Supporting Information

Formal Total Synthesis of the Cytotoxic Marine Ascidian Alkaloid Haouamine A

Jeannie H. Jeong, and Steven M. Weinreb*

Department of Chemistry, The Pennsylvania State University University Park, Pennsylvania 16802

smw@chem.psu.edu

Table of Contents

Title page	S 1
Experimental details of compounds 8-17	S2-S7
Experimental details of compounds 24-26 and 3	S7-S10
Spectral Data of compounds 6-17	S11-36
NMR Spectra of compounds 23-26 and 3	\$37-54

General Methods. All non-aqueous reactions were carried out under an inert atmosphere of argon or nitrogen in flame-dried glassware. Air and moisture sensitive liquid reagents were added via a dry syringe or cannula. Anhydrous tetrahydrofuran (THF), dichloromethane (CH₂Cl₂), diethyl ether (Et₂O) and toluene (PhMe) were obtained from a solvent dispensing system. All other solvents and reagents were used as obtained from commercial sources without further purification. Flash column chromatography was performed using EM Science silica gel 60 (230-400 mesh) or Aldrich basic alumina Brockmann I (~150 mesh). Analytical and preparative thin layer chromatography (TLC) were performed on EM Science silica gel 60 PF₂₅₄ plates. ¹H and ¹³C NMR spectral data were recorded on Bruker DPX-300, CPDX-300, AMX-360, or DRX-400 MHz spectrometers. Infrared spectral data were obtained using a Perkin-Elmer 1600 FTIR.

[2-(2-Hydroxyethyl)-6-methoxyphenyl]-(3-hydroxyphenyl)methanone (8). 3-Methoxyphenylmagnesium bromide (7, Aldrich, 1 M in THF, 18.7 mL) was added slowly to isocoumarin 6^7 (3.01 g, 17.0 mmol) in CH₂Cl₂ (30 mL) at -78 °C and the mixture was allowed to gradually warm to rt overnight. The mixture was quenched with saturated aqueous NH₄Cl (12 mL) and extracted with CH₂Cl₂ (3 x 12 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (50:50 EtOAc/hexanes) to afford ketoalcohol **8** as a colorless oil (4.77 g, 98%). IR (thin film) 3422, 1667, 1581, 1469, 1262 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.33 (bs, 1H, OH), 2.57 (t, *J* = 6.6 Hz, 2H), 3.55 (s, 3H), 3.63 (t, *J* = 6.6 Hz, 2H), 3.73 (s, 3H), 6.75 (d, *J* = 8.3 Hz, 1H), 6.85 (d, *J* = 7.5 Hz, 1H), 7.01 (dt, *J* = 7.0, 2.4 Hz, 1H), 7.16-7.20 (m, 2H), 7.26 (t, *J* = 8.0 Hz, 1H), 7.35-7.36 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 36.2, 55.5, 55.8, 63.3, 109.1, 113.0, 120.3, 122.6, 122.8, 129.3, 129.6, 130.6, 137.8, 139.0, 156.9, 159.9, 198.3; HRMS *m*/*z* calcd for C₁₇H₁₉O₄ 287.1278 (MH⁺), found 287.1281.

(2-[2-(*tert***-Butyldimethylsilanyloxy)ethyl]-6-methoxyphenyl}-(3-methoxyphenyl)methanone (9).** Imidazole (3.40 g, 50.0 mmol) and TBSCl (5.02 g, 33.32 mmol) were added to ketoalcohol **8** (4.77 g, 16.67 mmol) in CH₂Cl₂ (33 mL) and the mixture was stirred for 2 h at rt. The reaction mixture was diluted with H₂O (35 mL) and extracted with CH₂Cl₂ (3 x 35 mL). The combined organic layers were dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (15:85 EtOAc/hexanes) to yield ketone **9** as a white solid (6.67 g, 100%). ¹H NMR (300 MHz, CDCl₃) δ 0.00 (s, 6H), 0.78 (s, 9H), 2.1 (t, J = 7.4 Hz, 2H), 3.64 (t, J = 7.4 Hz, 2H), 3.66 (s, 3H), 3.83 (s, 3H), 6.81 (d, J = 8.0 Hz, 1H), 6.91 (d, J = 7.7 Hz, 1H), 7.09 (dt, J = 6.8, 1.6 Hz, 1H), 7.25 (s, 1H), 7.27-7.30 (m, 3H), 7.45 (t, J =1.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ -5.4, 26.0, 36.8, 55.5, 55.7, 64.0, 108.9, 112.9, 120.2, 122.8, 123.1, 129.3, 129.6, 129.9, 137.4, 139.1, 156.7, 159.9, 197.6; HRMS *m/z* calcd for C₂₃H₃₃O₄NaSi 423.1968 (M+Na⁺), found 423.1953.

2-{3-Methoxy-2-[1-(3-methoxyphenyl)vinyl]phenyl}ethanol (10). The Tebbe-Petasis reagent⁸ (0.5M in 50:50 THF/toluene, 1.6 mL) was added to a solution of ketone **9** (125 mg, 312 μ mol) in toluene (1.5 mL). The mixture was heated in an oil bath maintained at 120 °C for 15 h. After cooling the mixture to 40 °C, saturated aqueous NaHCO₃ (1.5 mL) and MeOH (1.5 mL) were added to destroy the excess Tebbe-Petasis reagent. The mixture was stirred for an additional 1 h at 40 °C and extracted with Et₂O (3 x 1 mL) after cooling to rt. The combined organic layers were dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (20:80 EtOAc/hexanes) to give olefin **10** as a pale

yellow oil (111 mg, 91%). ¹H NMR (300 MHz, CDCl₃) δ 0.00 (s, 6H), 0.89 (s, 9H), 2.77-2.83 (m, 2H), 3.66-3.72 (m, 2H), 3.73 (s, 3H), 3.79 (s, 3H), 5.22 (d, *J* = 1.3 Hz, 1H), 6.06 (d, *J* = 1.3 Hz, 1H), 6.80-6.86 (m, 2H), 6.91-6.95 (m, 2H), 6.98 (dd, *J* = 7.7, 0.9 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.24 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ -5.2, 18.5, 25.8, 26.1, 37.0, 55.2, 55.9, 64.5, 108.9, 112.0, 112.8, 115.6, 118.8, 122.8, 128.2, 129.3, 130.6, 138.5, 141.6, 143.8, 157.3, 159.7.

tert-Butyl-(2-{3-methoxy-2-[1-(3-methoxyphenyl)vinyl]phenyl}ethoxy)-

dimethylsilane (11). TBAF (1 M in THF, 3.18 mL) was added to silylether olefin **10** (1.15 g, 2.89 mmol) in THF (29 mL) and the mixture was stirred at rt for 2 h. Saturated aqueous NH₄Cl (20 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (20:80 EtOAc/hexanes) to afford hydroxy olefin **11** as a pale yellow oil (0.82 g, 100%). ¹H NMR (300 MHz, CDCl₃) δ 1.68 (bs, 1H), 2.77-2.81 (m, 2H), 3.68-3.71 (m, 2H), 3.73 (s, 3H), 3.78 (s, 3H), 5.19 (d, *J* = 1.2 Hz, 1H), 6.03 (d, *J* = 1.2 Hz, 1H), 6.82 (ddd, *J* = 8.2, 2.5, 0.9 Hz, 1H), 6.85-6.93 (m, 3H), 6.95 (dd, *J* = 7.7, 0.8 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.30 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 36.6, 55.3, 56.0, 63.5, 109.2, 112.0, 112.8, 115.9, 118.7, 122.2, 128.4, 129.4, 130.7, 138.1, 141.5, 143.6, 157.4, 159.7; HRMS *m*/*z* calcd for C₁₈H₂₁O₃ 285.1469 (MH⁺), found 285.1485.

{3-Methoxy-2-[1-(3-methoxyphenyl)vinyl]phenyl}acetaldehyde (12). Dess-Martin periodinane¹⁰ (0.82 g, 1.93 mmol) was added to hydroxy olefin **11** (0.50 g, 1.75 mmol) in CH_2Cl_2 (18 mL) at 0 °C. The mixture was stirred at rt for 1 h. Aqueous NaOH (2 M, 30 mL) was added to the reaction mixture which was extracted with CH_2Cl_2 (3 x 35 mL). The residue was purified

by flash column chromatography on silica gel (14:86 EtOAc/hexanes) to yield aldehyde **12** as a white translucent gum (0.39 g, 79%). ¹H NMR (300 MHz, CDCl₃) δ 3.55 (d, *J* = 2.0 Hz, 2H), 3.71 (s, 3H), 3.75 (s, 3H), 5.12 (d, *J* = 1.2 Hz, 1H), 5.98 (d, *J* = 1.1 Hz, 1H), 6.76-6.81 (m, 2H), 6.82-6.86 (m, 2H), 6.91 (dd, *J* = 8.3, 0.8 Hz, 1H), 7.14 (dt, *J* = 7.6, 1.1 Hz, 1H), 7.31 (dd, *J* = 8.2, 7.7 Hz, 1H), 9.54 (t, *J* = 2.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 48.6, 55.6, 56.4, 110.6, 112.4, 113.3, 117.0, 119.0, 123.2, 129.2, 129.8, 131.5, 132.7, 141.3, 143.7, 158.0, 160.1, 200.1.

Nitrone Cycloadditon Procedure. *Method 1.* Et₃N (0.44 mL, 3.14 mmol) was added to a solution of benzylhydroxylamine hydrochloride (0.47 g, 2.88 mmol) in toluene (1.0 mL) with Na_2SO_4 (0.10 g) and the mixture was stirred for 30 min at rt. Aldehyde **12** (0.74 g, 2.62 mmol) in toluene (2.6 mL) was added to the solution. The mixture was stirred for an additional 1 h and then heated at 115 °C for 36 h. Concentration of the reaction mixture *in vacuo* gave a residue that was partitioned between brine (15 mL) and CH_2Cl_2 (10 mL) and extracted with CH_2Cl_2 (3 x 10 mL). The combined organic layers were dried over Na_2SO_4 , and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (10:90 EtOAc/hexanes) to yield **14** (640 mg, 63%) and 315 mg of an impure fraction containing **15**. The impure mixture containing the bridged cycloadduct **15** was heated in toluene (10 mL) at 115 °C for 24 h to give additional linear product **14** (769 mg, 76% total yield).

Method 2. Et₃N (0.44 mL, 3.14 mmol) was added to a solution of benzylhydroxylamine hydrochloride (0.47 g, 2.88 mmol) in toluene (1.0 mL) along with Na₂SO₄ (0.10 g) and the mixture was stirred for 30 min at rt. Aldehyde **12** (0.74 g, 2.62 mmol) in toluene (2.6 mL) was added to the solution. The mixture was stirred for an additional 1 h and then filtered. The filtrate was heated in an oil bath maintained at 130 °C for 45 h. The reaction mixture was concentrated *in vacuo*. The resulting residue was partitioned between brine (15 mL) and CH₂Cl₂

(10 mL) and extracted with CH_2Cl_2 (3 x 10 mL). The combined organic layers were dried over Na_2SO_4 , and concentrated *in vacuo*. The mixture was purified by flash column chromatography on silica gel (20:80 EtOAc/hexanes) to afford isoxazolidine **14** as a white solid (0.60 g, 73%).

1-Benzyl-4-methoxy-3a-(3-methoxyphenyl)-3,3a,8,8a-tetrahydro-1H-indeno[2,1-

c]isoxazole (14). White solid, mp 109-111 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 2.62 (d, *J* = 17.1 Hz, 1H), 2.97 (dd, *J* = 17.0, 6.4 Hz, 1H), 3.39 (d, *J* = 6.3 Hz, 1H), 3.62 (s, 3H), 3.67 (s, 3H), 4.04 (s, 2H), 4.11 (d, *J* = 9.0 Hz, 1H), 4.57 (d, *J* = 9.0 Hz, 1H), 6.70-6.75 (m, 4H), 6.77 (d, *J* = 7.6 Hz, 1H), 7.13-7.32 (m, 6), 7.32 (dd, *J* = 7.8, 1.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 35.2, 55.4 (2), 61.3, 70.1, 76.8, 77.2, 77.7, 80.0, 82.5, 109.1, 111.3, 117.8, 119.0, 127.5, 128.5 (2), 129.3 (2), 129.8, 133.0, 144.3, 146.8, 156.5, 159.7; HRMS *m/z* calcd for C₂₄H₃₅O₃Si 388.1895 (MH⁺), found 388.1907. Suitable crystals for X-ray analysis were obtained by the slow evaporation of a 1:1 pentane/ Et₂O solution.

[2-Amino-7-methoxy-1-(3-methoxyphenyl)-indan-1-yl]methanol (16). 10% Pd(OH)₂/C (1.05 g) was added to a solution of isoxazolidine 14 (2.10 g, 5.17 mmol) in 1:1 CH₂Cl₂/methanol (50 mL). The mixture was stirred under one atmosphere of H₂ at rt for 12 h, filtered through a pad of Celite, and concentrated *in vacuo* to yield a translucent gum (1.45 g, 94%). The resulting amino alcohol was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 2.46 (bs, 2H), 2.65 (dd, *J* = 15.7, 5.3 Hz, 1H), 3.12 (dd, *J* = 15.7, 6.8 Hz, 1H), 3.63 (s, 3H), 3.71 (s, 3H), 3.80 (dd, *J* = 6.8, 5.4 Hz, 1H), 4.27 (d, *J* = 11.4 Hz, 1H), 4.37 (d, *J* = 11.5 Hz, 1H), 6.73-6.78 (m, 4H), 6.89 (d, *J* = 7.4 Hz, 1H), 7.16 (t, *J* = 8.2 Hz, 1H), 7.23 (t, *J* = 7.8 Hz, 1H).

1-(tert-Butyldimethylsilanyloxymethyl)-7-methoxy-1-(3-methoxyphenyl)-indan-2-

ylamine (17). TBSCl (0.86 g, 5.69 mmol) and imidazole (0.40 g, 5.83 mmol) were added to amino alcohol 16 (1.45 g, 4.86 mmol) in DMF/CH₂Cl₂ (40:60, 50 mL), and the mixture was stirred for 12 h at rt. The reaction mixture was diluted with H₂O (50 mL) and extracted with Et₂O (3 x 50 mL). The combined organic layers were washed with H₂O (50 mL), dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (25:75 EtOAc/hexanes) to give amino silyl ether 17 as a colorless gum (1.99 g, 99%). ¹H NMR (400 MHz, CDCl₃) δ -0.31 (s, 3H), -0.11 (s, 3H), 0.74 (s, 9H), 1.78 (bs, 2H), 2.75 (dd, *J* = 15.4, 7.6 Hz, 1H), 3.14 (dd, *J* = 15.5, 7.9 Hz, 1H), 3.57 (s, 3H), 3.70 (t, *J* = 7.5 Hz, 1H), 3.71 (s, 3H), 4.19 (d, *J* = 9.8 Hz, 1H), 4.55 (d, *J* = 9.9 Hz, 1H), 6.67 (d, *J* = 8.3 Hz, 1H), 6.68-6.75 (m, 3H), 6.82 (d, *J* = 7.4 Hz, 1H), 7.13 (t, *J* = 7.9 Hz, 1H), 7.20 (t, *J* = 7.8 Hz, 1H)); ¹³C NMR (75 MHz, CDCl₃) δ -5.9, -5.7, 18.1, 25.9, 42.2, 55.0, 55.3, 60.5, 109.0, 110.6, 113.0, 117.3, 119.0, 128.9 (2C), 132.1, 145.5, 147.7, 157.0, 159.5; HRMS *m/z* calcd for C₂₄H₃₆NO₃Si 414.2464 (MH⁺), found 414.2469.

2-(2-Bromo-5-methoxyphenyl)-N-[1-(tert-butyl-dimethylsilanyloxymethyl)-7-

methoxy-1-(3-methoxyphenyl)-indan-2-yl]-acetamide (24). EDAC (75 mg, 0.383 mmol) was added to phenylacetic acid 23^{12} and amino silyl ether 17 in CH₂Cl₂ (3.2 mL) at -10 °C. The mixture was allowed to gradually warm to rt overnight. H₂O (2.5 mL) was added to the reaction mixture and solution was extracted with CH₂Cl₂ (3 x 3 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (25:75 EtOAc/hexanes) to afford amide **24** as a white foam (201 mg, 99%). ¹H NMR (300 MHz, CDCl₃) δ -0.40 (s, 3H), -0.20 (s, 3H), 0.60 (s, 9H), 2.71 (dd, *J* = 15.6, 8.0 Hz, 1H), 3.28 (dd, *J* = 15.7, 8.9 Hz, 1H), 3.55 (s, 3H), 3.66 (s, 3H), 3.67 (s, 2H), 3.77

(s, 3H), 4.25 (AB_q, J = 24.7, 10.1 Hz, 2H), 4.93 (q, J = 8.9 Hz, 1H), 6.61-6.73 (m, 5H), 6.77 (d, J = 6.9 Hz, 1H), 6.92 (d, J = 3.0 Hz, 1H), 7.09 (t, J = 7.9 Hz, 1H), 7.18 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 8.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 6.2, -5.6, 17.9, 25.8, 40.7, 44.8, 54.8, 55.2, 55.6, 59.8, 60.3, 65.2, 109.1, 111.3, 112.7, 115.3, 115.4, 117.1 (2C), 118.8, 129.0, 129.2, 130.8, 133.7, 136.1, 144.5, 145.8, 156.6, 154.4 (2C), 169.1; HRMS *m*/*z* calcd for C₃₃H₄₂NO₅NaSiBr 662.1913 (MNa⁺), found 662.1904.

2-(2-Bromo-5-methoxyphenyl)-N-[1-formyl-7-methoxy-1-(3-methoxyphenyl)-indan-2-yl]-acetamide (25). TBAF (1 M in THF, 117 μ L) was added to silylether amide **24** (50 mg, 78 μ mol) in THF (1.0 mL) and the mixture was stirred at rt for 30 min. Saturated aqueous NH₄Cl (1 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 1 mL). The combined organic layers were dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (50:50 EtOAc/hexanes) to yield the alcohol as a white gum (41 mg, 100%). ¹H NMR (300 MHz, CDCl₃) δ 2.36 (bs, 1H), 2.74 (dd, *J* = 16.5, 1.9 Hz, 1H), 3.04 (dd, *J* = 16.4, 6.2 Hz, 1H), 3.62 (s, 2H), 3.67 (s, 3H), 3.74 (s, 3H), 3.75 (s, 3H), 4.16-4.22 (m, 2H), 4.83-4.88 (m, 1H), 6.45-6.46 (m, 1H), 6.57 (d, *J* = 7.8 Hz, 1H), 6.67 (dd, *J* = 8.8, 3.1 Hz, 1H), 6.69 (dd, *J* = 8.3, 2.6 Hz, 1H), 7.26-7.31 (m, 1H), 7.39 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 39.0, 44.6, 55.3, 55.6, 55.7, 62.3, 62.6, 66.3, 109.4, 111.7, 113.2, 115.1 (2C), 115.6, 117.1, 118.9, 119.2, 129.4, 129.5, 130.0, 133.6, 135.9, 144.3, 145.5, 156.8, 159.2, 159.7, 169.9.

Water (78 μ L, 78 μ mol) and Dess-Martin periodinane¹⁰ (50 mg, 117 μ mol) were added to the above alcohol (41 mg, 78 μ mol) in CH₂Cl₂ (2 mL), and the mixture was stirred at rt for 1 h.

Aqueous NaOH (1 M, 2 mL) was added to the reaction mixture which was then extracted with CH_2Cl_2 (3 x 2 mL). The residue was purified by flash column chromatography on silica gel (50:50 EtOAc/hexanes) to give aldehyde **25** as a white foam (40 mg, 98%). ¹H NMR (300 MHz, $CDCl_3$) δ 2.79 (dd, J = 15.8, 7.6 Hz, 1H), 3.27 (dd, J = 15.8, 7.8 Hz, 1H), 3.59 (s, 5H), 3.70 (s, 3H), 3.76 (s, 3H), 4.78 (q, J = 7.7 Hz, 1H), 6.59 (s, 1H), 6.59 (d, J = 3.8 Hz, 1H), 6.71 (dd, J = 8.8, 3.1 Hz, 1H), 6.75-6.78 (m, 2H), 6.84 (d, J = 3.0 Hz, 1H), 6.87 (d, J = 7.5 Hz, 1H), 7.05 (d, J = 9.2 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.45 (d, J = 8.8 Hz, 1H), 9.69 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 38.2, 44.3, 55.3, 55.4, 55.7, 61.4, 69.9, 110.0, 112.7, 113.4, 115.4, 117.0, 118.1, 119.7, 126.1, 129.6, 131.0, 133.7, 135.7, 139.9, 144.7, 156.8, 159.3, 159.9, 169.8, 199.0; HRMS *m*/*z* calcd for $C_{27}H_{26}NO_5NaBr$ 546.0892 (MNa⁺), found 546.0878.

3-(2-Bromo-5-methoxyphenyl)-5-methoxy-4a-(3-methoxyphenyl)-1,4a,9,9a-tetra-

hydroindeno[2,1-b]pyridin-2-one (26). K_2CO_3 (16 mg, 1.114 mmol) was added to aldehyde 25 (62 mg, 0.118 mmol) in MeOH (10 mL) and the resulting mixture was heated at 60 °C overnight. Concentration of the reaction mixture *in vacuo* gave a residue that was partitioned between brine (10 mL) and CH₂Cl₂ (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (66:33:1 hexanes/EtOAc/conc. NH₄OH) to yield lactam **26** (59 mg, 98%). ¹H NMR (300 MHz, CDCl₃) δ 3.11 (dd, *J* = 15.6, 6.6 Hz, 1H), 3.34 (dd, *J* = 15.8, 6.9 Hz, 1H), 3.60 (s, 3H), 3.73 (s, 3H), 3.75 (s, 3H), 4.17-4.22 (m, 1H), 6.26 (s, 1H), 6.69-6.80 (m, 5H), 6.89 (d, *J* = 3.0 Hz, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 7.18-7.24 (m, 1H), 7.29 (t, *J* = 7.7 Hz, 1H), 7.42 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 40.9, 55.3, 55.4, 55.7, 60.6, 64.6, 110.1, 112.1, 113.2, 114, 6, 115.2, 117.3, 117.6, 119.3, 129.5, 130.0 (2C),

133.2, 134.7, 139.1, 141.1, 143.5, 145.0, 156.7, 158.9, 159.9, 163.7; HRMS *m/z* calcd for C₂₇H₄₂NO₄NaBr 528.0786 (MNa⁺), found 528.0783.

3-(2-Bromo-5-methoxyphenyl)-5-methoxy-4a-(3-methoxyphenyl)-2,4a,9,9a-tetrahydro-1H-indeno[2,1-b]pyridine (3). LiAlH₄ (29.7 mg, 782 µmol) and ZnCl₂ (0.5 M in THF, 782 µL) were added to lactam 26 (33 mg, 65 µmol) in THF (5.0 mL) at 0 °C and the mixture was allowed to gradually warm to rt over 1 h. After recooling the reaction mixture to 0 °C, 10% H_2SO_4 (2 mL) was added slowly. The mixture was stirred for approximately 30 min until all of the solids had dissolved. The solution was basified with saturated aqueous NaHCO₃ and extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by preparative TLC (66:33:1 hexanes/EtOAc/conc. NH₄OH) to afford amine **3** as a white foam (24 mg, 75%): mp 58-61 °C; IR (thin film) 2934, 1588, 1479, 1465, 1289, 1263, 1080, 1052, 1027 cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$) δ 2.92 (dd, J = 16.1, 4.5 Hz, 1H), 3.15 (dd, J = 16.1, 7.0 Hz, 1H), 3.51 (d, J = 17.6 Hz, 1H), 3.61 (s, 3H), 3.62-3.67 (m, 1H), 3.74 (s, 3H), 3.75 (s, 3H), 3.79 (dd, *J* = 17.7, 2.0 Hz, 1H), 6.34 (s, 1H), 6.67 (dd, J = 8.7, 3.1 Hz, 1H), 6.71-6.75 (m, 4H), 6.80 (t, J = 2.1 Hz, 1H), 6.92 (d, J= 7.5 Hz, 1H), 7.16 (t, J = 7.9 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 7.41 (d, J = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 36.3, 45.4, 55.4 (2C), 55.7, 66.7, 109.8, 111.5, 113.1, 113.3, 114.4, 116.2, 118.0, 119.7, 129.2, 129.3, 130.2, 132.6, 133.5, 139.4, 143.8, 143.9, 147.6, 157.7, 159.0, 159.8; HRMS m/z calcd for C₂₇H₂₇NO₃Br 492.1174 (MH⁺), found 492.1194.

it Data Parameters jhj-04-29-03 1	cquisition Parameters 2003/429 16.10 M spect 5 mm QNP1H/1 6 529030 65536 17 00013 100013 11796.92 Hz 0.286619 Hz 0.286619 Hz 1.7433705 sec	724.1 26.300 usec 6.00 usec 7.0000000 sec 0.0300000 sec 0.0300000 sec			ocessing parameters 3708 75.4023594 MHz no 0 0.0 Hz 1.40	oidt parameters 20.00 cm 1580.000 ppm 15872.42 H2 20.000 ppm 15000 ppm 15000 ppm 603.21887 H2/cm 603.21887 H2/cm
Curren NAME EXPNO PROCNO	F2 - A Date_ Time INSTRU INSTRU PULPRO PULPRO PULPRO PULPRO NC SOLVEN NS SWH SSWH SSWH SSWH SSWH SSWH SSWH S	НС 110 112 112 122	NUC1 NUC1 PL1 SF01 SF01	CP0PRG2 NUC2 PCP02 PL2 PL12 PL13 SF02 SF02	- PC SS MDW MDW CS SS SS G G C C C C C C C C C C C C C	1D NMR F CX F1P F2P F2P F2P F2CM HZCM

0

MeO

	cens Cens Cens Cens Cens Cens Cens Cens C	HA HA Sec Sec Sec Sec	usec dB MHz	usec usec dB MHz	ers MHZ HZ	cm ppm Hz ppm tz/cm Hz/cm
ca Parameters jhj-04-29-03 3	sition Perame 20030429 16.30 16.30 5pect 5 mm ONP 11/1 65536 65536 65536 65536 33	17985. 611 0.224439 0.224439 1.8219508 1.8219508 1.8219508 5.00 5.00 5.00 0.00527140 0.00002000 0.00000508	-= CHANNEL f1 13C 5.40 10.80 -6.00 75.4058817	-= CHANNEL f2 waltz16 11 12.40 24.80 115.00 0.00 0.00 299.8711995	ssing paramet(32768 75.4023584 0 0 0.00 0.00 1.40	: parameters 20.00 186.000 13572.42 26.000 1568.05 8.00000 603.21887
Current Dat NAME EXPNO PROCNO	F2 - Acquis Date INSTRUM PROBHD 5 PULPROG TD SOLVENT NS	05 SWH SWH A0 RG DM D0 11 D12 D12 D12 D12 D12	NUC1 P1 P2 PL1 SF01	серорнс2 серорнс2 ра ра Рсеро2 PL 12 PL 12 PL 12 SF 02	FF2 - Proces SI SF SF SS SSB CB CB CB CB	10 NMR plot CX F1 F1 F2 F2 PPMCM H2CM H2CM

	tens HZ Sec Sec Sec	usec dB MHz usec usec dB dB	an MHZ MHZ H7	cm Ppm H2 Ppm K2 Ppm/cm H2/cm
Data Parameters jnj-03-29-03 2	utisition Parame 20030399 15.50 spect 5.50 20030 65538 0.600 1.7433075 1.7433075 1.7433075 1.7433075 1.7433075 2.00000000 6.000 2.00000000 0.00002000 0.00002000	===== CHANNEL f1 13C 5.40 5.40 6.00 75.4106367 75.4106367 75.4106367 75.4106367 75.4106367 71.115.00 115.00 115.00 0.000 0.000	299.8711995 299.8711995 75.4023670 0 0 0.00 1.40	vlot parameters 20.000 220.000 16588.52 30.000 2262.000 2262.000 716.32251
Current NAME EXPNO PROCNO	F2 - Act Date - Time PHOBHO PHOBHO PULPROG PULPROG SOLVENT SOLVENT SOLVENT FIDRES PHG DM D11 D11 D11 D11 D11	NUC1 NUC1 SF01 SF01 CP0PRG2 PCP02 PL2 PL2	PLIJ SF02 SS1 - Prc WUW WOW GB GB PC	1D NMA 1 CX F1P F1 F2P F2P PPMCM HZCM

0=

MeO

. Dətə Parameters jhj-05-25-03 2	quisition Parameters 20030325 20.19 2014/1 5 mm QNP 14/1 299930 65535 CDC13 18796.992 Hz 1.7433076 sec 65 500 usec 6.00 usec 6.00 usec 6.00 usec 0.0300000 sec 0.0300000 sec	CHANNEL f1 ======== 13C 5.40 usec 6.00 dB 75.4106357 MH2 75.4106357 MH2 115.00 dB 115.00 dB 20.00 dB 220.00 dB 220.00 dB 220.00 dB	51655jng parameters 32758 MHz 75.402567 MHz 0 0 1.40	iot parameters 20.00 cm 210.000 ppm 15824.50 Hz -124.02 Hz -734.02 Hz 110.000 ppm 829.4563 Hz/cm 829.4563 Hz/cm
Current NAME EXPNO PROCNO	F2 - Ac Date INSTRUM PROBHID PULPAGG PULPAGG PULPAGG TD SOLVENT TD SOLVENT TD SOLVENT TD DE FIDRES SWH FIDRES SWH FIDRES SMH D11 11 11 11 11 11 11 11 11 11 11 11 11	NUC1 NUC1 SF01 SF01 CPDPRC2 CPDPRC2 CPDPRC2 PCPD2 PC2 PC12 PC13 FC13 FC13 SF02	FF2 - Prc SSF MNDW SSB CB CB PC	10 NMH F CX F1 F1 F2P F2P F2P F2P F2CM H2CM

	H ters	HZ HZ Sec Sec Sec Sec	usec dB MHZ	usec d8 dB · MHz	ars MHz Hz	cm ppm Ppm Hz Hz/cm Hz/cm
Data Parameters jhj-05-27-03 3	Uisition Parame 20030527 14.45 spet 5 mm Multinu 20030 65536 65536 65536 100 100 100	2.287360 1.7400308 1.7400308 2.550 6.00 5.00 300.0 300.0 0.03000000 0.030000000 0.030000000		==== CHANNEL f2 waltz16 114.01 -6.00 18.00 18.00 300.1312005	cessing paramet 32768 75.4677421 00 0.00 0.00 1.40	lot parameters 20.00 20.000 15240.20 -154.68 11.0000 11.0000 830.14514
Current NAME EXPNO PROCNO	F2 - Acc Date INSTRUM INSTRUM PULPROG PULPROG SOLVENT SOLVENT SOLVENT SOLVENT	FIDRES DW DF d11 d12 d12	NUC1 P1 PL1 SF01	серонас серонас РСРО2 РСР02 РС12 РС13 РС13 SF02 SF02	SSI SSI SSI SSB SSB CGB CGB CCB CCB CCB CCB CCB CCB CCB CC	10 NMA F 15 19 11 12 12 12 12 12 12 12 12 12 12 12 12

	Current Data Parameters NAME jnj-09-11-03 EXPNO 1 PPOCNO 1 F2 - Accuisition Parameters Date20030911 Time 17.56 INSTRUM spect POLPPOG 5,930 TD PULPOG 2,930 TD 46294	SOLVENT C0013 NS 15 DS 9 FIDRES 0.133340 Hz A0 3.749641 sec RG 3.749641 sec RG 3.749641 sec RG 3.00 usec DM 81.000 usec E 5.00 usec TE 300.0 K D1 1.0000000 sec RG 11.70 usec P1 0.00 dB	SFD1 299.8716518 MHz F2 Processing parameters SI 32768 WDW 0 MDW 0 SSB 0 SB 0 CB 1.00 PC 1.00 PC 1.00	F1P 10.000 ppm F1 2998.70 Hz F2P 0.500 ppm/cm F2 149.94 Hz H2CM 145.94 Hz H2CM 142.43826 Hz/cm
Meo	¢55545 ¢5035 ¢5039 ¢5039			
	-23.72844 -2.72849 -2.72849 -2.72840 -2.72840 -2.12853 -2.12853 -2.12853 -2.12853 -2.12853 -2.22840 -2.22840 -2.22844 -2.2284			0.3)25 3'0163 3'0163 3'0163
	0125(2) 1012 10			1000000000000000000000000000000000000
	ртиника 			E E E E E E E E E E E E E E E E E E E

$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $		Data Parameters)n)-09-11-03 1	Uuisition Parameters 20030911 30.01 3004 5 mm QNP 1H/1 55955 55955 55955 55955	100 107 107 107 107 107 1024 1024 1024 1024 1024 1024 1024 1026 2000 2000 2000 2000 2000 2000 2000	==== CHANNEL f1 ====== 13C 5.40 usec -5.00 dB 75.4105357 MHz	CHANNE_ F2 ===================================	cessing parameters 32768 75.4023410 MHz 0 0 1.40	Jot parameters 20.00 cm 20.00 ppm 15834.49 ppm 40,000 ppm 40,000 ppm 599.45 ppm/cm 640 c c pp1/km
BC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Current NAME EXPNO PROCNO	F2 - Acc Date INSTRUM PROBHD PULPHOG PULPHOG SOLVENT	NS SWH A A A A A A D A D A D 1 D 1 D 12 D 12 D 12 D 12 D 12 D 12 D	NUC1 P1 PL1 SF01	CPDPRG2 CPDPRG2 PLC2 PL2 PL13 PL13 FL13 SF02	SI SI SI SS SSB CB FC CB	10 NMA
PE0.005 PE0.005	OMe	689	85					
B00.005		осл 619. 613.	99 99					
B00.005			LL					
860.002 001 002 002 002 002 002 002	∑ ⊡	799. 767						
B80.081 186.081 186.081 186.081 187.181 188.181 188.181 188.181 188.181 188.181 188.181 188.181 188.181 199.081 199.181								
880.031 880.031 150.821 151.651 152.651 153.161 154.161 155.161		155. 185. 233.	110					
		216 281. 579. 379.	110					
860.005 160.098 160		406. 152. 152.	1132					
960.098 160.088		747.	E143					
860.098		880. 140.	128					
960.096								
		860	500					

lenpatnI

	-	
Current Data NAME FXPND	a Parameters hj-03-06-06 7	
PROCNO		
F2 - Acquis Date Time	ition Paramet 20050306 1.10	ers.
INSTRUM	mm ANP 1H/1	
PULPROG	z gpg30	
SOLVENT	Elogo	
SC	2000	
SWH	18795.992 0 286840	Hz Hz
AG	1.7433076	SEC
92	512	
M HO	6.00	usec
TE	300 ° 0	¥
10	2.00000000	sec
011 -	0.03000000	Sec
	CHANNEL f1	
	101	16PL
51	-6.00	dB
SF01	75.4106357	ZHM
	- CHANNEL f2	
CPDPRG2	waltz16	
PCPDP	115 DO	
22	00.00	dB
PL 12	20.00	dB
PL 13 SF 02	20.00 299.8711995	dB MHz
F2 - Process	sing paramete	SL
SI	32768	
SF MDW	75.4023572 Fw	MHz
SSB	0	
LB 20	1.00	Hz
50	1.40	
1D NMR plot	narameters	
C	20.00	cm
Elp E	200.000	mqq
r 1 F2P	10.000	2H
CU LL	-754.02	HZ
PPMCM 17.0W	10.50000	ppm/cm ·
MJ2H	121.16413	H2/11

	ters Hz Sec	Sec Sec NK N Sec Sec	usec usec dB MHz	usec usec dB dB MHz	2r5 MHZ HZ	ст ррт Н2 ррт Н2 ррт/ст Н2/ст
a Parameters jhj-03-06-06 1	ittion Parame 20060306 3.15 3.15 spect 65536 65536 65536 65536 65536 65536 65536 17987.611 0.274591 0.274591 1.8219508	10384 27,800 6,00 6,00 2,0000000 0,000020143 0,00002000 0,00002000	 CHANNEL f1 13C 5.40 10.80 75.4098817 	= CHANNEL f2 14 12.40 24.80 24.80 115.00 0.00 299.8711995	sing paramet(32768 75.4023573 EM 1.00 1.00 1.40	200.000 200.000 15080.47 -10.000 -754.02 791.72479
Current Dat NAME EXPNO PROCNO	F2 - Acquis Date - INSTRUM PROBHD 5 PULPROG PULPROG TD SOLVENT NS SOLVENT SSD SSD FIDRES	HG DW DE D1 D12 D12 DELTA	NUC1 P1 P2 PL1 SF01	ссРОРЯG2 ССРОРЯG2 NUC2 P3 P4 P12 P12 P12 P12 SF02 SF02	F2 - Proces S5 MDW S5B S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	10 NMR Plot CX F1P F1 F2P F2P PPMCM H2CM

ÒMe

	BLS :: BLS : BLHZ : : BLS : Usec usec	usec K Sec asses asses asses asses asses asses MHz	scs MHz Hz	cm ppm ppm ppm/cm Hz/cm
Data Parameters jhj-10-14-4 1	uisition Parame 20041014 13.13 13.13 14.14 2930 2930 33110 33110 33110 33110 33110 15 8278.146 0.250019 1.999840 1.999840 50.400	6.00 300 0 1.00000000 1.00000000 1.00000000 1.00000000	cessing paramet 32768 32769 171 00 0 0 0 0 0	lot parameters 20.00 10.000 10.00 -0.50 -0.5250 0.52550 210.06825
Current NAME EXPNO PROCNO	F2 - Acq Date - INSTRUM PROBHD PULPROG PULPROG SULVENT NS SOLVENT NS SWH SWH SWH SWH SWH DS SWH DI DW	DE TE D1 ====== NUC1 P1 PL SF01	SI SI MDW SSB SSB CB CB PC	10 NMR p CX F1 F2 F2 F2 F2 PPMCM HZCM

	81		
			F
			-
	J		-0
]		E
			E
			L
			E
z[09z.2-			-
	1		F
L-S. 63962			-
///-5.66560			E
9886			Ła
96760.5-7			-
00717-3.11500	J	P000.2	-
81461.6 ///	$ \geq $	0000 T	-
-3.15124			F
19829.23.62861		0/00:0	E
		8750 0	F
tt627.ε-///	1	2168.5	F
-3.79260		2.8786	- F
1096Z.E		0966.0	F
84009.8		CECE:0	E
4.25607		/5#6.0	E
99482.7		2010 0	F
69895			F
96786.4-7			F
		0.2342 >=	E
			2
			-
			-
			E
		(101010	Ē
006// 9		2026 0	-
91212			-
98/8/ 9		ALER 1	-
869/8.9-		CC0E.0	-
Ip//8.8-//		0000.1	E
78768·9-///		0000 1	. E
<u>99061.7-7</u>			F
95161.7			μ-80 Γ
89015.7			F
ttoes.7			E .
17245.7-1			E.
			F
			F
			E
<i>,</i>			F
wdd		телбалит	- mdo
	1		

	s L	Hz Hz Sec Usec Sec Sec Sec	usec dB MHz	usec dB MHz	AHZ ZH	cm ppm hz ppm/cm Hz/cm
a Parameters hj-02-04-06 5	ttion Parame 20060204 19.56 19.56 59ect 5 mm Multinu 290930 55536 55536 55536	4 18832.393 0.287360 1.7400308 1.7400308 13004 26.00 6.00 6.00 6.00 0.03000000 0.03000000	 CHANNEL f1 13C 11.80 0.00 75.4760200 	<pre>c CHANNEL f2 waltz16 1H 110.00 110.00 17.50 17.50 300.1312005</pre>	sing paramet 32768 75.4677358 EM 1.00 1.40	parameters 20.00 200.000 15093.55 -10.000 -754.68 10.50000 792.41119
Current Date NAME EXPNO PROCNO	F2 - Acquisi Date - INSTRUM PROBHD PULPROG TD SOLVENT NS	DS SWH A A A A A A A A A D D T T E D1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	NUC1 P1 PL1 SF01	C POPRG2 NUC2 PCPD2 PL2 PL13 PL13 FL3 SFD2 SFD2	F2 - Process S1 WDW S5 S3 S3 L8 C8 G8 G8 C6 C8	1D NMR plot CX F1P F1 F1 F2 PPMCM H2CM H2CM

	ers Hz Sec Use Use Use	K Ssec ssec ssec u usec da da da da da da da da da da da da da	usec usec usec dB dA MHz	2HN ZHN	cm ppm Hz hz Hz hz rcm Hz /cm
ita Parameters jhj-02-04-06 6	sition Paramet 20.10 20.10 5pc:10 5pc:10 5pc:11 1111 11111 112115 112111	300 0 145.0000000 2.00000000 0.00034028 0.0000000 0.00001502 11.80 11.80 23.50 25.50	=== CHANNEL ¹ 2 waltz16 11 15.25 15.25 0.50 110.00 0.000 0.00	75.4677357 75.4677357 75.4677357 6 0 1.00 1.00 1.40	<pre>parameters 20.00 20.000 200.000 15093.55 -10.000 -754.58 10.50000 792.41119</pre>
Current Ja NAME EXPNO PROCNO	F2 - Acqui Date_ Time F10M PROBHD PULPROG F10 SOLVENT SSOLVENT NS SOLVENT F10 F10 F10 F10 F10 F10 F10 F10 F10 F10	TE CNST2 CNST2 CNST2 012 012 D12 D14 P1 P1 P1 SF01 SF01	с сроряво NUC2 P3 P12 P12 P12 P12 SF02 SF02	F72 - Proce SF WDW SS8 SS8 G8 C6 PC	10 NMH pli CX F1P F1 F2 F2P PPMCM H7CM

Tengatnī

wdd

l)-O3-O6-O5 5 1	(ion Parameters 23.12 23.12 20060305 290604 11/1 200230 200230 200230 15529 15529 00013 15529 00013	1, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	CHANNEL f1 ========= 13C 5.40 usec -6.00 dB 75.4106357 MHz	CHANNEL f2 ===================================	ng parameters 32588 75.4023601 MHz EN 100 Hz 1.40	Aarameters 200.000 ppm 200.000 ppm 15080.47 Hz -10.000 ppm -754.02 Hz 0.55000 ppm/cm 724.72474 Hz/cm
Current Data Pare NAME jhj-05 EXPND PROCNO	F2 - Acquisition Date22 Time22 PHORTRUM PHORTRUM FULPROG FULPROG SOLVENT NS SOLVENT NS	AG AG DM DM DM DM DM DM D12 D12 D12 D12 D12 D12 D12 D12 D12 D12	====== CHAN NUC1 P1 PL 1 SF01 75.4	======= CHAN CPOPRG2 * * * * * * * * * * * * * * * * * * *	F2 - Processing F SI SF NDW WDW LB LB GB GB	10 NMR plot param CX F1P 15 F1 15 F2P 16 F2P 10 F2P 10 F2P 10 F2C 10 F2C 10 F2C 10 F2C 10

,OMe OMe

OMe OMe

√OMe QMe