splits into a media channel
and a waste channel downstream of the trapping region. Once
cells are loaded, they receive nutrients via a combination of
diffusion and advection. Supplied with abundant nutrients, the
cells are able to grow exponentially to fill the trapping region in
a monolayer. The open walls of the trapping region allow for
peripheral cells to escape when they are pushed into the high
flow of the main channel, thus permitting continuous exponen-
tial growth long after the trapping region fills.

Microscopy and Image Analysis. All images were acquired by using
a Hamamatsu Orca-ER cooled-CCD camera mounted on a
Nikon Diaphot TMD inverted microscope. A graphical user
interface written in LabVIEW (National Instruments) con-
trolled the automated acquisition of bright-field images and
provided scanning capability via motorized axis control. At each
time point, three slightly overlapping images were collected at
X100 magnification. The high magnification provided a large
number of pixels per cell to aid in image segmentation, while
scanning allowed the imaging of many cells. Proper focus was
maintained throughout each experiment via manual adjustment.

After each imaging session, a complete profile of the system
at each time point was assembled by stitching together the three
overlapping images. For each of these merged images, the
positions and orientations of individual cells were determined by
using a custom image segmentation software suite written in IDL
(ITT Visual Information Solutions). Each composite image was
processed by using standard grayscale morphology techniques as
reported (1). The major steps of the recognition process are
shown in (Fig. S1 B-D). To determine the coarse-grained
velocity profiles averaged across the channel, we used the
standard particle-image velocimetry technique based on the
Minimum Quadratic Difference method (5), followed by filter-
ing using the local signal-to-noise ratio (6).
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Overview of the Experiments. In our experimental studies of
bacterial colony growth, we used strains of E. coli that lack
flagella. These cells had a rod-like shape with a length-to-
diameter ratio that varied between 2 and 5, depending on the age
of the cell (Fig. S1B). For experimentation, the cells were loaded
into the three channels of the microfluidic device by directing
flow in the “forward” direction. Upon trapping a few cells in
each region, the flow was reversed and slowed to steadily supply
fresh nutrients to the cells over an experimental duration of
~4-6 h. Cells continued to grow and fill the chambers during this
time, while images were periodically acquired in the bright-field
channel at 2-min intervals. Extended runtimes were possible
because of the use of fluid flow to continuously purge peripheral
E. coli cells growing beyond the channel boundaries. For optimal
E. coli growth, chip temperature was maintained at 37°C by
flowing heated water through deep thermal channels fabricated
into the device.

Additionally, we performed two experiments to measure the
time scales of nutrient distribution over the field of view in our
channel. In the first experiment, we introduced a red fluorescent
dye with a molecular weight similar to that of the largest cell
nutrient to the flow of media at a precise time and measured its
diffusion into an empty cell-trapping region. We recorded the
fluorescence averaged both within one region in the 3-um-thick
bypass channel and within three distinct regions in the cell-
trapping area distributed over the field of view of the original
experiment (left cyan, middle orange, and right red boxed
regions in Fig. S2). We observed uniform distribution of the dye
throughout the field of view within 2-3 min after introduction
(Fig. S2 A and C). We also observed a slow upward trend in
concentration after the fast initial transient, which was evidently
caused by variation in dye concentration within the thick bypass
channel. Indeed, after rescaling the fluorescence signal in the
bypass channel by a factor of 1:2.5, it matched the fluorescence
signal within the cell trapping region very well. We attribute the
observed deviation in the scaling coefficient from the nominal
ratio of depths for shallow and deep channels (1:3) to the
nonlinear relationship between the depth of a layer and its
integral optical fluorescence.

To examine any difference in diffusion time scales in a full
channel, we next repeated this experiment in a chamber packed
with cells. Although our intention was to conduct this experi-
ment at the fully packed limit, some empty pockets of media
remained in the cell-trapping channels caused by bulk cell flow
(Fig. S2 B and D). In this experiment, fluorescence measured
within the regions filled with cells was ~60% smaller than within
the empty regions of the channel. This was to be expected,
because a large volume fraction of the channels is filled with
nonfluorescing cells. Despite the presence of the cells, the dye
distribution again quickly became nearly uniform within the field
of view (after ~5-10 min; Fig. S2 B and D), indicating fast
nutrient delivery to the cells. Additionally, we took advantage of
the empty regions in this experiment to compare the fluores-
cence in an empty channel region with the fluorescence in the
thick bypass channel region (rescaled by using the same 1:2.5
ratio as in the empty channel experiment). As Fig. S2D shows,
these two curves approach each other after ~15 min. The time
to reach equilibrium is longer in this case because the selected
empty area is significantly further away from the inlet than our
typical experimental region.

In summary, we have confirmed through experimentation that
the volume concentration of nutrients in the working area
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becomes uniform on a time scale of 5-15 min for both empty and
full channels, which is much faster than the time scale of colony
development. Thus, the growth rates of our experimental colo-
nies should not be limited by poor nutrient delivery.

Continuum Description of the Bacterial Growth and Ordering

General Description. The continuum description of cell ordering is
similar in spirit to the phenomenological Landau-de Gennes
theory developed for dense liquid crystals and polymeric solu-
tions (see, e.g., ref. 7). Each cell is characterized by a unit
pseudovector u specifying the orientation of the cell (= u
directions are equivalent because cells are assumed apolar).
While the mean (u) is zero because of the reflection symmetry of
cells, the distribution of cell directions ¥(u) can become aniso-
tropic. The anisotropy of the distribution is characterized by the
tensor order parameter Q with components

Oy = (uu; — d'8;), [S1]

where i, j € x, z, §; is the Kroneker symbol, d is the number of
space dimensions, and brackets denote averaging over the
mesoscopic volume. Tensor Q is symmetric and traceless, and in
two dimensions it can be written in the form:

1
;= ZQ(”i”j - 550')7 [S2]

where n; are components of the Frank director (the unit vector
aligned with the mean orientation of the cells in a mesoscopic
volume), and Q = VQ,.> + Q.7 is the scalar order parameter
(the eigenvalue of Q).

In the theory of liquid crystals, the continuous description of
nematics is typically based on the equations for the director field
and the velocity field (8). Such a description works well below the
critical point and when the scalar order parameter is everywhere
close to unity. However, close to the isotropic-nematic transition,
the magnitude of the order parameter changes significantly, and
more general equations of nematohydrodynamics incorporating
the orientational order parameter are used (9). Here, we adopt
this description with some important modifications resulting
from the differences between rod-like molecules and macro-
scopic rod-like cells. One such difference is that cells are much
less influenced by thermal fluctuations, and accordingly, free-
energy minimization plays a minor role in the dynamics of the
order parameter. Second, unlike molecules, living cells grow and
divide, and this process profoundly alters the collective dynam-
ics.

Let us first present the standard set of equations of “nema-
tohydrodynamics™ (9) and then introduce the differences caused
by the cell dynamics. Flows of liquid crystals usually are suffi-
ciently slow to neglect compressibility and assume constant
volume density, which leaves only two equations: one for the
velocity field and another for the order parameter. The velocity
equation has the usual form of momentum balance:

Dov it s3
Dt o+ [S3]
where D/Dt = 9, + vV is the material derivative, p is the density,
o is the stress tensor, and f is the volume force. The local
dynamics of the order parameter are described by the equation:

DQO(B .

b T K0, — Qkle) + Brl + TH, g, [S4]
where KL‘ZA = (davp — dpva)/2 and K[f}; = (davp + 9pve)/2 are the
symmetric—traceless and antisymmetric parts of the strain rate
tensor kapg = dqoVg, respectively.
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The last term in Eq. S4 describes the entropic relaxation of the
nonconserved order parameter caused by minimization of the

free energy,
H, = oF d T <8F8 ) S5
aB T 60(13 r 56 af . [ ]

The free energy functional, F, has two parts,
F=F;c+Fp, [S6]

where in 2D

Fre= fdxp(x,t)[AzTr(Q'Q) + A(Tr(QQQQ)* + .. .]

[S7]

is the Landau-de Gennes free energy caused by the ordering of
cells, and

FF = fdxp(x7 t)[Kl(aaQB‘y)z + KZ(athuB)z] [SS]

is the Frank elastic free energy. Here, A, and A4 are parameters
dependent on the local cell density, p(x, ¢), and K, are elastic
moduli.

Substituting S2 into S6, we get

F= deP(X, D[A,0% + A,0% + K1(9,0p,)* + K2(9.0up)°].

[S9]

To close this system of equations, a constitutive relation coupling
the stress tensor to the strain and strain rate fields is needed. In
the theory of liquid crystals (9), a linear constitutive relation is
usually assumed,

Oup = B3Kkih — BiHEL + HE0 5 — 0, HEL

oF

— m 8BQM, —pﬁaﬁ, [510]
where the first four terms correspond to irreversible (viscous)
stress and the last two terms describe reversible stress caused by
distortion and isotropic pressure. Ho,g = —0F/8Q.g is the mo-
lecular field. The pressure, p, is, of course, density-dependent,
and it diverges as the density approaches the close-packing
density limit. Note that in fact the close-packing density depends
on the order parameter itself: for O = 0, the rods are completely
disordered, and the close-packing density is low (it depends on
the aspect ratio of the rods, /, of course), whereas when Q — 1,
the close-packing density approaches 1. We will model this by
choosing

p =Pexpls(p — po)]. [S11]
This relation implies that the pressure is exponentially small for
p < p. (parameter s is large) and exponentially large for p > p..
The close-packing density, p,, is itself a function of the order
parameter, O, where more ordered populations have higher
close-packing densities. We model this dependency by the
relation, p. = pf + (p — p)O>.

To describe the “cellular fluid dynamics,” we must take into
account the fact that the density of cells can vary significantly
both in space and time. Therefore, we must add a continuity
equation for the cell density,
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Py V(pv) = ap.

Y [S12]

Here, the rhs describes the exponential growth of the cell mass.

If cells move in close proximity to the top and/or bottom
plates, they experience drag caused by the wall friction. This
effect can be described by including the volume force, f, which
in the simplest approximation is linearly proportional to the cell

velocity, v, such that f = —upv. Thus, the momentum equation
yields
bov_ g S13
Dr o — upv. [S13]

In low-Reynolds number regimes typical for cell motion, the
inertial effects can be neglected, and the momentum equation
(S3) yields the velocity of cells as a gradient of the stress tensor,

v=pu 'Vo. [S14]
However, as we shall see, using the full momentum equation
(S13) yields a better agreement between the continuum theory
and our numerical simulations.

The set of equations (S4-S13) form the basis for a study of cell
growth and transport. However, to simplify the problem, in the
following we take into account that the cells are only weakly
affected by thermal fluctuations and therefore neglect thermo-
dynamic effects. Specifically, we neglect the free-energy contri-
butions to the order parameter dynamics and the stress tensor.
Note that in this case Eq. S4 does not guarantee that Q < 1
according to its definition. To uphold this condition heuristically,
we multiply the rhs of Eq. S4 by the scaling factor 1 — Q2. As a
result, we arrive at the following set of equations:

DQD‘B a a s
D = (1= QK0 = Quprily + Brgp]  [S15]
ap+V(pv) = ap [S16]
bev_ g s17
Di P — Kpv. [S17]

According to this set of equations, for a constant «, the total
mass of cells grows exponentially as M « exp(at). However, the
outward flux of cells saturates the local growth of cell density at
the expense of the exponential expansion of the area occupied
by cells.

Pressure-Independent Growth in One Dimension (Model A). For the
description of the expansion flow in a straight open channel, we
can assume that all fields depend only on time and coordinate
—L < z < L along the channel. Therefore, this full set of
equations can be reduced to a 1D model

d,p + d.(pv) = ap [S18]
dq +va.q =B —g*a.v [S19]
d(pv) +va.(pv) = —a.p — pnpv, [S20]

where ¢ = Q = Q.,, v =1, « is the constant cell growth rate,
w is the bottom friction coefficient (we assume that the friction
force is proportional to the cell velocity and independent of
orientation), and the pressure, p, satisfies the constitutive rela-
tion (S11) discussed above.

The solution in which the density, p(f), and the order param-
eter, g(t), are independent of z; the velocity is a linear function
of z (v = vy(t)z); and the pressure is parabolic (p = po(?)(1 —
Z?/L?)) satisfies Eqs. S18-S20 at all times. The normalized
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“magnitudes” of this solution, p, vy, g, and p, satisfy the set of
three ODEs:

p = pla —vy) [S21]
g =B(1 - ¢’y [S22]
Vo =2p L%y — (a + w)v,. [S23]

Strictly speaking, the parabolic pressure profile and uniform
density distribution do not satisfy the constitutive relation.
However, because the dependence of pressure on the density is
very sharp near the close-packing density of cells, the variations
of density from the uniform state that account for a parabolic
pressure distribution are very small and can be neglected.
According to this set of equations, initially the density grows
exponentially with rate a while the pressure remains low and the
velocity gradient is absent. Once the density approaches the
random close-packing density, p., the pressure begins to rise
rapidly, and it produces a rapidly increasing expansion flow (Fig.
2). This flow removes excess cells from the channel and equil-
ibrates the density at near the close-packed limit. There is a
noticeable overshoot in the time dependence of the density that
can be explained by the delay between the growth of the cells and
the establishment of the flow (which has to overcome friction).
This effect would be especially strong in long channels where the
velocity at the ends of the channel has to reach large values.
Initially, the density approaches the random close-packed den-
sity of cells. Subsequently, the expansion flow orients the cells
along the channel axis, which in turn increases the close-packing
density. Eventually, the system reaches a stationary regime with
uniform density and velocity gradient, where cell growth is
exactly balanced by the outgoing flux of cells. In this regime, gg =
1 and p ~ p?. The velocity gradient, vy, equals «, and the
corresponding pressure, po, equals (o + p)pal.?/2. According to
our model, cell density grows exponentially in the absence of
flow and may only saturate when the velocity gradient reaches
a value equal to the growth rate of the cells. For long channels,
the establishment of the stationary velocity profile takes a long
time, as the flow velocity has to overcome friction to reach high
values near the open ends of the channels. This leads to the
“overshoot” of the density, which then gradually diminishes as
the velocity gradient increases.

Because the pressure scales as the square of the length of the
channel, for long channels it reaches very high values in the
middle of the colony. In fact, this high-pressure behavior is
mitigated by the cell growth saturation. To simulate this effect,
we used a modification of the growth model described in the next
subsection.

Pressure-Dependent Growth in One Dimension (Model B). ODE
model B has the same functional form (S21-S23); however, the
growth rate « is assumed to be a function of pressure, a = a1 —
(p/pc)?], such that cell growth terminates when the pressure
reaches a critical value, p. (10). In fact, the pressure is not
uniform across the channel; therefore the growth of cells will
first saturate in the middle where the pressure is maximal,
followed by propagation toward the channel periphery. How-
ever, in this simplified model we ignore this subtlety. It turns out
that this approximation works quite well in describing the results
of the DES (Fig. 2).

Discrete Element Simulations

Details of DES Algorithm. To model the proliferation of cells in a
microfluidic environment, we generalized an algorithm that we
developed earlier to describe the dynamics of granular rods (11).
This algorithm is based on the well known method of molecular
dynamics (MD) simulations (12), which are used in different
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areas of statistical physics. The main idea of the method is to
follow the dynamics of the individual “particles” that constitute
the system under study. In the case of a gas, these particles are
molecules, and in the case of a granular material, each particle
represents a single grain.

To simulate the motion, growth, and interaction of bacteria,
we model every cell as a spherocylinder (circular cylinder with
spherical caps) of diameter, d, total length, / + d, mass, m, and
moment of inertia, /. In our 2D simulations, each rod has two
translational and one rotational degree of freedom. The numer-
ical algorithm that we used in our simulations is based on the
“soft spheres” MD technique (13). The interaction between
overlapping spherocylinders is modeled as the interaction be-
tween viscoelastic virtual spheres of diameter d centered at the
closest points between the axes of spherocylinders so that the
cylinders are in contact whenever the virtual spheres are. The
normal forces between virtual spheres are computed by using the
Hertzian model, and the tangential frictional forces are com-
puted by using dynamic Coulomb friction.

In our algorithm, two virtual spheres of diameter d, with
centers at r; and r;, and with velocities v; and v;, interact via the
force, F; = F,n; + F,, where F,, = k,,8*? — v,M.,dv, is the normal
force and F, = —y,M,5'%v, is the tangential force. The magnitude
of the tangential force is bounded from above by the sliding
friction force, wu..F,. Here, M, = M/2 is reduced mass for
cell-cell interaction, M is the mass of a cell, 6 =d — r; and v,
= v;; - n; are the overlap and relative velocity in the direction of
the normal, n; = (r; — r;)/ry;, and tangential direction t; = v,/v,
is specified by the relative tangential velocity, v, = v; — v,n;;. DES
is performed in reduced units, and all quantities are normalized
by an appropriate combination of the diameter, d, mass of virtual
sphere, m, and gravitational acceleration, g. Typical values of
material parameters are k,, = 2 X 10° (mg/d) and vy, = v, = 2.2 X
102 (g/d)'. The coefficients of friction for cell-cell and cell-wall
interactions are u. = 0.1 and ., = 0.8, respectively.

Once the forces arising from the interactions of virtual spheres
are computed, they are applied to the cells. Cell motion is
calculated by integrating Newton’s equations for the forces and
torques produced by interactions with the neighboring cells and
walls of the chamber. Thus, the motion of every cell is described
by the equations, mit = F, + X.F. and I'& = 3.(r. — r) X F,,
where m and I are the mass and the tensor of inertia, respectively,
r denotes the center of mass of the particle, w is the angular
velocity, F, represents external body forces, the sums run over
the contact forces applied at every contact a given particle has
(if any), and r. defines the radius vector to the contact point. For
modeling the body force caused by friction with the upper and
lower walls of the channel, we used the Stokesian drag force, F,
= —Bmyv, with B = 0.8. With the forces and torques calculated,
the equations of motion were integrated by using standard
methods for ordinary differential equations.

When computing the stress tensor from DES, we used the
following expression,

oap(X) = (04p(x, 1)),

1 I L
(g, 1) = <22r$Fz> + (mivl ), [s24]

c#i

where

1. Cookson S, Ostroff N, Pang WL, Volfson D, Hasty J (2005) Monitoring dynamics of
single-cell gene expression over multiple cell cycles. Mol Sys Biol 1: msb4100032-E1-
msb4100032-E6.

2. Tesla N (1920) US Patent 1,329:559.
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a, B=1{x,z}; rS=r, Fj§=Fce; v, ,=v— ()

e, denotes a component of the unit vector along the correspond-
ing direction; r® is a radius vector from the center of mass of a
cell to the point of contact; and indices i and ¢ run over all cells
and contacts, respectively. The overbar denotes a time average,
and brackets denote an average within the mesoscopic volume
much larger than the cell size and much smaller than the system
size. The stress tensor in Eq. S24 has two distinct components.
The first one, virial or contact, describes pairwise interactions of
grains. The second one, kinetic or Reynolds, is caused by velocity
fluctuations.

Finally, we discuss the part of the algorithm that handles cell
growth and division events. The length of a cell grows exponen-
tially in time as exp(as) until it reaches a maximal length, /,,,
which is drawn from a Gaussian distribution near a fixed length,
Iy, with a coefficient of variation of 0.3. During the division event,
the mother cell is replaced by two collinear daughter cells with
lengths taken from a peaked distribution near /,/2 to avoid
spurious synchronization of cell division events. These daughter
cells then continue to grow independently, with the repeated
process of growth and division resulting in an exponential growth
of the population.

Results of Simulations, Models C1 and C2. Cells were initially
distributed uniformly in the cavity at low packing density (py =
0.02) and random orientation. We imposed open boundary
conditions at the ends of the channel so that cells reaching these
ends were instantaneously removed from the system.

In model C1, the cell growth rate, o, was fixed as in model A,
and in model C2, the growth rate was scaled by the total pressure
acting on each cell from its neighbors as in model B. Coarse-
graining the positions, orientations, and velocities of individual
cells, we analyzed the dynamics of the density, velocity, and order
parameter fields. Representative profiles of longitudinal veloc-
ity, pressure, density, and order parameter are shown in Fig. 5 for
different times from the beginning of the simulation and for
different values of the aspect ratio, both for pressure-
independent growth (model C1) and pressure-dependent growth
(model C2).

We also used DES to fit the parameters of the continuum
model (Fig. 2). Once the parameters were established, we
compared DES with model predictions for the evolution of the
density, velocity, order parameter, and pressure with constant
and pressure-dependent growth starting from a low-density,
disordered initial condition.

Here, we present snapshots of the population structure and
velocity fields obtained in DES at three stages of colony growth
and ordering. Figs. S3 and S4 depict the colony structure and
velocity vector fields for the pressure-independent and pressure-
dependent cell growth cases, respectively. Simulations were
performed for a long channel with aspect ratio, 4 = 4.0, starting
from the low packing fraction, pp = 0.02. Snapshots correspond
to times (a) ¢t = 4.37min, (b) t = 5. 77 min, and (c) ¢t = 16.47 min.
Clearly, pressure-dependent growth results in a higher degree of
ordering and a reduction in observed “swirls.”

Finally, Fig. S5 shows the growth of a bacterial colony from a
localized initial condition rather than a uniformly seeded con-
dition. The expansion of the colony in the open channel again
leads to nematic ordering of the population, demonstrating the
applicability of our findings to colonies started from single cells.

3. Duffy DC, Schueller OJA, Brittain ST, Whitesides GM (1999) Rapid prototyping of
microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic
flow. J Micromech Microeng 9:211-217.

4. Bendib S, Francais O (2001) Analytical study of microchannel and passive microvalve
application to micropump simulator. Proc. SPIE 4593:283-291.
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Fig. S2. Experimental results for the diffusion of fluorescent dye within the chamber. (A and B) Snapshots of fluorescence after dye propagation throughout
the cell-free system (A) and the cell-packed system (B). Fluorescence is brighter in the deep (3 um) bypass channel but still nearly uniform in the shallow (1 um)
cell trapping area. (Cand D) Time series plots of fluorescence averaged over identical areas in the bypass channel (black) and in three regions of the experimental
field of view (cyan, orange, and red boxes) after dye introduction. Intensity in the bypass channel has been rescaled by a factor of 1:2.5 to match the intensity
of dyeinthe empty cell trapping area. Additionally, a time series of the averaged intensity in an empty pocket of the cell-trapping region isshown in din magenta.
(Scale bars: 100 um.)
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Fig. S3.  DES of bacterial growth in a colony with a pressure-independent growth rate (model C1) and a channel aspect ratio of A = 4.0. (Left) Snapshots of
the colony structure in the system show velocity vector fields. Each vector corresponds to the instantaneous translational velocity of a cell, where length is
normalized for visual clarity and colors (from blue to red) correspond to magnitude (from low to high). (Right) Cell orientation maps. Cell color denotes
orientation relative to the channel axis, from blue (perpendicular) to red (parallel). (A) t = 4.37min. (B) t = 5.7t min. (C) t = 16.47 min. = 20 min is the division
time.
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Fig. S4. DES of bacterial growth in a colony with a pressure-dependent growth rate (model C2) and a channel aspect ratio of A = 4.0. Snapshots of colony
structure are synchronous to the system shown in Fig. S3, but with ag = 0.7128 and p. = oxx + 0, = 2 - 10°.
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Fig. S5. Experimental results for bacterial growth and ordering from a single initial cell. (A-C) Three snapshots of E. coli monolayer growth and ordering in
a quasi-2D open microfluidic cavity taken at 169, 198, and 248 min from the beginning of the experiment. (D-F) Velocity and density profiles along the channel
corresponding to the snapshots in A-C.
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