# **Staudinger Ligation of Peptides at Non-Glycyl Residues**

Matthew B. Soellner,<sup>†,‡</sup> Annie Tam,<sup>†</sup> and Ronald T. Raines<sup>\*,†,§</sup>

Departments of Chemistry and Biochemistry, University of Wisconsin–Madison, Madison, WI 53706

| Page       | Contents                                           |  |  |  |  |
|------------|----------------------------------------------------|--|--|--|--|
| <u>S1</u>  | Table of Contents                                  |  |  |  |  |
| S2         | General Experimental Procedures                    |  |  |  |  |
| <b>S</b> 3 | <sup>1</sup> H NMR Spectrum of Compound <b>10</b>  |  |  |  |  |
| S4         | <sup>13</sup> C NMR Spectrum of Compound <b>10</b> |  |  |  |  |
| S5         | <sup>31</sup> P NMR Spectrum of Compound <b>10</b> |  |  |  |  |
| S6         | <sup>1</sup> H NMR Spectrum of Compound <b>14</b>  |  |  |  |  |
| S7         | <sup>13</sup> C NMR Spectrum of Compound 14        |  |  |  |  |
| S8         | <sup>31</sup> P NMR Spectrum of Compound 14        |  |  |  |  |
| S9         | <sup>1</sup> H NMR Spectrum of Compound 15         |  |  |  |  |
| S10        | <sup>13</sup> C NMR Spectrum of Compound 15        |  |  |  |  |
| S11        | <sup>31</sup> P NMR Spectrum of Compound 15        |  |  |  |  |
| S12        | <sup>1</sup> H NMR Spectrum of Compound <b>18</b>  |  |  |  |  |
| S13        | <sup>13</sup> C NMR Spectrum of Compound <b>18</b> |  |  |  |  |
| S14        | <sup>31</sup> P NMR Spectrum of Compound <b>18</b> |  |  |  |  |
| S15        | <sup>1</sup> H NMR Spectrum of Compound <b>21</b>  |  |  |  |  |
| S16        | <sup>13</sup> C NMR Spectrum of Compound <b>21</b> |  |  |  |  |
| S17        | <sup>31</sup> P NMR Spectrum of Compound <b>21</b> |  |  |  |  |
| S18        | <sup>1</sup> H NMR Spectrum of Compound <b>24</b>  |  |  |  |  |
| S19        | <sup>13</sup> C NMR Spectrum of Compound <b>24</b> |  |  |  |  |
| S20        | <sup>31</sup> P NMR Spectrum of Compound <b>24</b> |  |  |  |  |
| S21        | <sup>1</sup> H NMR Spectrum of Compound <b>25</b>  |  |  |  |  |
| S22        | <sup>13</sup> C NMR Spectrum of Compound <b>25</b> |  |  |  |  |
| S23        | <sup>31</sup> P NMR Spectrum of Compound <b>25</b> |  |  |  |  |
| S24        | <sup>1</sup> H NMR Spectrum of Compound <b>26</b>  |  |  |  |  |
| S25        | <sup>13</sup> C NMR Spectrum of Compound <b>26</b> |  |  |  |  |
| S26–28     | Data from Theoretical Calculations for Table 1     |  |  |  |  |
| S29-30     | Data from Theoretical Calculations for Table 2     |  |  |  |  |

#### **General Experimental Procedures**

**General Materials.** Reagent chemicals were obtained from commercial suppliers, and reagent-grade solvents were used without further purification. Reactions were performed at room temperature, and were monitored by thin-layer chromatography with visualization by UV light or staining with ninhydrin or I<sub>2</sub>. Compounds were purified with an Argonaut Flashmaster Solo automated chromatography system unless indicated otherwise. Silica gel used in flash chromatography had 230–400 mesh and 60-Å pore size.

**General Methods.** The removal of solvent "under reduced pressure" refers to the use of a rotary evaporator at water aspirator pressure (<20 torr) while maintaining the water-bath temperature below 40 °C. Residual DMF was removed from samples at high vacuum (<0.1 torr) by the use of a mechanical belt-drive oil pump.

**NMR Spectroscopy and Mass Spectrometry.** NMR spectra were obtained with a 500 or 400 MHz spectrometer at the National Magnetic Resonance Facility at Madison or the University of Wisconsin Nuclear Magnetic Resonance Facility, respectively. Carbon-13 and phosphorus-31 spectra were both proton-decoupled, and phosphorus-31 spectra were referenced against an external standard of deuterated phosphoric acid (0 ppm). Mass spectra were obtained with electrospray ionization (ESI) techniques.

General Procedures for Staudinger Ligations. Unless noted otherwise, Staudinger ligations were performed at room temperature with equimolar amounts of phosphinothioester (or phosphinoester) and azide (0.105 mmol) in a solvent (600  $\mu$ L). Solvents were not degassed, and ligations were performed under air.















































# Table 1, Cl entry

Energy (Hartrees) and optimized geometry (B3LYP/6-31+G(d,p)): E = -695.1208559674 ZPVE = 0.235964



| Center | ter Atomic Atomic |      |           | Coordinates (Angstroms) |           |  |
|--------|-------------------|------|-----------|-------------------------|-----------|--|
| Number | Number            | Туре | Х         | Y                       | Z         |  |
| 1      | 6                 | 0    | 0.087465  | 1.897620                | 0.236664  |  |
| 2      | 1                 | 0    | 0.763455  | 1.627702                | 1.059299  |  |
| 3      | 1                 | 0    | -0.908136 | 2.053239                | 0.674989  |  |
| 4      | 15                | 0    | -0.014978 | 0.481974                | -1.037368 |  |
| 5      | 16                | 0    | 0.652079  | 3.279920                | -0.745653 |  |
| 6      | 6                 | 0    | 0.930322  | 4.658624                | 0.425765  |  |
| 7      | 6                 | 0    | 0.686879  | 4.398047                | 1.891132  |  |
| 8      | 1                 | 0    | -0.330365 | 4.019619                | 2.061876  |  |
| 9      | 1                 | 0    | 1.393182  | 3.648920                | 2.275219  |  |
| 10     | 1                 | 0    | 0.807687  | 5.304554                | 2.500347  |  |
| 11     | 8                 | 0    | 1.301472  | 5.742801                | 0.033235  |  |
| 12     | 6                 | 0    | -1.585797 | -0.321909               | -0.468370 |  |
| 13     | 6                 | 0    | -2.747954 | 0.361930                | -0.812976 |  |
| 14     | 6                 | 0    | -1.669177 | -1.551367               | 0.172937  |  |
| 15     | 6                 | 0    | -3.995169 | -0.175209               | -0.514242 |  |
| 16     | 1                 | 0    | -2.676151 | 1.329083                | -1.326692 |  |
| 17     | 6                 | 0    | -2.910070 | -2.103373               | 0.475414  |  |
| 18     | 1                 | 0    | -0.750994 | -2.089760               | 0.444276  |  |
| 19     | 6                 | 0    | -4.066875 | -1.408851               | 0.130129  |  |
| 20     | 1                 | 0    | -4.914044 | 0.357424                | -0.782563 |  |
| 21     | 1                 | 0    | -2.982797 | -3.073546               | 0.978812  |  |
| 22     | 6                 | 0    | 1.318758  | -0.659998               | -0.443357 |  |
| 23     | 6                 | 0    | 2.111169  | -1.153375               | -1.474149 |  |
| 24     | 6                 | 0    | 1.587007  | -1.017915               | 0.872933  |  |
| 25     | 6                 | 0    | 3.173376  | -2.008302               | -1.197002 |  |
| 26     | 1                 | 0    | 1.893962  | -0.858976               | -2.509022 |  |
| 27     | 6                 | 0    | 2.646496  | -1.870694               | 1.165360  |  |
| 28     | 1                 | 0    | 0.965953  | -0.631536               | 1.690477  |  |
| 29     | 6                 | 0    | 3.433422  | -2.361350               | 0.125301  |  |
| 30     | 1                 | 0    | 3.802686  | -2.400379               | -2.003481 |  |
| 31     | 1                 | 0    | 2.865786  | -2.157453               | 2.199600  |  |
| 32     | 17                | 0    | 4.716987  | -3.394384               | 0.473080  |  |
| 33     | 17                | 0    | -5.572851 | -2.069316               | 0.494492  |  |

# Table 1, H entry

Energy (Hartrees) and optimized geometry (B3LYP/6-31+G(d,p)): E = -586.9660504650 ZPVE = 0.254291



| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Z         |
| 1      | 6      | 0      | 0.00000                 | 0.000000  | 0.000000  |
| 2      | 1      | 0      | 0.00000                 | 0.00000   | 1.099057  |
| 3      | 1      | 0      | 1.050846                | 0.00000   | -0.320794 |
| 4      | 15     | 0      | -0.875090               | 1.580726  | -0.611304 |
| 5      | 16     | 0      | -0.979824               | -1.317847 | -0.704786 |
| 6      | 6      | 0      | -0.098723               | -2.871334 | -0.309881 |
| 7      | 6      | 0      | 1.196692                | -2.773406 | 0.456627  |
| 8      | 1      | 0      | 1.960185                | -2.250699 | -0.136195 |
| 9      | 1      | 0      | 1.060240                | -2.217465 | 1.394381  |
| 10     | 1      | 0      | 1.602632                | -3.761190 | 0.715284  |
| 11     | 8      | 0      | -0.542198               | -3.944355 | -0.656656 |
| 12     | 6      | 0      | 0.353147                | 2.200615  | -1.852595 |
| 13     | 6      | 0      | -0.174811               | 2.380910  | -3.125341 |
| 14     | 6      | 0      | 1.692526                | 2.478115  | -1.611298 |
| 15     | 6      | 0      | 0.636360                | 2.840509  | -4.159290 |
| 16     | 1      | 0      | -1.232701               | 2.154471  | -3.308017 |
| 17     | 6      | 0      | 2.506528                | 2.938282  | -2.641952 |
| 18     | 1      | 0      | 2.109152                | 2.342342  | -0.605327 |
| 19     | 6      | 0      | 1.977607                | 3.119168  | -3.916440 |
| 20     | 1      | 0      | 0.219469                | 2.980931  | -5.161937 |
| 21     | 1      | 0      | 3.561480                | 3.159219  | -2.450038 |
| 22     | 1      | 0      | 2.617599                | 3.480992  | -4.727905 |
| 23     | 6      | 0      | -0.604607               | 2.724457  | 0.823624  |
| 24     | 6      | 0      | -1.636570               | 3.638396  | 1.001596  |
| 25     | 6      | 0      | 0.476694                | 2.724019  | 1.695813  |
| 26     | 6      | 0      | -1.588378               | 4.554240  | 2.048705  |
| 27     | 1      | 0      | -2.489438               | 3.629416  | 0.311472  |
| 28     | 6      | 0      | 0.527908                | 3.636429  | 2.745613  |
| 29     | 1      | 0      | 1.295076                | 2.005699  | 1.561890  |
| 30     | 6      | 0      | -0.504700               | 4.552405  | 2.921307  |
| 31     | 1      | 0      | -2.402241               | 5.273694  | 2.185997  |
| 32     | 1      | 0      | 1.380740                | 3.634250  | 3.432165  |
| 33     | 1      | 0      | -0.464343               | 5.270930  | 3.746574  |

# Table 1, OMe entry

Energy (Hartrees) and optimized geometry (B3LYP/6-31+G(d,p)): E = -710.3092017285 ZPVE = 0.289409



| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Z         |
| 1      | 6      | 0      | 0.000000                | 0.000000  | 0.000000  |
| 2      | 1      | 0      | 0.00000                 | 0.00000   | 1.098235  |
| 3      | 1      | 0      | 1.050033                | 0.00000   | -0.324081 |
| 4      | 15     | 0      | -0.838331               | 1.582446  | -0.666642 |
| 5      | 16     | 0      | -0.965191               | -1.317421 | -0.725521 |
| 6      | 6      | 0      | -0.293159               | -2.874031 | -0.041014 |
| 7      | 6      | 0      | 0.848235                | -2.779129 | 0.940626  |
| 8      | 1      | 0      | 1.694521                | -2.226749 | 0.509441  |
| 9      | 1      | 0      | 0.534107                | -2.253311 | 1.852944  |
| 10     | 1      | 0      | 1.220237                | -3.767614 | 1.243661  |
| 11     | 8      | 0      | -0.752206               | -3.948062 | -0.364899 |
| 12     | 6      | 0      | 0.669532                | 2.615682  | -0.950232 |
| 13     | 6      | 0      | 1.406436                | 2.280533  | -2.081831 |
| 14     | 6      | 0      | 1.047618                | 3.710225  | -0.183468 |
| 15     | 6      | 0      | 2.519336                | 3.024724  | -2.448594 |
| 16     | 1      | 0      | 1.100016                | 1.419821  | -2.689762 |
| 17     | 6      | 0      | 2.155679                | 4.470866  | -0.534594 |
| 18     | 1      | 0      | 0.464952                | 3.975713  | 0.709267  |
| 19     | 6      | 0      | 2.903636                | 4.127597  | -1.670357 |
| 20     | 1      | 0      | 3.088314                | 2.745309  | -3.343250 |
| 21     | 1      | 0      | 2.437154                | 5.333025  | 0.081571  |
| 22     | 6      | 0      | -1.594184               | 2.288450  | 0.865402  |
| 23     | 6      | 0      | -2.891515               | 2.750551  | 0.672417  |
| 24     | 6      | 0      | -1.014975               | 2.368009  | 2.126140  |
| 25     | 6      | 0      | -3.613985               | 3.293701  | 1.726695  |
| 26     | 1      | 0      | -3.343207               | 2.677754  | -0.325257 |
| 27     | 6      | 0      | -1.720798               | 2.905544  | 3.194861  |
| 28     | 1      | 0      | 0.007961                | 2.005698  | 2.287490  |
| 29     | 6      | 0      | -3.027642               | 3.377523  | 2.998731  |
| 30     | 1      | 0      | -4.636003               | 3.652551  | 1.556295  |
| 31     | 1      | 0      | -1.249420               | 2.959643  | 4.183326  |
| 32     | 7      | 0      | 4.104616                | 4.835042  | -1.976905 |
| 33     | 1      | 0      | 4.319942                | 4.795675  | -2.948179 |
| 34     | 1      | 0      | 4.073850                | 5.775417  | -1.651285 |
| 35     | 7      | 0      | -3.718716               | 4.028739  | 4.063216  |
| 36     | 1      | 0      | -4.706724               | 3.967446  | 3.957389  |
| 37     | 1      | 0      | -3.427958               | 3.694218  | 4.954648  |

# Table 2, H<sub>2</sub>O entry

Energy (Hartrees) and optimized geometry (B3LYP/6-31+G(d,p), scrf=(cpcm,solvent=H<sub>2</sub>O)): E = -780.6118320298 ZPVE = 0.297677



| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Z         |
| 1      | 7      | <br>0  | 0.000000                | 0.000000  | 0.000000  |
| 2      | 6      | 0      | 0.00000                 | 0.00000   | 1.577141  |
| 3      | 16     | 0      | 2.215100                | 0.00000   | 1.772724  |
| 4      | 6      | 0      | 2.598875                | -1.100987 | 0.422063  |
| 5      | 8      | 0      | -0.530826               | -1.007783 | 2.052438  |
| 6      | 6      | 0      | 3.024196                | 2.291200  | -3.737407 |
| 7      | 6      | 0      | 3.002645                | 2.528966  | -2.367099 |
| 8      | 6      | 0      | 2.474782                | 1.573851  | -1.503331 |
| 9      | 6      | 0      | 1.963909                | 0.378442  | -2.007599 |
| 10     | 6      | 0      | 1.990809                | 0.144343  | -3.378997 |
| 11     | 6      | 0      | 2.519710                | 1.096285  | -4.243379 |
| 12     | 6      | 0      | -1.329047               | -0.091959 | -0.617294 |
| 13     | 6      | 0      | -0.220186               | 1.402598  | 2.126633  |
| 14     | 1      | 0      | 3.605171                | -0.905066 | 0.020425  |
| 15     | 1      | 0      | 2.595407                | -2.170722 | 0.706857  |
| 16     | 1      | 0      | 3.439116                | 3.042054  | -4.418595 |
| 17     | 1      | 0      | 3.401472                | 3.466258  | -1.963809 |
| 18     | 1      | 0      | 2.464421                | 1.747409  | -0.410403 |
| 19     | 1      | 0      | 1.592880                | -0.796874 | -3.782128 |
| 20     | 1      | 0      | 2.538618                | 0.905416  | -5.321602 |
| 21     | 1      | 0      | -1.241042               | -0.170710 | -1.714729 |
| 22     | 1      | 0      | -1.914119               | -0.950103 | -0.253286 |
| 23     | 1      | 0      | -1.878301               | 0.826778  | -0.370917 |
| 24     | 1      | 0      | -0.049832               | 1.414639  | 3.211297  |
| 25     | 1      | 0      | 0.449791                | 2.145171  | 1.673688  |
| 26     | 1      | 0      | -1.254357               | 1.727516  | 1.946610  |
| 27     | 15     | 0      | 1.322679                | -0.777682 | -0.813530 |
| 28     | 6      | 0      | 0.846679                | -2.294516 | -1.645043 |
| 29     | 6      | 0      | 1.464330                | -3.485688 | -1.272231 |
| 30     | 6      | 0      | -0.138669               | -2.322545 | -2.629407 |
| 31     | 6      | 0      | 1.124328                | -4.684428 | -1.890260 |
| 32     | 1      | 0      | 2.215642                | -3.471994 | -0.463898 |
| 33     | 6      | 0      | -0.482760               | -3.516870 | -3.253015 |
| 34     | 1      | 0      | -0.670222               | -1.391118 | -2.888299 |
| 35     | 6      | 0      | 0.153401                | -4.699450 | -2.886854 |
| 36     | 1      | 0      | 1.615917                | -5.615142 | -1.586575 |
| 37     | 1      | 0      | -1.259043               | -3.527036 | -4.025706 |
| 38     | 1      | 0      | -0.116466               | -5.641702 | -3.376230 |

# Table 2, THF entry

Energy (Hartrees) and optimized geometry (B3LYP/6-31+G(d,p), scrf=(cpcm,solvent=THF)): E = -780.6118320298 ZPVE = 0.297677



| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Type   | X                       | Y         | Ζ         |
|        |        |        |                         |           |           |
| 1      | 7      | 0      | 0.00000                 | 0.00000   | 0.000000  |
| 2      | 6      | 0      | 0.00000                 | 0.000000  | 1.577141  |
| 3      | 16     | 0      | 2.215100                | 0.00000   | 1.772724  |
| 4      | 6      | 0      | 2.598875                | -1.100987 | 0.422063  |
| 5      | 8      | 0      | -0.530826               | -1.007783 | 2.052438  |
| 6      | 6      | 0      | 3.024196                | 2.291200  | -3.737407 |
| 7      | 6      | 0      | 3.002645                | 2.528966  | -2.367099 |
| 8      | 6      | 0      | 2.474782                | 1.573851  | -1.503331 |
| 9      | 6      | 0      | 1.963909                | 0.378442  | -2.007599 |
| 10     | 6      | 0      | 1.990809                | 0.144343  | -3.378997 |
| 11     | 6      | 0      | 2.519710                | 1.096285  | -4.243379 |
| 12     | 6      | 0      | -1.329047               | -0.091959 | -0.617294 |
| 13     | 6      | 0      | -0.220186               | 1.402598  | 2.126633  |
| 14     | 1      | 0      | 3.605171                | -0.905066 | 0.020425  |
| 15     | 1      | 0      | 2.595407                | -2.170722 | 0.706857  |
| 16     | 1      | 0      | 3.439116                | 3.042054  | -4.418595 |
| 17     | 1      | 0      | 3.401472                | 3.466258  | -1.963809 |
| 18     | 1      | 0      | 2.464421                | 1.747409  | -0.410403 |
| 19     | 1      | 0      | 1.592880                | -0.796874 | -3.782128 |
| 20     | 1      | 0      | 2.538618                | 0.905416  | -5.321602 |
| 21     | 1      | 0      | -1.241042               | -0.170710 | -1.714729 |
| 22     | 1      | 0      | -1.914119               | -0.950103 | -0.253286 |
| 23     | 1      | 0      | -1.878301               | 0.826778  | -0.370917 |
| 24     | 1      | 0      | -0.049832               | 1.414639  | 3.211297  |
| 25     | 1      | 0      | 0.449791                | 2.145171  | 1.673688  |
| 26     | 1      | 0      | -1.254357               | 1.727516  | 1.946610  |
| 27     | 15     | 0      | 1.322679                | -0.777682 | -0.813530 |
| 28     | 6      | 0      | 0.846679                | -2.294516 | -1.645043 |
| 29     | 6      | 0      | 1.464330                | -3.485688 | -1.272231 |
| 30     | 6      | 0      | -0.138669               | -2.322545 | -2.629407 |
| 31     | 6      | 0      | 1.124328                | -4.684428 | -1.890260 |
| 32     | 1      | 0      | 2.215642                | -3.471994 | -0.463898 |
| 33     | 6      | 0      | -0.482760               | -3.516870 | -3.253015 |
| 34     | 1      | 0      | -0.670222               | -1.391118 | -2.888299 |
| 35     | 6      | 0      | 0.153401                | -4.699450 | -2.886854 |
| 36     | 1      | 0      | 1.615917                | -5.615142 | -1.586575 |
| 37     | 1      | 0      | -1.259043               | -3.527036 | -4.025706 |
| 38     | 1      | 0      | -0.116466               | -5.641702 | -3.376230 |