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ABSTRACT

The Fragile X syndrome, a common form of
mental retardation in humans, is caused by
silencing the fragile X mental retardation (FMR1)
gene leading to the absence of the encoded fragile
X mental retardation protein 1 (FMRP). We
describe morphological and behavioral abnor-
malities for both affected humans and Fmrl
knockout mice, a putative animal model for the
human Fragile X syndrome. The aim of the
present study was to identify possible neuro-
chemical abnormalities in Fmrl knockout mice,
with particular focus on neurotransmission.
Significant region-specific differences of basal
neurotransmitter and metabolite levels were
found between wildtype and Fmrl knockout
animals, predominantly in juveniles (post-natal
days 28 to 31). Adults (postnatal days 209 to
221) showed only few abnormalities as compared
with the wildtype. In juvenile knockout mice,
aspartate and taurine were especially increased
in cortical regions, striatum, hippocampus, cere-
bellum, and brainstem. In addition, juveniles
showed an altered balance between excitatory and
inhibitory amino acids in the caudal cortex,
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hippocampus, and brainstem. We detected very
few differences in monoamine turnover in both
age stages. The results presented here provide
the first evidence that lack of FMRP expression
in FMRP knockout mice is accompanied by
age-dependent, region-specific alterations in
neurotransmission.
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INTRODUCTION

The Fragile X syndrome, associated with a
chromosomal abnormality, is one of the most
common forms of inherited mental retardation in
humans (Oostra, 1996; Jin & Warren, 2000). The
Fragile X syndrome is based on a large expansion
of a CGG repeat sequence (more than 200 to 230
copies in the full mutation) in the 5’- untranslated
region of the fragile X mental retardation (FMR1)
gene (Fu et al., 1991; Oberle et al., 1991; Verkerk
et al., 1991). Caused by this repeat expansion, a
hyper-methylation takes place in a CpG island,
including the promotor region, resulting in an
inactivation of the fragile X mental retardation
protein 1 gene (FMR1 gene), loss of expression of
FMR1 mRNA transcripts (Pieretti et al., 1991),
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and absence of the encoded fragile X mental retar-
dation protein (FMRP) (Devys et al., 1993).

The syndrome, which occurs more frequently
in males than in females (Oostra, 1996; Comery et
al., 1997), is characterized by a mild to severe
mental retardation (IQ between 20 and 60) with
notable deficits in language, visuo-spatial memory,
attention, and executive functions in humans
(Freund & Reiss, 1991). In addition, emotional and
psychosocial deficits have been described, including
hyperactivity and autism (Baumgardner et al.,
1995; Hagerman, 1996; Turk & Graham, 1997;
Bailey et al., 1998). The brain pathology of these
patients includes abnormalities in the cerebellum
(Reiss et al., 1991a; 1991b), decreased volume of
the superior temporal gyrus (Reiss et al., 1994),
and an enlarged volume of the caudate nucleus
(Reiss et al., 1995). On the cellular level, immature
spine morphology and reduced synaptic size have
been observed in autopsy material from patients
suffering from Fragile X syndrome (Rudelli et al.,
1985; Hinton et al., 1991; Irwin et al., 2000; 2001).

That finding that the FMRP gene is highly
conserved among species, including mice (Verkerk
et al,, 1991; Ashley et al., 1993a; 1993b), and that
the expression pattern at the mRNA and protein
level is almost identical in different tissues of
human and mice (Abitbol et al., 1993; Bachner et
al., 1993; Devys et al., 1993; Hinds et al., 1993;
Khandjian et al, 1995), together with the
identification of a murine homologue of the FMR1,
led to the generation of the Fmrl knockout mouse,
which can serve as an animal model for the
experimental analysis of the Fragile X syndrome
(Dutch-Belgian Fragile X Consortium, 1994).
Although the nature of the mutation in the mouse
model (gene interruption by insertion of a neomycin
cassette into exon 5 of Fmrl) is different from that
observed in most Fragile X syndrome patients
(CGG repeat amplification), both changes within
the genome lead to the silencing of the synthesis of
functional mRNA or protein (Oostra & Hoogeveen,

1997). Previous studies characterizing the animal
model drew attention to the behavioral and
morphological differences between normal and
muted mice that match, at least in part, those
observed in affected humans (Dutch-Belgian
Fragile X Consortium, 1994; D"Hooge et al., 1997;
Paradee et al., 1999; Dobkin et al., 2000; van Dam
et al., 2000). A study using FVB mice, the strain
used in the present study, revealed significant
deficits in the Morris water maze in comparison
with wildtypes (Dobkin et al., 2000). The morpho-
logical abnormalities of synaptic structures in
FMRP-deficient humans and mice (namely,
increased number of immature dendritic spines and
abnormal dendritic morphology), together with the
observation that Fmrl mRNA is strongly expressed
during brain development and in regions of high
synaptic plasticity, an involvement of this protein in
synapse maturation and elimination and/or synthesis
of proteins related to postsynaptic function was
proposed (Comery et al., 1997; Feng et al.,, 1997;
Weiler & Greenough, 1999; Irwin et al., 2000).

On the neurochemical level, neither human
patients nor the mouse mutants displaying the
Fragile X syndrome have been analyzed. Therefore,
in the study described here, we performed a
screening of a wide range of neurotransmitters and
neuromodulators, including amino acids and
monoamines and their metabolites, for the neuro-
chemical characterization of the Fmrl mouse
mutants. We usied high performance liquid
chromatography (HPLC) to quantify the basal
tissue concentrations of amino acids, i.e. aspartate
and glutamate (acting as excitatory neurotrans-
mitters), y-aminobutyric acid (GABA) and taurine
(acting as inhibitory neurotransmitters/modulators)
and glutamine and alanine, as well as monoamines
(dopamine, serotonin) and their metabolites in
eight distinct brain areas of juvenile (postnatal
days 28 to 31) and adult (postnatal days 209 to
221) male Fmr1 knockout mice and compared with
age-matched wildtype animals.



NEUROCHEMISTRY OF THE FRAGILE X SYNDROME 287

EXPERIMENTAL
Animals

Male wildtype and Fmrl knockout mice with
FVB/NJ strain background were genotyped by the
polymerase chain reaction (for details see Consor-
tium, 1994) to confirm the normality or mutation of
the Fmrl gene in wildtype and knockout mice,
respectively. Mice were housed under strictly
controlled conditions (light:dark = 12:12 hours) with
food and water ad libitum. Litters remained with
their mother until postnatal day 21 (PND 21), when
they were weaned and housed as offspring-groups
until used in the experiments. All experimental
protocols were approved by the ethical committee of
the government of the state of Saxony-Anhalt
according to the German guidelines for the care and
use of animals in laboratory research (§8, Abs. 1,
25.05.1998). All experiments were performed in
accordance with the FEuropean Communities
Council Directive of November 1986 (86/609/EEC).

Chemicals

Dopamine (DA), 3,4-dihydroxyphenylacetic
acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic
acid (HVA), 3-methoxytyramine (3-MT), serotonin
(5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA),
ethylenediaminetetraacetic acid, sodium metabi-
sulfite, ortho-phtaldialdehyde, and octanesulfonic
acid were purchased from SIGMA (Germany).
Perchloric acid, acetonitrile, and methanol were
from MERCK (Germany). The compounds aspartate,
glutamate, glutamine, taurine, alanine, and GABA
were purchased from SERVA (Germany).

Tissue preparation

Neurochemical measurements were carried out
in two groups of age: Juveniles (12 wildtype and
10 Fmrl knockout mice from 8 litters aged PND

28 to 32) and adults (8 wildtype and 10 Fmrl
knockout mice from 6 litters aged PND 209 to
221).

After decapitation, the brains were quickly
removed and placed on an ice-cold dissection
plate. Each brain was sectioned into eight different
areas: medial prefrontal cortex (mPFC), frontal
cortex (includes the orbital, primary motor, and
frontal part of the somatosensory cortex), caudal
cortex (includes the caudal part of the somato-
sensory, and the visual cortex), striatum (includes
striatum, nucleus accumbes, and ventral pallidum),
hippocampus, thalamus (includes thalamic and
hypothalamic nuclei, and substantia nigra),
cerebellum, and brainstem. The tissue from both
hemispheres were pooled and frozen in liquid
nitrogen and stored at —80°C until assayed. For the
quantification of amino acids and monoamines
brain tissue wet weight was determined, and each
piece was placed into a vial containing ice-cold
homogenization buffer (0.1 M perchloric acid, 0.1
mM ethylenediaminetetraacetic acid, 2 mM sodium
metabisulfite). After homogenization with an ultra-
sonic tissue disrupter (Sonoplus HD60, Bandelin,
Germany) the samples were centrifuged (14,000 x
g for 15 min at 4°C) and the supernatants were
filtered through a syringe filter (0.2 micron pore
size; Whatman, USA) before HPLC analysis.

Reversed-phase HPLC analysis

For reversed-phase high performance liquid
chromatography (HPLC), the supernatants of each
sample were divided, using one part for amino acid
analysis and one part for measuring monoamines,
respectively. Concentrations of the amino acids
aspartate, glutamate, glutamine, taurine, alanine,
and GABA were determined by automatic pre-
column-derivatization using ortho-phtaldialdehyde
and fluorescence detection (following a modified
version of the method of Lindroth & Mopper,
1979). Briefly, the HPLC analysis was performed
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on a C18 reversed-phase_column (125 x4 mm,
packed with LiChrospher~ 5 pm, MERCK, Ger-
many), using a non-linear gradient of 5% to 75%
methanol in 0.15 M phosphate buffer, pH 7.0, at a
flow rate of 1.5 mL/min.

Dopamine and its metabolites DOPAC, HVA,
and 3-MT, as well as 5-HT and its metabolite 5-
HIAA, were measured in a single run on an HPLC
column (100 x3 mm packed with YMC ODS-
AQ®, 5 pm, YMC, Germany) under isocratic
conditions, with electrochemical detection. The
mobile phase consisted of a 75 mM phosphate
buffer containing 2 mM ethylenediaminetetraacetic
acid, 0.1 mM octanesulfonic acid, and 3.5% (v/v)
acetonitrile (pH 4.6). Electrochemical detection
was achieved by setting a glassy carbon working
electrode at +780 mV against an Ag/AgCl
reference electrode of the electrochemical detector
(LC4C, BAS, USA).

The final amount in the tissue sample was
expressed as micrograms/g wet tissue for amino
acids or ng/g wet tissue for monoamines, using an
external calibration curve.

Statistical analysis

Values reported are means + SEM. Statistical
significance for the comparison of genotypes
(wildtype vs. Fmrl knockout) was performed by the
Mann-Whitney U-test using SigmaStat 2.0 (Jandel,
Germany) and considered significant when p <0.05.

RESULTS

For each brain region, we calculated the tissue
levels of aspartate, glutamate, glutamine, taurine,
alanine, and GABA, as well as ‘the ratio of
excitatory and inhibitory amino acids [(aspartate +
glutamate)/(taurine + GABA)] for both wildtype
and Fmrl knockout mice (see Fig. 1 and Table 1
for juveniles, Fig. 1 and Table 3 for adults),

allowing for some assessment of the functional
state of the neuronal network. Similarly, the tissue
levels of DA, DOPAC, HVA, 3-MT, 5-HT, and 5-
HIAA, as well as the ratios of DOPAC/DA, HVA/
DA, DOPAC+HVA/DA, and 5-HIAA/5-HT, which
reflect changes in monoamine metabolism, were
calculated (Table 2 for juveniles and Table 4 for
adults). Because the tissue levels of 3-MT were
measurable only in the caudal cortex and striatum,
and the ratio of 3-MT/DA revealed no significant
differences between genotypes, the ratio data are
not shown.

In general, knockout of the Fmrl gene was
accompanied by age- and region-specific neuro-
chemical alterations. Of all brain areas investigated,
the frontal and caudal cortex, striatum, cerebellum,
hippocampus, and the brainstem of juvenile mice
displayed the most obvious neurochemical
differences between wildtype and Fmrl knockout
mice. Throughout the analyzed areas in the
juvenile brain, the amino acids taurine and
aspartate, followed by alanine, glutamine, and
GABA, showed the most prominent differences
between wildtype and Fmrl knockout mice.
Glutamate was unaltered in all regions of both
ages which were investigated (Table 1 and Table
3). In the caudal cortex, hippocampus, and brain-
stem of the juvenile Fmrl knockout mice, the
balance between excitatory and inhibitory amino
acids was shifted toward increased inhibition
(Table 1), whereas in adults no difference was
found. Differences in the tissue levels and the
metabolism of the dopaminergic system were
detectable in the frontal cortex, striatum, and
cerebellum of juveniles, and in the mPFC and
brainstem of adults. The tissue levels and the
metabolism of the serotonergic system were
affected in the caudal cortex and brainstem of
juveniles and in the hippocampus of adults.

In more detail, the following differences
between wildtype and Fmrl knockout mice were
observed:
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Juveniles: As shown in Fig. 1 and Table 1,
when compared with wildtype mice, aspartate was
significantly increased in Fmrl knockout mice in
the frontal cortex (+19%), striatum (+17%),
hippocampus (+17%), and cerebellum (+12%).

Glutamine was significantly decreased in the
cerebellum (—14%). Taurine was significantly
increased in frontal cortex (+20%), caudal cortex
(+22%), striatum (+10%), hippocampus (+20%),
and brainstem (+40%). The levels of alanine were
increased in the frontal cortex (+18%), and
brainstem (+21%). GABA: an increase in the
brainstem (+29%) was measured. When compared
with wildtype mice, the ratio of (aspartate+
glutamate)/ (taurinetGABA) in Fmrl knockout
mice was lower in the caudal cortex (—12%),
hippo-campus (-9%), and brainstem (—15%).

As indicated in Table 2, tissue levels of DA
were decreased in cerebellum (—49%), and DOPAC
levels were decreased in the frontal cortex (—40%).
The amounts of HVA were decreased in cerebellum
(—64%). Whereas the ratio of DOPAC/DA was
unchanged in all brain regions, the HVA/DA ratio
was increased in the striatum (+25%). The ratio of
DOPAC+HVA/DA showed significant differences
between the two genotypes in the striatum (+32%).
In Fmrl knockout mice, tissue levels of 5-HT were
increased in the brainstem exclusively (+18%).
The levels of 5-HIAA were increased only in the
caudal cortex (+43%). When characterizing the
metabolism of serotonergic neurons, we obtained
no significant differences of the 5-HIAA/5-HT ratio.

Adults: In contrast to the juvenile brain, the
adult animals displayed only a few significant
differences between wildtype and Fmrl knockout
mice (Fig. I, Tables 3 and 4). For amino acids,
only glutamine was decreased in the frontal cortex
(~11%) and cerebellum (—12%).

The tissue levels of DA were decreased in the
mPFC (-41%) and increased in the brainstem
(+42%) of Fmrl knockout mice compared with
wildtype mice. The amounts of DOPAC (+23%)

and HVA (+31%) were increased in the brainstem.
The ratio of DOPAC/DA was increased in the
mPFC (+34%), but the HVA/DA ratio showed no
significant change. The ratio of DOPAC+HVA/DA
was increased in the mPFC (+59%). Whereas the
levels of 5-HT were increased in the hippocampus
(+13%), the amounts of 5-HIAA showed no
significant  differences  between  genotypes
throughout the brain areas investigated.
Furthermore, no changes of the 5-HIAA/5-HT ratio
were observed.

DISCUSSION

The present data comparing wildtype and Fmrl
knockout mice on the neurochemical level provide
the first evidence that lack of FMRP expression in
male mice is paralleled by age- and region-specific
abnormalities in basal tissue levels of amino acids
and monoamine metabolism, as well as an altered
balance between excitatory and inhibitory amino
acid transmitter systems. In summary:

i) those brain regions which are known for high
expression of FMRP in normal subjects,
namely, cortex, striatum, hippocampus, and
cerebellum (Abitbol et al., 1993; Hinds et al.,
1993; Hergersberg et al., 1995; Feng et al,,
1997), and in addition the brainstem, displayed
the most obvious differences between both
genotypes,

ii) numbers of neurochemical differences between
wildtype and Fmrl knockout mice were higher
in juveniles (23 significant differences) than in
adults (9 significant differences);

iii) in juvenile brains, the most affected substrates
were the amino acids, especially taurine and
aspartate, which showed elevated basal levels
in Fmrl knockout mice; neither juveniles nor
adults showed significant alterations between
genotypes in the most abundant excitatory
amino acid, glutamate;
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iv) the decreased ratio of excitation/inhibition,
namely, (aspartate+glutamate)/(taurine+GABA),
in juvenile wildtype mice implies an increased
level of neuronal inhibition in caudal cortex,
hippocampus, and brainstem of Fmr1 knockout
mice;

v) very few differences between genotypes were
found for monoamine metabolism; in juveniles,
increased metabolism of dopamine was found
exclusively in the striatum, whereas in adults,
increased metabolism was found in the mPFC;
differences in serotonin metabolism were
measured in neither juveniles nor adults.

It is widely accepted, that the precise local and
temporal interplay between excitatory and inhibitory
neural activity is of critical importance for the
formation of the final arrangement of functional
neuronal connections (Singer, 1995; Katz & Shatz,
1996; Micheva & Beaulieu, 1997; Yuste & Sur,
1999). The precise causal relationship between
neurochemical and the morphological, as well as
behavioral, abnormalities in Fmrl knockout mice
remains to be analyzed by further studies, in
particular whether altered amino acids, as well as
the mismatch of excitation/inhibition, are the
consequence of or the cause for the structural and
behavioral abnormalities described for the Fragile
X syndrome.

Taurine, which was elevated in various brain
regions of juvenile Fmrl knockout mice, is assumed
to play a role as an inhibitory neurotransmitter or
neuromodulator (Pasantes-Morales & Gamboa,
1980; Huxtable, 1989; 1992; Oja & Kontro, 1990),
in addition to its role in osmoregulation, protein
phosphorylation, calcium regulation, membrane
stabilization, and as a trophic factor during neuro-
development (Huxtable, 1989; 1992; Lima, 1999;
Neuringer et al., 1994; Palackal et al., 1986;
Sturman, 1993). Since it has been suggested that in
the developing brain, taurine rather than GABA is
the major inhibitor of neuronal excitation, especially
during phases when GABA may still have excitatory

function (van den Pol et al., 1998; Khalilov et al.,
1999; Leinekugel et al., 1999), high levels of taurine
during early postnatal phases (Agrawal et al., 1968;
Miller et al, 2000) might suppress electrical
activity at a time when other inhibitory systems
(GABA) are not yet fully matured (Huxtable,
1989). The role of aspartate, the second amino
acid that showed significant alterations in Fmrl
knockout mice, in synaptic transmission is
controversial. A recent study has strengthened the
evidence for a transmitter role of aspartate in
excitatory fiber systems, for example, in the
hippocampus (Gundersen et al., 1998).

Taking together the excitatory (glutamate and
aspartate) and inhibitory (taurine and GABA)
transmitters, the decreased ratio of (aspartate +
glutamate)/(taurine + GABA) in juvenile but not in
adult Fmrl knockout mice indicates a shift toward
increased neuronal inhibition, especially in the
caudal cortex, hippocampus, and brainstem of
young mice. Such an altered balance of excitation
and inhibition in young, but not in adult Fmrl
knockout mice could explain the electrophysio-
logical findings of reduced hippocampal long-term
potentiation (LTP) in juvenile Fmrl knockout
mice as compared with wildtype mice (Aggoun et
al., 1999). In adult mice, no differences in basal
electrical activity and induction of LTP could be
found (Godfraind et al., 1996; Paradee et al., 1999).
The mismatch of excitation/inhibition found in the
brainstem could also underlie the enhanced audio-
genic seizure susceptibility described for juvenile
Fmrl knockout mice as compared with wildtype
mice (Musumeci et al., 2000). Why, in the present
study, adult animals no longer showed this mis-
match, despite the even more pronounced seizure
susceptibility in adult Fragile X knockout animals,
(Chen et al., 2001; Musumeci et al., 2000) remains
an open question.

The neurochemical abnormalities measured in
juvenile Fmrl knockout mice appear to be
transient because they are no longer found in the
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brain of adult FMRP-deficient mice. This time
window is at the end of the phase of neuronal and
synaptic development in the normal brain (White
et al., 1997) and matches well with a period of
great vulnerability of the neuronal network toward
the lack of FMRP expression, which was shown in
a recent study (Nimchinsky et al., 2001). Perhaps
some compensatory mechanisms that start to act in
the juvenile brain (where neurochemical differences
between genotypes are clear) gradually counter-
balance the neurotransmission back to normal
levels in adults.

To what extent the spectrum of neurochemical
changes, seen in several brain regions particularly
in young animals, may underlie the emotional and
mental deficits observed in adult mice lacking
FMRP expression requires further investigation.
Furthermore, it would be interesting to assess if
comparable neurochemical changes occur in
human fragile X patients, and if the magnitude of
neurochemical changes correlates with the severity
of the mental and/or emotional impairment in
humans, as well as in the animal model.
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