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ABSTRACT

The role of the mammalian cerebellum
ranges from motor coordination, sensory-motor
integration, motor learning, and timing to non-
motor functions such as cognition. In terms of
motor function, the development of the cere-
bellum is of particular interest because animal
studies show that the development of the
cerebellar cortical circuitry closely parallels
motor coordination. Ultrastructural analysis of
the morphological development of the cerebellar
circuitry, coupled with the temporal and spatial
identification of the neurochemical substrates
expressed during development, will help to
elucidate their roles in the establishment of the
cerebellar circuitry and hence motor activity.
Furthermore, the convenience of a number of
naturally occurring mouse mutations has allowed
a functional dissection of the various cellular
elements that make up the cerebellar circuitry.
This understanding will also help in the
approach to possible therapies of pathologies
arising during development because the cere-
bellum is especially prone to such perturbation
because of its late development.
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INTRODUCTION

The role of the cerebellum is thought to be that
of a coordinating center, using sensory inputs from
the periphery to fine-tune movement and postural
control (Doyon et al., 2002). Apart from motor
coordination, the cerebellum is also thought to be
involved in motor learning and higher cognitive
function (Allen et al., 1997; Bloedel & Bracha,
1997). The cerebellum, in relation to other brain
structures, enjoys a protracted developmental profile,
providing a convenient vantage point to view
ongoing developmental processes.

Animal studies have shown that the develop-
ment of the cerebellar cortical circuitry closely
parallels motor development. Indeed, in terms of
the rat, from the second postnatal week onward,
the principal cell-type in the cerebellar cortex, the
Purkinje neuron, embarks on an extensive process
of synaptogenesis with its afferents and inter-
neurons, including multiple climbing fibers synapsing
on its cell body and parallel fibers synapsing on
distal dendritic spines (Altman & Bayer, 1997).

About this time, about postnatal days (PD) 8-
9, the rat is able to stand on all fours and is
capable of inelegant, uncoordinated movements
(Geisler et al., 1996). At the beginning of the third
postnatal week (acutely between PD 15-16), the
rat is able to stand on its hindlegs and move in a
coordinated fashion (Westerga et al., 1999). This
period corresponds to the formation of the mono-
innervation between climbing fibers and Purkinje
cell dendritic spines. Because of its protracted
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developmental profile, the cerebellar cortex in
mammals provides an accessible model to study
ongoing developmental events. Of immense
benefit has been the number of naturally occurring
mutations in the mouse cerebellum. The use of
such mutants has elucidated the cellular and
behavioral consequences of the lack of or the
deletion of certain elements of the cerebellar
circuitry. The establishment of causal relationships
between neurochemical agents and well-defined
behavioral patterns will help, firstly to cement our
understanding of the factors involved in the
development of the cerebellum and motor behavior
and, importantly, will provide for more directed
interventions in cases of pathology.

This review focuses on, firstly, certain mutant
mice models that have been used to assess the
effects of cerebellar malformation or degeneration
and some of the trophic agents impacting upon the
developing cerebellar cortex and the potential
consequences thereof on motor behavior.

DEVELOPMENT OF CEREBELLAR CIRCUITRY

Compared with other brain structures, the
cerebellum undergoes a protracted developmental
profile, resulting in a large component of
development occurring postnatally. In humans, the
development of the cerebellum (and particularly the
proliferation of future granule cells) starts in the last
trimester of pregnancy and continues into the first
year of life (Dobbing & Sands, 1973). In rodents,
the cerebellar cortex almost totally develops during
the first 3 postnatal weeks (Altman & Bayer, 1997).

The cells in the cerebellum arise from two
different germinal matrices, namely the ventricular
epithelium and the rhombic lip (see Goldowitz &
Hamre, 1998 for review). Deep cerebellar nuclei,
Purkinje cells, Golgi, stellate, and basket cells all
arise from the ventricular neuroepithelium. In the
rat, the first cells to leave the ventricular zone are
the deep cerebellar nuclei and vestibular nuclei at
approximately embryonic day (E) 10-12. Around

E13, precursor Purkinje cells are born. Shortly
after their final mitosis, they migrate during E14—
E17 along radial glial fibers over the already formed
deep cerebellar nuclei into the cerebellar Anlage.

Also at this stage, Purkinje cells begin to
express the calcium binding protein, calbindin.
The formation of a secondary germinal matrix
from the rhombic lip—the external granular layer
(EGL)~—occurs at about the time when nuclear and
Purkinje cells have stopped dividing. As the EGL
cells migrate over the cerebellar surface in a
subpial position, the Golgi neurons are born from
the diminishing ventricular zone. Postnatally, in
rats, the EGL will seed the internal granular layer
with an abundance of granule cells. Also generated
at this time are the stellate and basket cells that
colonize the molecular layer.

During the first postnatal week, Purkinje cells
rearrange from a disordered multi-tiered layer to
their characteristic monolayer, with their apical
regions oriented towards the pial surface. Also at
this stage, swellings in their apical regions of their
somata, the apical caps, become pronounced. The
apical caps are the regions from which the primary
dendrites grow out. The two major afferent systems,
namely the climbing fibers and the mossy-fiber-
parallel fiber system, heavily influence the growth
and differentiation of Purkinje cell dendrites
through activity-dependent mechanisms and by
chemoattractive and repulsive means.

By late embryogenesis, muitiple inferior olivary
axons make numerous synaptic contacts on somatic
spines of Purkinje cells (Morara et al., 2001).
From the end of the first postnatal week, climbing
fibers undergo a complex process of regression of
multiple innervations (Crepel et al., 1981) and
translocation to the developing Purkinje cell
dendrites ensues (Scelfo et al., 2003). Initially it
was believed that competition for the limited space
on the Purkinje cell soma and its dendrites results
in the elimination of supernumerary climbing fibers
(Hume & Purves , 1981; Purves & Hume 1981).
What has become clear recently is that glutama-
tergic signaling via parallel fibers is crucial in the
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regression of multiple climbing fibers. Within a
strict time frame (postnatal days 15-16),
N-methyl-D-aspartate (NMDA) receptor signaling
between the parallel fibers and the Purkinje cells is
essential for the reduction of climbing fibers
(Kakizawa et al., 2000). Furthermore, mice that
have a deleted metabotropic glutamate receptor 1
subtype (mGlurl) elicit impaired motor coordina-
tion, which has been ascribed to multiple climbing
fibers persisting into adulthood (Ichise et al., 2000).

EXPERIMENTAL MODELS OF IMPAIRED
CEREBELLAR DEVELOPMENT

Because of the long developmental profile, the
cerebellum is particularly vulnerable to dévelop-
mental and environmental insults. As the cerebel-
lum is not crucial for life, cerebellar mutants
survive into adulthood, making them excellent
models to study the contributions of the various
elements of the circuitry to overall cerebellar
function. Currently, more than 50 naturally occur-
ring mutants have been detailed (see Sotelo, 1990).
Only a few of the most extensively studied mutants
will be discussed here.

Purkinje cell degeneration mutant

The Purkinje cell degeneration (pcd) mutant is
characterized by an almost complete loss of
Purkinje cells between PD15 and PD45 (Mullen et
al.,, 1976). This relatively late degeneration of
Purkinje cells is preceded by an initially regular
formation of the cerebellar circuitry, as well as by
the development of the appropriate corticonuclear
connectivity (Landis and Mullen, 1978).

Remarkably, the mild motor impairment in pcd
mutants belies the gross histological malformation
(Mullen et al., 1976). An increase in parvalbumin
expression, a calcium binding protein, and the re-
organization of intranuclear inhibition in the
vestibular nucleus and in the deep cerebellar nuclei
apparently compensate to ameliorate the effects of

the lack of tonic inhibition normally provided by the
GABAergic Purkinje cells (Mullen et al., 1976).

Weaver mouse (wv)

In weaver mice, a single base pair substitution
in the gene encoding a G-protein-dependent
inwardly rectifying potassium channel protein
(GIRK2; Patil et al., 1995) results in an almost
complete loss of vermal and paravermal granule
cells during the first postnatal weeks. (Rakic &
Sidman, 1973). Secondarily, up to 50% of Purkinje
cells in the vermis die.

Despite the observation that fewer Purkinje
cells die in the wv mouse when compared with the
ped mutant, wv mice exhibit severe ataxia with
gait instability, poor limb coordination, and tremor
at rest, as well as during motion. Gait instability is
so severe that adult mutants are unable to stand
without swaying (weaving) or to move one step
without falling over. This behavioral phenotype
results from an inability of this mutant to adjust
muscle tone in the trunk and the extremities
correctly (Grusser-Cornehls, 1995). The pro-
nounced behavioral deficits of wv mice compared
with pcd mice appear to result from a pronounced
irregular output of the cerebellum from the disparate
regions where Purkinje cells survive. Indeed,
ablation of the cerebellum in wv improves motor
performance (Grusser-Cornehls et al., 1999).

Leaner mouse tg(la)

A mutation (leaner (¢g(la)) in the gene encoding
the voltage-activated calcium channel alA subunit
in mice (Fletcher et al., 1996) results in Purkinje
cell, granule cell, and Golgi cell degeneration
(Herrup & Wilczynski, 1982). Granule cell degen-
eration occurs earliest, at about 3 weeks of age.
Between 4 to 6 weeks of age, up to 50% of Pur-
kinje cells die, reaching a peak of 80% at about 6
months, and the inhibitory interneurons, the Golgi
cells, lose up to 50% of their total number. Not
surprisingly, this mutant exhibits severe motor
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abnormalities, including marked ataxia, slowed
motor activity, rigid hypertonia of trunk and limb
muscles, but no tremor. In the adult 7g(/a) mouse,
the predominant motor symptom js an extreme
immobility, due to a rigid hypertonia and a swaying
sideways that forces them to ‘lean’ against the cage
walls to avoid toppling over. The pathology of
extracerebellar targets is thought to add to the
severe behavioral phenotype exhibited by #g(/a).

The most cogent message emanating from the
study of the behavioral phenotypes of various
cerebellar mutants is that it appears to be more
advantageous to remove the morphologically and
functionally impaired cerebellar circuitry com-
pletely in order to improve motor abilities. Never-
theless, the transferability of the results from
animal to man remains to be proven.

CEREBELLAR PLASTICITY

The protracted developmental profile of the
cerebellum, in relation to other brain structures,
makes it highly accessible to ongoing develop-
mental events and amenable to the modification of
these events due to the highly plastic nature of this
structure (Rossi & Strata, 1998). Furthermore, the
plasticity of the olivocerebellar system offers hope
for the treatment of pathologies. Efforts to reverse
aberrant cerebellar circuitry during development
and in adulthood have focused on transplanting
foreign cerebellar tissue in cases of atrophy or
degeneration and the use of trophic factors in re-
organizing cerebellar circuitry.

Transplantation studies

In the past, the transplanting cerebellar tissue
from normal animals into that of mutant models of
cerebellar degeneration was used to assess the
viability of repairing cerebellar function. In a
morphological study, Sotelo and Alvarado-Mallart,
(1986) showed that embryonic Purkinje cells
grafted into the cerebellum of pcd mice are able to

integrate specifically into the cerebellar circuitry,
replacing the missing Purkinje cells. Whilst the
embryonic Purkinje cells are able to integrate
synaptically in the pcd cerebellum, proper recon-
struction of the corticonuclear projection fails to
be achieved, placing restrictions on this procedure.

Zhang et al. (1996), however, grafted fetal
tissue of normal cerebellum onto the cerebellum of
pecd mice, in an attempt at correcting their cellular
and motor impairment. The animals showed an
improvement of motor behavior in balance rod
tests and in the open field, providing evidence for
functional integration into the atrophic mouse
cerebellum, suggesting that neural transplantation
could be a viable means of treating human
cerebellar ataxias.

Trophic agents

The initial phase of neuronal development is
governed by intrinsic patterns under the influence
of genetic imprints. A large number of genes have
been shown to be crucial for the proper formation
of cerebellar circuitry (see Wang & Zoghbi, 2001).
Apart from specific genes, other intraceilular
mediators have also been shown to modulate the
development of the cerebellum, in particular,
Purkinje cells. Protein kinase C, particularly the
gamma isoform, is necessary for the elimination of
surplus climbing fiber synapses in adulthood (Kano
et al,, 1995) and plays a dynamic role in Purkinje
cell development as well (Metzger & Kapfhammer,
2000). Additional endogenous mediators of Purkinje
cell development appear to be the neurosteroids,
progesterone and estradiol. Purkinje cells actively
synthesize these agents from cholesterol during the
postnatal period. These neurosteroids promote
dendritic growth, spinogenesis, and synaptogenesis
via each receptor in the Purkinje cell (Tsutsui et
al., 2004).

The secondary phase of development, governed
largely by activity dependent mechanisms, and
acting via electrical signaling and trophic factors,
is crucial for the further development of neurites
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and accounts for the most active period of neural
development and circuitry formation (Wong &
Ghosh, 2002). The two main cerebellar afferents,
namely the climbing fibers and mossy fibers
release aspartate or glutamate, which in turn
depolarizes their target neurons, Purkinje cells and
granule cells respectively. Co-localized with these
neurotransmitters are a diverse group of neuro-
peptides, such as the calcitonin gene related peptide
(CGRP), enkephalin, cholycystokinin, B50, neuro-
peptide Y, and insulin-growth factor (Kwong et al.,
2000).

Neurotrophins. Neurotrophins are a family of
molecules that encourage the survival of nervous
tissue. Neurotrophic factors are secreted by cells in
a neuron’s target field. Morrison and Mason (1998)
have shown that brain-derived neurotrophic factor
(BDNF) or neurotrophin 4 (NT-4) improves but
neurotrophin 3 (NT-3) reduces the survival of
isolated Purkinje cells, suggesting a complicated
interplay of various factors, released by either
cerebellar afferents or glia in modulating Purkinje
cell differentiation. Tolber and Clark (2003)
chronically infused glial-derived neurotrophic factor
(GDNF) into shaker mutant rats to rescue the
cerebellar Purkinje neurons from adult-onset
heterodegeneration. Four weeks of infusion of
GDNF rescued Purkinje cells from degeneration.
Behaviorally, the animals showed a delayed devel-
opment of gait ataxia, preserved hip stability, and
lower tremor frequencies. These effects, however,
were transitory, with the animals resorting to the
normal phenotype following the cessation of
treatment. Hence, although the results of that study
provide promising evidence for the role of GDNF
in reversing Purkinje cell degeneration, further
efforts are required to prolong its effects.

Insulin-like growth factor I (IGF). IGF is
contained in climbing fibers and has been shown
to promote Purkinje cell development (Fukudome
et al., 2003), to improve cerebellar dysfunction in
the leaner mutant (Nahm et al., 2003), and to

convey a neuroprotective effect in the injured
olivocerebellar pathway (Fernandez et al., 1999).
Insulin-like growth factor I also had an additive
effect with GDNF in staving off the degeneration
in shaker mutants. The neuroplastic ability of IGF
is further emphasized by its ability to cause
transected olivary axons to re-innervate their
appropriate targets, even in adulthood (Sherrard &
Bower, 2003). As with GDNF, however, IGF must
be continuously applied to be effective.

Corticotropin releasing factor (CRF). One of
the peptides growing in stature as modulators of
neuronal development is corticotrophin-releasing
factor (CRF) (Vale et al., 1981). The CRF is well
established as the major physiological regulator of
the hypothalamic-pituitary- adrenal (HPA) axis and
serves to coordinate the mammalian endocrine,
autonomic, and behavioral responses to stress
(Koob & Heinrichs, 1999). There are, however,
extra-hypothalamic sources of CRF, the most
prominent being the collection of brainstem nuclei
collectively termed the pre-cerebellar nuclei. The
pre-cerebellar nuclei express CRF in the axons that
form the major afferent systems to the cerebellum,
namely the mossy fibers and climbing fibers
(Palkovitz et al., 1987). The recently discovered
urocortin (Vaughan et al., 1995), which has a more
restricted expression profile, is believed to be
crucial in sensorimotor integration (Bittencourt et
al., 1999).

Both CRF and urocortin couple to two G-protein
receptors, namely CRF-R1 and CRF-R2. In vivo,
at adult age, the activation of CRF-R1 has been
shown to induce locomotor activity (Contarino et
al., 2000), whereas the activation of CRF-R2 has
an inhibitory effect (Valdez et al, 2002).
Crucially, in vitro, CRF is necessary for the
induction of long-term depression (LTD) (Miyata
et al., 1999), a type of synaptic plasticity and
viewed as the cellular basis of motor learning (Ito,
1984). This finding alludes to a direct role for
CRF-like peptides in motor coordination and motor
learning in adulthood. However, the onset of
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expression of CRF (Bishop & King, 1999),
urocortin, and their receptors (Chang et al., 1993)
occurs embryonically, prior to any synapse being
formed, suggesting an initial role for CRF-like
peptides in the development of the cerebellar
circuitry. During the first 3 postnatal weeks, cere-
bellar neurons undergo considerable structural
changes. This period coincides with the maturation
of the “CRF system”.

Bishop (2002) showed that CRF has a direct
excitatory action on Purkinje cells from PD 9
onwards. This effect was most pronounced in
lobules IX and X, namely, the region termed the
vestibulo-cerebellum, which is mainly concerned
with the control of posture and balance. Using
cerebellar slice cultures of rats ‘from PD 8, we
showed that both CRF and urocortin have a potent
effect on Purkinje cell dendritic differentiation
(Swinny et al., 2004). Intermittent exposure of the
slices to CRF and urocortin (12 hours per day for
10 days in vitro) enhanced dendritic outgrowth and
elongation, whereas continuous exposure of the
slices to the peptides inhibited growth.

Urocortin was shown to be more potent in
inducing dendritic outgrowth, with cells from
slices exposed to it intermittently having the highest
number of primary dendrites, 5.3 on average. In
contrast, CRF was more potent than urocortin in
causing dendritic elongation. This finding vindicates
earlier suppositions derived from CRF receptor
localization data showing that CRF-R2 is mainly
expressed in the Purkinje cell soma and CRF-R1 in
the Purkinje cell dendritic shaft (Swinny et al,,
2002).

Furthermore, in line with previous studies on
the binding affinities of CRF and urocortin, the use
of receptor antagonists showed that CRF mediates
its effects predominantly via CRFR1 and urocortin,
apparently via both receptors. Finally, blockade of
the PKA and MAPK pathways implicated these
secondary messenger pathways in mediating the
trophic effects of CRF and urocortin. In light of
the in vitro results, studies are needed to see if
CREF is capable of reversing the motor deficits in

animal models of cerebellar malformation or
degeneration.

CONCLUSION

In conclusion, in this genomic era, the list of
mutations that result in cerebellar abnormalities
and consequently motor disorders, is steadily
being unraveled. With animal models of cerebellar
mal-formation having proved invaluable for under-
standing the function of various cellular elements
in the cerebellar circuitry, the next phase of
research should aim to remodel or treat such
malformations. The use of trophic agents, although
currently restricted to in vitro or animal models,
could provide a fruitful line of research in treating
cerebellar pathologies of a developmental nature.
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