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INTRODUCTION

The young human brain is highly plastic, thus
brain lesions occurring during development
interfere with the innate development of the
architecture, connectivity, and mapping of functions
and trigger modifications in structure, wiring, and
representations (for review see Payne & Lomber,
2001). In childhood, the motor cortex and/or the
corticospinal tract is a common site of brain damage
and the prenatal or immediately perinatal period is
the most common time for brain damage to occur. It
is now increasingly appreciated that the
corticospinal system is capable of substantial
reorganization after lesions and such reorganization
is likely to underlie the partial recovery of function
(Terashima, 1995; Eyre et al., 2001; Eyre et al,,
2002). Clearly the developing nervous system has a
much greater potential for plasticity, which can
involve plasticity not only of the motor areas of the
ipsi-lesional cerebral cortex but also of the contra-
lesional cortex, the corticospinal tract, and the
spinal cord network (Benecke et al., 1991; Carr et
al., 1993; Cao et al., 1994; Lewine et al.,, 1994;
Maegaki et al., 1995; Terashima , 1995; Nirrko et
al., 1995; O’Sullivan et al., 1998; Balbi et al., 2000;
Eyre et al., 2000a; Eyre et al., 2001). Functional and
anatomical evidence demonstrates that spontaneous
plasticity can be potentiated by activity and by
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specific experimental manipulation as well.
Knowledge of the time course and processes of
corticospinal tract system development and plasticity
is essential both for a better understanding of current
rehabilitation treatments and for designing new
strategies for the treatment of children without
sustaining damage to the corticospinal tract system
early in life.

CORTICOSPINAL TRACT DEVELOPMENT AND
PLASTICITY IN ANIMAL MODELS

The development of the corticospinal tract
system has been studied most extensively in the
rat. In the nconatal rat, the corticospinal projection
originates from the whole neocortex including the
visual cortex (Stanfield et al., 1982; Stanfield &
O’Leary, 1985; Stanfield, 1992). Not all these
axons enter the grey matter, those that do initially
occupy a larger terminal field and contact more
spinal neurons than in the adult (Curfs et al., 1994;
1995; 1996). Massive axon collateral withdrawal
coupled with modest corticospinal tract cell death
leads to complete elimination of the corticospinal
tract projection from regions of the cortex, a
reduction in the number of corticospinal axons
projecting from primary sensorimotor cortex and
associated areas like the premotor cortex (Oudega
et al., 1994) and predominant withdrawal of
ipsilateral projections (Joosten et al., 1992).
Substantial lesions of the sensorimotor cortex or
the corticospinal tract in sub-primate mammals
early in postnatal life lead to hypertrophy of the
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undamaged motor cortex and the corticospinal
tract projection (Hicks & D’Amato, 1970; 1977;
Uematsu et al., 1996). Such changes are associated
with the maintenance of an increased ipsilateral
corticospinal tract projection from the undamaged
hemisphere. The cells of origin of the induced
aberrant ipsilateral axons are more widely
distributed and distinct from the cells of origin of
the crossed or contralateral corticospinal projection
(Huttenlocher & Raichelson, 1989; Reinoso &
Castro, 1989; Stanfield, 1992; Jansen & Low, 1996).
Thus, induced ipsilaterally projecting corticospinal
axons from the undamaged cortex do not arise as
branches of the contralateral corticospinal projection
but rather arise from neurons that extend axons
into the ipsilateral spinal cord during development
and whose axons would normally be withdrawn.
The distribution of aberrant ipsilateral axons
within the spinal grey matter resembles that of the
contralateral corticospinal projection (McClung &
Castro, 1975; Barth & Stanfield, 1990) and synaptic
contacts have been demonstrated (McClung &
Castro, 1975; Leong, 1976). Ipsilateral forelimb
movements are observed following the stimulation
of the intact cortex at abnormally low current
thresholds and are abolished by medullary pyra-
midectomy (Kartje-Tillotson et al., 1985; 1987).

CORTICOSPINAL DEVELOPMENT AND
PLASTICITY IN MAN

Studies within our laboratory of embryonic
human brain development between 6 and 7 wk
postconceptional age (PCA) revealed that the
cortical plate is barely formed at that time and no
outgrowth of GAPA43-positive axons can be
detected (Hagan et al., 1999). Surprisingly, the
most widely quoted studies of human corticospinal
tract development (Humphrey, 1960; O’Rahilly &
Muller, 1994) claim that corticospinal tract axons
reach the medulla by 8 wk PCA. Decussation is

thought to occur before 15 wk PCA, and cortico-
spinal axons to reach as far as the lumbar enlarge-
ment by 18 wk PCA. Remarkably little neuroana-
tomical work on the developing human corticospinal
tract has been done since the original observations.

We recently confirmed that human cortico-
spinal axons reach the lower cervical spinal cord
by 24 weeks PCA at the latest. Following a waiting
period of up to a few weeks, they progressively
innervate the grey matter such that there is
extensive innervation of spinal neurons, including
motoneurones before birth (Eyre et al., 2000b; 2002).
By 40 wk, PCA corticospinal axons have begun to
express neurofilaments and to undergo myelination.
The anatomical findings of early corticospinal
innervation are confirmed by neurophysiological
studies demonstrating that functional synaptic
corticospinal projections to motoneurones and to
spinal interneurons are established prenatally
during the final trimester of pregnancy (Eyre et al.,
2000b). The combined morphological observations
provide strong evidence for prenatal establishment
of functional corticospinal innervation in man,
even though it is not associated with a significant
developmental milestone of motor behavior.
Rather than furthering motor control per se, this
early innervation most likely occurs to allow
activity in the corticospinal system as a whole to
shape the development of the motor cortex and the
spinal motor cen’ 'rs (Eyre et al., 2000b; 2001).

In the newborn, we demonstrated significant
bilateral innervation of spinal motoneuronal pools
from each motor cortex. Thus, focal transcranial
magnetic stimulation (TMS) of the motor cortex
evokes responses in ipsilateral and contralateral
muscles that have similar thresholds and amplitudes
but shorter onset latencies ipsilaterally, consistent
with the shorter ipsilateral pathway length (Eyre et
al., 2001) (Fig. 6A). In longitudinal and cross-
sectional studies of normal babies and children,
neurophysiological findings that are consistent with
withdrawal in significant numbers of corticospinal



axons over the first 24 postnatal months (Eyre et al.,
2001), as has been observed in sub-human primates
(Galea & Darian-Smith, 1995) (Fig. 1 J-L; Fig. 6A).
Furthermore, rapid differential development of the
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ipsilateral and contralateral projections occurs over
this time so that responses at 2 years postnatal age
in ipsi-lateral muscles are less frequent, significantly
smaller, and have longer onset latencies and had
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A-1. Mean + 95% confidence limits for threshold. A,D,G: Central motor conduction delay (CMCD) (B,E,H) and amplitude

ratio (C,F,I)) for ipsilateral responses (™) and contralateral responses ((J) evoked by TMS of the left hemisphere in normal
adults (A—C), and the intact hemisphere in subjects with hemiplegia following stroke (D-F) and those with spastic
hemiplegic cerebral palsy (CP) (G-I). J-L: Ontogeny of ipsilateral and contralateral responses in biceps muscle. Data from a
cross-sectional study of 84 subjects. TMS of the left cortex in normal subjects ?; TMS of the intact cortex in subjects with
spastic hemiplegic cerebral palsy | ; and subjects with stroke ? . Filled symbols and continuous lines represent data from
ipsilateral responses and open symbols and dashed lines contralateral. The symbols represent the mean, vertical lines 95%
confidence limits. A,C,G,J: The threshold is measured as the percent of maximum stimulator output. The CMCD (B,E,H,K)
is the central motor conduction delay within the corticospinal tract. The amplitude ratio (C,F,LL,) was calculated by dividing
the amplitude of the ipsilateral responses by that of the contralateral. The dashed horizontal line indicates a ratio of one
where responses are of equal size. (from Eyre et al., 2001).
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higher thresholds than responses in contralateral
muscles (Fig. 1 J-L; Fig. 6A). This differential
development of the ipsilateral responses is
consistent with a grater withdrawal of ipsilateral
corticomotoneuronal projections than contralateral,
as has been observed during the development of
the corticospinal tract in animals (Stanfield, 1992;
Joosten et al., 1992). In addition, it is consistent
with faster growth of axonal diameters in the
contralateral corticospinal projection than in the
ipsilateral projection (Fig. 2). The small and late
ipsilateral responses observed in older children
and adults are consistent with the persistence of a
small ipsilateral corticomotoneuronal projection,
with slower conducting axons than contralateral
projections. This conclusion is supported by the
results of anatomical studies in man and monkeys
demonstrating that in maturity, the corticospinal
tract has approximately 8 to 15 percent of
uncrossed axons (Nathan et al., 1996). These

ipsilaterally growing projecting axons have been
shown in man and in non-human primates to arise
from similar areas of the cortex and to have a
similar pattern of spinal innervation to the
contralateral projection (Liu & Chambers, 1964;
Nathan et al., 1996; Galea & Darian-Smith, 1994).
Repeated observations in man have
demonstrated substantial plastic reorganization of
the motor cortex and corticospinal projections
following prenatal or perinatal lesions to the
corticospinal system (Benecke et al., 1991; Carr et al.,
1993; Cao et al., 1993; Lewine et al., 1993; Maegaki
et al., 1993; Terashima, 1995; Miiller et al., 1997;
Nirkko et al., 1997; Graveline et al., 1998; Balbi et
al., 2000; Eyre et al., 2000a; 2001; Thick-broom et
al.,, 2001). The findings of these studies are
remarkably consistent with those made in animals
following perinatal lesions to the corticospinal
system. In children and adults who have suffered
extensive damage to one motor cortex early in
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Fig. 2: A: Development of corticospinal axon conduction velocities in (o) contralateral and (?) ipsilateral corticospinal projections
in man. The conduction velocities are estimated from central motor conduction delays (Eyre et al., 1999; Eyre et al., 2000b).
B-C: Diameter of the largest corticospinal axons in human subjects in relation to age and mean body height. Open stars
represent data obtained from by direct measurement at the level of the pyramid in a newborn baby and in subjects aged 4, 8,
and 18 mos and 2, 3, 4, and 7 y, reported by Verhart (1950) and in a subject aged 13 y reported by Haggpvist (1937). Open
and closed circles represent the respective mean axonal diameters in the contralateral and ipsilateral corticospinal tract. The
axonal diameters were estimated from the conduction velocities of the subjects in A using the ratio of 5.2 ms™/um between
the conduction velocity of corticospinal axons and their diameters in the medullary pyramid (Olivier et al., 1997).
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development, significant bilateral corticospinal
innervation of spinal motoneuronal pools persists
from the undamaged hemisphere.

This focal TMS of the intact motor cortex
evokes large responses in the ipsilateral and
contralateral muscles, which have small latencies
and thresholds (Figs. 1 and 3). These observations
have been made following perinatal unilateral
brain damage rising from a variety of pathologies,
including infarction, dysplasia, and arteriovenous
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malformations (Benecke et al., 1991; Carr et al,,
1993; Maegaki et al., 1993; Balbi et al., 2000;
Eyre et al., 2000a; 2001; Thickbroom et al., 2001)
Short latency ipsilateral responses do not
occur in normal subjects outside the perinatal
period. Nor do they occur in subjects who acquired
unilateral cortical lesions in adulthood, establishing
that fast ipsilateral responses are not simply
unmasked by unilateral lesions (Figs. 1 and 3) (Netz
et al, 1997; Eyre et al., 2000). Furthermore, the

Fig. 3: Ipsilateral and contralateral responses recorded in the EMG of pectoralis major (Pmaj), biceps brachii (biceps),
and the first dorsal interoseus muscle (FDI) following TMS of (A) the left hemisphere in a normal adult and the
intact hemisphere in (B), a subject with stroke which occurred in adulthood, and (C), a subject with spastic
hemiplegic cerebral palsy. The continuous traces in A, B, and C are from ipsilateral muscles and the dashed traces from
contralateral muscles. TMS was delivered at the onset of each trace. (adapted from Eyre et al., 2001)
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responses in contralateral muscles evoked by
stimulation of the intact motor cortex, although
within the normal range for age are abnormally
clustered toward short onset latencies and low
thresholds (Fig. 1) (Eyre et al,, 2001). Together
these findings imply not only bilateral innervation
of motoneuronal pools but also an increase in the
number of both fast conducting ipsilateral and
contralateral corticospinal axons from the intact
hemisphere following perinatal unilateral lesions of
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the corticospinal system. This conclusion is
supported by the direct measurement of cortico-
spinal axonal number in the bulbar pyramidal
obtained at post mortem. These measurements
demonstrated significant increases in the number of
corticospinal axons, particularly the larger diameter
axons projecting from the intact hemi-sphere in
adult subjects with spastic hemiplegic cerebral palsy
in comparison with normal subjects and those with
lesions acquired in childhood (Fig. 4) (Verhaart,
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Fig. 4: Total axonal count and counts for axons of the specified diameters in the medullary pyramids in normal subjects
and the medullary pyramid ipsilateral to the undamaged hemisphere in subjects with unilateral brain damage
involving the motor cortex. Data from Verhar (1950) (V) who studied post mortem material from three normal
adults (O), four adults with hemiplegia following stroke in adulthood (), and two adults who suffered unilateral brain

damage in the perinatal period (M) .
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1950; Scales & Collins, 1972). Similarly, MRI
studies of subjects with early unilateral brain
damage demonstrate an increased size of the
corticospinal projection from and shift of cortical
sensorimotor functions to the intact hemisphere
(Cao et al., 1994; Lewine et al., 1994; Maegaki et
al., 1995; Muller et al., 1995; Nirkko et al., 1997,
Graveline et al., 1998; Muller et al., 1998; Hertz-
Pannier et al., 1999; Holloway et al., 1999; Wieser
et al., 1999; Chu et al., 2000).

Finally, short onset ipsilateral responses
observed bilaterally in subjects with Kallman’s
syndrome are associated with significant bilateral
hyperplasia of the corticospinal tract (Mayston et
al., 1997). Taken together, these observations
support the persistence of ipsilateral and
contralateral corticospinal projections from the
intact hemisphere following unilateral brain
damage early in development, which would
normally have been withdrawn during subsequent
development. While the results of some studies
indicate that the increased ipsilateral corticospinal
projections arise from the primary motor cortex of
the intact hemisphere (Sabatini et al., 1994; Nirkko
et al.,, 1997) , a more common finding is of the
projection arising from non primary motor and
multimodal association areas of the non affected
hemisphere (Pascual-Leone et al., 1992; Cao et al.,
1994; Lewine et al., 1994; Muller et al., 1995;
Graveline et al., 1998; Bernasconi et al., 2000;
Bittar et al., 2000a; 2000b; Chu et al., 2000). These
observations imply the maintenance of cortico-
spinal projections from areas of the cortex where
axons projecting to the spinal cord would normally
have been withdrawn during development.

In our laboratory we observed different patterns of
corticospinal system development after unilateral
and bilateral lesions to the corticospinal tract. We
compared the contralateral corticospinal projections
in subjects with severe spastic Aemiplegic and severe
spastic quadriplegic cerebral palsy who had a
similar severe pathology of hand and upper limb

movement control (Eyre et al., 1989; 2000a; 2001).
In the subjects with severe spastic hemiplegic
cerebral palsy, TMS of the damaged cortex either
failed to evoke responses or evoked responses with
abnormally high thresholds and prolonged
latencies. In contrast, response with relatively
short onset latencies and low thresholds were
evoked from the intact hemisphere. In subjects
with spastic quadriparesis, response from both
hemispheres lay predominantly within the normal
range (Fig. 5).

These observations are consistent with a
significant reduction in the corticospinal
projection from damaged hemispheres and an
increased projection from the intact hemisphere in
subjects with unilateral lesions, while those with
bilateral lesions maintain qualitatively normal
projections from both hemispheres. An explanation
for these apparently contradictory findings can be
found in the studies of Martin and colleagues
(Martin et al., 1999; Martin & Lee, 1999). In the
kitten, unilateral inhibition of the motor cortex
causes exuberant ipsilateral and contralateral
corticospinal projections from the uninhibited
cortex to be maintained, at the expense of those
from inhibited cortex, which becomes much
reduced (Martin et al.,, 1999). Martin and his
coworkers established that the reduction in
inhibited contralateral projection whereas due to a
competition between the two projections and not
due to reduced activity per se, because in a
subsequent experiment bilateral inhibition of the
motor cortices led to qualitatively normal
projections from both cortices (Martin & Lee,
1999). Competitive-activity-dependent refinement
of bilateral corticospinal projections demonstrates
parallels between the mechanisms governing early
postnatal development of the corticospinal system
and that of the visual system. Monocular retinal
activity blockade, for example, reduces the thalamic
territory occupied by silenced retino-geniculate
terminals and expands the active terminal’s
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territory. By contrast, binocular activity blockade,
which similarly inhibits interocular competition
does not (Penn & Shatz, 1999).

The activity-dependent competition between
the two cerebral hemispheres for spinal synaptic
space implies that the degree of abnormality of the
corticospinal projection following unilateral lesions
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might not reflect simply the extent of the initial
lesion but also the consequential competitive
disadvantage of the surviving corticospinal
projections. Such a competitive disadvantage would
lead to corticospinal projections from the intact
hemisphere progressively replacing the surviving
corticospinal projections from the damaged
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Fig. 5: (A) and (D). Contralateral responses evoked in biceps following TMS of the intact (continuous line) and lesioned
(dashed line) motor cortices in (A), a subject with spastic hemiplegic cerebral palsy and (D), the left and right
motor cortices in a subject with spastic quadriplegic cerebral palsy. TMS was applied at the start of each trace
(adapted from Eyre et al., 1989). In graphs (B) (C) (E) (F), the vertical lines join the data from stimulation of
each lesioned (®) and intact (0) motor cortex in the same subject. The boxed areas represent the + 2 SD ranges
for age obtained from in 372 normal subjects (Eyre et al., 1999). (B) and (E): Thresholds in subjects with spastic
hemiplegic cerebral palsy and spastic quadriplegic cerebral palsy, respectively. Threshold is expressed as percent
of maximum power delivered by the stimulator. (C) and (F): Central motor conduction delay in the corticospinal
tract (CMCD) in subjects with spastic hemiplegic cerebral palsy and spastic quadriplegic cerebral palsy,

respectively. NR = no response.
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hemisphere and thus to a progressively worsening
hemiplegia with development. Recent observations
in a longitudinal study of babies who have suffered
a stroke at birth involving the motor cortex
unilaterally support these conclusions (Smith
Villagra & Eyre, unpublished). Soon after birth we
observed responses to TMS of the damaged cortex,
which became progressively more difficult to elicit
over the subsequent 3 to 6 months and which then
disappeared. This pattern of development is
associated with the rapid development in parallel
of the contralateral and ipsilateral corticospinal
projections from the undamaged hemisphere such

A. Normal
AGE

newborn

Non—infarcted

that both have abnormally short onset latencies by
24 months of age (Fig. 6). This pattern of
development is also consistent with the clinical
observation that signs of hemiplegia might not
become established in children until the end of the
second year (Bouza et al., 1994). Our longitudinal
study of the development of the corticospinal
system following perinatal infarction (Smith
Villagra & Eyre, unpublished) also confirm the
observations of Rouiller (1998) that the
reorganization of the ipsilateral cortex can also
occur with the functional resiting of the area of the
motor cortex within the damaged hemisphere

B. Stroke
Infarcted

Fig. 6: Serial ipsilateral and contralateral responses recorded in the EMG of biceps at increasing ages following TMS
of: (A) the left cortex in a normal subject and (B) the non-infarcted and infarcted hemisphere in a subject who
suffered a unilateral stroke at birth. The continuous line traces are from biceps ipsilateral to the cortex stimulated
and the dashed line traces are from the contralateral biceps. The stimulus artifact marks the application of TMS.
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(Alkadhi et al., 2000). This reorganization can be in
the immediately adjacent areas of the primary motor
cortex (Maegaki et al., 1995), within non primary
motor areas (Alkadhi et al., 2000; Bittar et al,,
2000b), and in other cases the reorganization of
function can occur to more remote sites in the same
hemisphere (Chollet et al., 1991). The exact factors
that govern intrahemisphereric versus interhemi-
spheric reorganization after sensorimotor lesions
during development are not understood. It is likely
that such reorganization is influenced by overall
cortical development and specification at the time of
the lesion, the fractional size of the lesion, the
availability of sufficient and appropriate juxa-
lesional cortex, the absence or presence of transient
corticospinal projections (Martin et al., 1999
Martin & Lee, 1999; Eyre et al., 2001), and the
maturational status of the system as a whole at the
time of the lesions (Eyre et al., 2000b).

The temporal limit of plasticity of both the
ipsi- and contra-lesional motor cortices and their
corticospinal projections is at present unknown.
The existence of critical periods for substantial
experience-dependent plasticity has been clearly
demonstrated for the visual, auditory, and
somatosensory systems and for language
development in man. By starting periods of
monocular deprivation at progressively older ages,
Hubel and Wiesel (1970) first documented that
ocular dominance plasticity is confined to a
critical period, which in the cat extends from 3
weeks to about 3 months of age. Deprivation-
induced plasticity occurs rapidly at the height of
the critical period. In their original studies, Wiesel
and Hubel monocularly deprived animals for
months. A later work, they found that robust
effects were observed with as little as a week of
deprivation. Subsequent studies by many other
investigators showed that as little as 8 hours of
deprivation could produce synaptic depression in
the visual cortex (Bear & Rittenhouse, 1999). The

neurophysiological consequences in animals are
maximal after 48 hours of monocular deprivation
at the height of the critical period. It is possible,
therefore, that during critical periods, relatively
short periods of relative inactivity of the motor
cortex, induced by ischemia or over- activity
induced by seizures, can lead to permanent plastic
changes in the development of the motor cortex
and corticospinal projections.

The observations on the plasticity of the
corticospinal system in the perinatal period throw
new light on “cerebral palsy”, a term originally
used by William Osler (1889) in the late
nineteenth century to highlight the significant
consequences on the motor development of lesions
to the brain that occur in the perinatal period. It is
likely that William Osler’s seminal observations
identify the perinatal period not only because of
the special vulnerability of the motor system to
damage at this time but also because abnormal or
decreased activity in the corticospinal system
during this critical perinatal period will
secondarily disrupt the development of the motor
cortex, corticospinal projections, and the spinal
motor cortex.

Functional and anatomical evidence supports
the view that spontaneous plasticity can be
potentiated and shaped by activity. The sue of
enriched environments and appropriately targeted
training strategies are likely therefore to potentiate
the capacity of the brain to compensate for lesion-
induced deficits and allow relatively normal
organized behavior. Pharmacological interventions
and transplants of embryonic and fetal material are
also likely to have important roles in the repair and
regeneration of the corticospinal system during
development. Understanding the development of
plasticity of the corticospinal system is likely,
therefore, to lead to treatments and interventions
that maximize the functional outcome for children
with cerebral palsy.
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