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The DNAs of a varicella-zoster virus vaccine and its parental virus were
compared by CsCl buoyant density centrifugation and restriction enzyme cleavage
analysis. The varicella-zoster virus vaccine DNA showed a heterogeneous buoyant
profile and altered restriction enzyme cleavage patterns. These changed properties
are probably the result of the accumulation of virus containing defective varicella-
zoster virus DNA during extensive cell culture passage of the vaccine virus.

Varicella-zoster virus (VZV) infection of hu-
mans causes an acute illness (varicella or chicken
pox), occurs almost always in childhood, and is
followed by a life-long, usually inapparent infec-
tion. For normal children, varicella is an annoy-
ing but not a dangerous disease (18). In sharp
contrast, varicella in an immunocompromised
child is a serious, often fatal, disease (7, 11). In
response to the seriousness of varicella in im-
munocompromised children, Takahashi and his
collaborators (24) have developed a live, atten-
uated VZV vaccine, which is now undergoing
limited clinical trials. As the DNA of the VZV
vaccine is uncharacterized, we undertook a side-
by-side comparison of the vaccine VZV DNA
with the parental VZV DNA.

VZV isolates were propagated at 37°C in
whole human embryo cells (Flow 5000 cells;
Flow Laboratories, Inc., Rockville, Md.) grown
in minimal essential medium (MEM) containing
10% fetal calf serum, 10% tryptose phosphate
broth, NaHCO;, and antibiotics. The parental
virus, VZV (parQOka), at passage 5 in human
embryo lung cells, was generously sent to us by
Michiaki Takahashi. The derivation of the vac-
cine virus, VZV (vacOka), from VZV (parOka)
has been described by Takahashi et al. (24).
Briefly, the history of the vaccine before passage
in our laboratory was as follows. VZV (Oka) was
passed sequentially 11 times in human embryo
lung cells at 34°C, 12 times in guinea pig embryo
cells at 37°C, and 1 to 21 times in human diploid
(WI-38) cells at 37°C (1, 9, 13). The vaccine, lots
3B and 77-10, was sent as frozen, lyophilized
preparations. VZV-infected cells were mixed
with uninfected cells at a ratio of 1:2 or 1:3 in 75-
cm? plastic flasks (T-75; Falcon Plastics, Oxnard,
Calif; 12, 17, 19). Eighteen hours after mixing,
the medium was decanted, and 15 ml of MEM
containing 2.5% dialyzed fetal calf serum and 20

uCi of [°H]thymidine (60 to 80 Ci/mmol; New
England Nuclear Corp., Boston, Mass.) per ml
was added. The infection was allowed to prog-
ress until the cytopathic effect was greater than
80%. Tritium-labeled VZV DNA was prepared
from purified extracellular (J. R. Ecker and R.
W. Hyman, Arch. Virol,, in press) and intracel-
lular virions (14) by treatment with sodium do-
decyl sulfate (0.5%) and pronase (2 mg/ml).
After deproteinization by rocking with phenol-
chloroform-isoamyl alcohol (24:24:1), VZV DNA
was precipitated. The final step in the purifica-
tion of VZV DNA was CsCl buoyant density
centrifugation.

In the first experiment, HindIII-cleaved VZV
(parOka) DNA from each successive pool of
fractions from the CsCl gradient was loaded into
consecutive wells in an agarose gel for electro-
phoretic separation of the specific fragments.
Figure 1A shows the results of one such experi-
ment for VZV (parOka) DNA at in vitro passage
11. DNA was found only at or near density 1.705
g/cm’® (16). The HindIlI cleavage pattern of the
VZV (parOka) DNA was indistinguishable from
one lane to the next with the exception of two
bands. There was an apparent change in the
molarity of two fragments across density 1.705
g/cm® (Fig. 1A, lanes 2 to 4). Additional exam-
ples of this change are shown in Fig. 1B (lanes
3to 5) and Fig. 1C (lanes 3 to 5). The significance
of this last observation is not known at present
and is being pursued.

The effect of in vitro passage on the buoyant
behavior of VZV (parOka) DNA was investi-
gated. When the same combined CsCl gradient
fractionation and restriction enzyme digestion
experiment carried out for passage 11 VZV
(parOka) DNA (Fig. 1A) was performed for pas-
sage 22 VZV (parOka) DNA (Fig. 1B), the pas-
sage 22 VZV (parOka) DNA was much more
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broadly distributed in the gradient. The VZV
(parOka) DNA of density 1.705 g/cm?® yielded a
HindlIII cleavage pattern (Fig. 1B, lanes 3 to 5)
indistinguishable from the pattern of passage 11
VZV (parOka) DNA (cf. Fig. 1A). VZV DNA at
lighter densities gave rise to altered HindIIl
cleavage patterns (Fig. 1B, lanes 5 to 8). In
particular, three DNA bands of sizes between 3
and 5 kilobase pairs were very prominent (Fig.
1B, lanes 6 to 8). The HindIlII cleavage pattern
of the total passage 22 VZV (parOka) DNA is
shown in Fig. 1B, lane 9. Many additional bands
were seen, in comparison with passage 11 VZV
(parOka) DNA (Fig. 1A, lanes 2 to 5). To verify
that these additional bands were, in fact, VZV
DNA, total VZV (parOka) DNA was cleaved
with restriction enzyme HindlIIl, subjected to
electrophoresis in a 0.5% agarose gel, denatured,
and blotted to prepared paper. The blot was
then hybridized to highly purified, ?P-labeled
VZV DNA, and autoradiography was performed.
The results of this experiment are shown in Fig.
1B, lane 10. Hybridization of authentic VZV
DNA to the many additional bands of passage
22, HindIll-cleaved VZV (parOka) DNA was
easily detected (Fig. 1B, lane 10).

After the effect of in vitro passage on cleavage
pattern had been examined for VZV (parOka)
DNA, we turned our attention to VZV (vacOka)
DNA, which had been passed at least 24 times
in culture before becoming the vaccine. Passage
numbers for VZV (vacOka) indicate passage in
our laboratory. The combined CsCl buoyant
density-HindIIl cleavage experiment was car-
ried out for passage 8 (in our laboratory, but at
least passage 32 overall) VZV (vacOka) DNA.
The results of one representative experiment are
shown in Fig. 1C. VZV (vacOka) DNA yielded
a very disperse buoyant density profile in a CsCl
gradient, even more disperse than that of pas-
sage 22 VZV (parOka) DNA (cf. Fig. 1B and C).
A substantial portion of the VZV (vacOka) DNA
banded at densities less than 1.705 g/cm® (Fig.
1C, lanes 6 to 9). The HindIII cleavage pattern
of VZV (vacOka) DNA of buoyant density 1.705
g/cm® (Fig. 1C, lanes 2 to 4) was indistinguish-
able from the patterns of passage 11 and 22 VZV
(parOka) DNA of the same density (cf. Fig. 1C,
lanes 2 to 4 with Fig. 1A, lanes 2 to 5 and Fig.
1B, lanes 3 to 5). The HindIII cleavage pattern
of VZV (vacOka) DNA of a density modestly
lighter than 1.705 g/cm?® (Fig. 1C, lanes 5 to 7)
showed three prominent bands between 3and5
kilobase pairs, as seen for passage 22 VZV
(parOka) DNA (Fig. 1B, lanes 6 to 8). The
HindlIII cleavage pattern of VZV (vacOka) DNA
of a density significantly lighter than 1.705 g/
cm?® (Fig. 1C, lanes 7 to 9) yielded many addi-
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tional DNA bands. The HindlIII cleavage pat-
tern of total VZV (vacOka) DNA (Fig. 1C, lane
10) was similar to the pattern of total passage 22
VZV (parOka) DNA (Fig. 1B, lane 9). These
experiments, using two different lots of the VZV
vaccine as the starting material for virus growth
and DNA preparation, produced analogous re-
sults (data not shown). With both lots of vaccine,
there were small changes in the total VZV
(vacOka) DNA cleavage pattern at each in vitro
passage (data not shown).

The restriction endonuclease cleavage pat-
terns of VZV (parOka) and VZV (vacOka) DNAs
of the CsCl buoyant density 1.705 g/cm® were
compared, using six restriction enzymes (Fig. 2:
Hpal, lanes 2 and 3; BglII, lanes 5 and 6; EcoRI,
lanes 8 and 9; HindIIl, lanes 11 and 12; and
Kpnl, lanes 14 and 15). Hpal cleavage of VZV
(parOka) DNA (Fig. 2, lane 2) and VZV
(vacOka) DNA (Fig. 2, lane 3) revealed a number
of differences in the cleavage patterns (arrows in
Fig. 2). These differences encompass both the
size and the number of bands. Digestion by Kpnl
revealed that VZV (vacOka) DNA (Fig. 2, lane
15) gave rise to one additional band when com-
pared with VZV (parOka) DNA (Fig. 2, lane 14).
Smal cleavage also revealed a difference in the
size of one VZV (vacOka) DNA band compared
with VZV (parOka) DNA (data not shown).
Cleavage of VZV (vacOka) and (parOka) DNAs
of density 1.705 g/cm® by Bgill, EcoRI, and
HindIIl did not distinguish between the two
(Fig. 2, lanes 5 and 6, 8 and 9, and 11 and 12,
respectively).

VZV cannot be plaque-purified by current
techniques. In addition, stable, truly cell-free
VZV cannot be easily obtained, if at all (25).
Therefore, we propagated VZV (parOka) by
mixing VZV-infected cells with uninfected cells.
As a consequence, there was little control of the
multiplicity of infection. The effects on virus
DNA after serial, undiluted passage of the virus
have been studied for several herpesviruses (2-
4, 8,10, 15, 22, 26). The result of high-multiplicity
passage is the synthesis of defective herpesvirus
DNA. Defective herpesvirus DNA can have a
different buoyant density than wild-type DNA
or a changed restriction enzyme cleavage pattern
or both. The observed changes in the buoyant
density and HindIII cleavage pattern of VZV
(parOka) DNA after 20 or more passages in
culture (Fig. 1A and B) most probably reflect
the accumulation of defective VZV DNA. The
heterogeneous buoyant density and altered re-
striction enzyme cleavage patterns (Fig. 1C and
2) of VZV (vacOka) DNA strongly suggest that
VZV (vacOka) DNA is a population of molecules
composed largely of defective VZV DNA. The
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F16. 2. Fluorographs showing comparisons of the restriction endonuclease cleavage patterns of VZV
(parOka) and (vacOka) DNAs of density 1 705 g/cm?®. Tritium-labeled VZV (parOka) and VZV (vacOka)
DNAs corresponding to density 1.705 g/cm® were selected and digested by the specified restriction endonucle-
ases. The resulting VZV DNA fragments were separated by agarose gel electrophoresis (19). The gels were
dried, and fluorography was performed (5, 6). Lane 1 contained EcoRI-cleaved A\ DNA. Lanes 2 and 3
contained Hpal-cleaved VZV (parOka) and (vacOka) DNAs, respectively. Lanes 4, 5, and 6 contained BgllI-
cleaved A\, VZV (parOka), and VZV (vacOka) DNAs, respectively. Lanes 7, 8, and 9 contained EcoRI-cleaved
A, VZV (parOka), and VZV (vacOka) DNAs, respectively. Lanes 10, 11, and 12 contained HindIII-cleaved A,
VZV (parOka), and VZV (vacOka) DNAs, respectively. Lane 13 contained EcoRI-cleaved A DNA. Lanes 14
and 15 contained Kpnl-cleaved VZV (parOka) and (vacOka) DNAS, respectively. Arrows point to differences
between the VZV (parOka) and VZV (vacOka) DNAs. Asterisks mark regions of suspected differences.

VZV (vacOka) DNA population contained DNA
of more “defectiveness” than passage 22 VZV
(parOka) DNA (Fig. 1B and C). This observa-
tion may be related to two facts: (i) VZV
(vacOka) has been passed in vitro more times
(at least 32 passages) than VZV (parOka); and
(ii) VZV (vacOka) has been passed in guinea pig
embryo cells between passages in human cells
(24), whereas VZV (parOka) has been passed
only in human cells.

VZV (vacOka) DNA of buoyant density 1.705
g/cm® was isolated from a CsCl gradient and
compared by restriction enzyme cleavage to
VZV (parOka) DNA of the same density. Six
restriction enzyme cleavage patterns were ex-
amined (Fig. 2). The EcoRI, HindIIl, and Bg!Il
cleavage patterns did not distinguish VZV
(vacOka) DNA from VZV (parOka) DNA,
whereas the Hpal, Kpnl, and Smal cleavage

patterns did show differences between the
DNAs. These data demonstrate that VZV
(vacOka) DNA has undergone some base se-
quence changes with respect to VZV (parOka)
DNA. Our working hypotheses are that VZV
(vacOka) DNA has accumulated point muta-
tions and/or small deletions or insertions and
that, in consonance with what is known of pas-
sage of herpesviruses in vitro at high multiplici-
ties of infection, VZV (vacOka) DNA prepara-
tions are largely composed of defective VZV
DNA.
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