Supplementary Table Legends

Supplementary Table 1: Oligonucleotide primers used in these studies.

Supplementary Table 2: Sequence diversity of PCR products obtained from Figure 1. Products shown in Figure 1 were cloned and their sequence determined. The number of unique direct V-to-D rearrangements is indicated above the total number of clones sequenced. WT and cR2 animals are compared.

Supplementary Table 3: (Part 1) Sequence characterization of a typical D β 2 coding element (upper case) deletion amplified from thymocyte DNA from a cR2 animal resulting in a perfect signal joint between the RSS12 and RSS23 (lower case). Germline sequence is shown above the line for comparison purposes. (Part 2) Sequence characterization of the D β 1 to D β 2 deletional rearrangements amplified from WT and cR2 thymocyte DNA. Some the PCR products shown in Figure 6 were cloned and their sequence determined, demonstrating that the RSS12 of D β 1 was joined to the RSS23 of D β 2. Several of the joints included portions of the D β 1 and D β 2 coding sequence (upper case) and novel nucleotides (N) in between (also upper case). In one sequence (67-5-1) the short stretch of novel nucleotides has been joined to a sequence that is 106bps away from the D β 2 and appears to be a cryptic RSS sequence. Germline sequences are shown above the line. (Part 3) Sequence characterization of various D β -to-D δ chromosomal translocations. Some of the PCR products shown in Figure 7 were cloned and the sequences determined. RSS sequences and their adjacent coding sequence are shown in lower and upper case, respectively. Untemplated nucleotides (N) are shown between the D coding sequences. In one characterization (c5-F) from a cR2 animal, the D β 1 sequence is 59bps away from the 3' end of the D β 1 coding sequence and is likely a cryptic RSS. Germline sequences are shown above the line in each case.

Supplementary Figure Legends

Supplementary Figure 1. Representation of the V β 8.1 coding sequence (boxed) followed by its flanking RSS-23 sequence. Portions of the RSS-23 are labeled above (clear boxes). A cryptic RSS-12 sequence is shown by the shaded boxex and shares the RSS-23 heptamer sequence but in the reverse orientation. Solid vertical arrow represents the normal position of the coding and signal ends breaks when the RSS-23 is utilized. The hollow vertical arrow denotes the cryptic coding and signal end breaks when the cryptic RSS-12 is utilized.

Supplementary Figure 2. Frequency of direct $V\beta$ #-to-D β # rearrangements in *cR2* and WT mice. DNA purified from the thymus of sets of four animals for each genotype was analyzed by real-time PCR for direct VD β 1 and VD β 2 (C) rearrangements and the mean values (bars) with standard errors (whiskers) are shown.

Supplementary Figure 3. Frequency of complete V_H -to- D_H -to- J_H and direct V_H -to- D_H rearrangements in *cR2* and WT mice. Direct VD-del and VD-inv, deletion and inversion utilizing V_H J558 and DFL16.1. DNA purified from the indicated tissues was analyzed for complete VDJ (upper) or direct VD joints (middle and lower; deletion or inversion). Hybrid joints (not illustrated) were excluded by placing the D segment primer just within that coding segment. Four animals from each of the three possible genotypes were examined and the mean values (bars) with standard errors (whiskers) are shown.

Supplementary Figure 4. Frequency of direct D to J rearrangements in the thymus of cR2 and WT mice. DNA purified from the thymus were analyzed for direct deletional VD joints (upper) or direct inversional DJ joints (lower). Four animals from each of the three possible genotypes were examined and the mean values (bars) with standard errors (whiskers) are shown.

Supplementary Table 1.

Conventional Primers				
Oligo Name	Sequence			
Vβ8-F1	GTGGCAGTAACAGGAGGAAAGGTGAC			
Vβ8-F2	CATGTACTGGTATCGGCAGGACACG			
Dβ1-F1	CCAGAGGAGCAGCTTATCTGGTGGT			
Dβ1-F2	CAAGGGGTAGACCTATGGGAGGGTC			
Dβ1-R1	GAGTAATCGCTTTGTGTGCATCACA			
Dβ1-R2	CATTCTGGATCTAAACACATCTAGGCTTGC			
Dβ2-F1	AAGCTGAACATTGTCCAGTAAGCAACAGG			
Dβ2-F2	TCCTGGTAGGGACCTTATCACTTCACTCC			
Dβ2-R1	CCCTGGATAGCCTTTCACACTCGTG			
Dβ2-R2	CACATAGACTCCTCCTCACATGTTAAATGCA			
Dδ2-F1	CCAAAGCACTGGCTGGTTAATGGC			
Dδ2-F2	CCAAGTTTGATAACAGGTGAGTCTCTGTGC			
Dδ2-R1	GTCACTGTTAGTCCGCTTGATCAATATTGAGG			
Dδ2-R2	TTCTTGCAGTGACAATACAGACCAAATATACAGC			
Dβ2-SJ-R1	GCACCTCTTCCAGTTGAATCATTGTGCACA			
Vh101-F1	ATGGCTGTCTTAGGGCTGCTCTTC			
Vh101-F2	GCCAGTCTCCAGGAAAGGGTCTG			
DhFL16.1-R1	AGTAGTTCTTATCATTCCTCCCAAAGCA			
DhFL16.1-R2	GCTGTTGGGAGGTCAGCCTAGAG			
Dδ1-R1	GTCACTGTTAGTCCGCTTGATCAATATTGAGG			
Dδ1-R2	TTCTTGCAGTGACAATACAGACCAAATATACAGC			
Dδ1-F1	CCAAAGCACTGGCTGGTTAATGGC			
Dδ1-F2	CCAAGTTTGATAACAGGTGAGTCTCTGTGC			
Dδ2-R1	CCAGGAAACAGATGAGAGACAGAGGC			
Dδ1-R2	GCAAGTGGAGGTCATATCTTGTCCAGTC			

qPCR Primers

	qi enti inners
Oligo Name	Sequence
APRT-F1	TGACTGAGGAGCTGGCTAGATG
APRT-R1	GAGCCACCAAGCAGTTCCTG
APRT-TaqMan	TCACACCCCTGCTCCCAGCAGC
Vβ2-F	CCACACGGGTCACTGATACG
Vβ2-R	AGGTTCTGCCCTGGCTCAT
Vβ2-TaqMan	TGGCCACTTGCAGCCTCAGCT
Vβ7-F	GGAAGAAGCGGGAGCATTTC
Vβ7-R	GTAGAGCTGTGGATAAACTGCTAGCA
Vβ7-TaqMan	CCCTGATTCTGGATTCTGCTAAAACAAACCA
Vβ8-F	AGAAAGGAGATATCCCTGATGGATAC
Vβ8-R	GGGTAGCCAACTCCAGAATGAG
Vβ8-TaqMan	AGGCCTCCAGACCAAGCCAAGAGAACTT
Vβ14-F	GCCGAAGGACGACCAATTC
Vβ14-R	GGCACAGAGGTAGAAGCCAGAGT

Vβ14-TaqMan	TCCTAAGCACGGAGAAGCTGCTTCTCAG
Dβ1-R	GCGACCCAGGAGAAGAGTAGAG
Dβ2-R	GCTGAGAGTTGGTGTTTTTTTGG
Jβ2.7-R	GGAAGCGAGAGATGTGAATCTTACC
Vh81X-F	CCATGGAGAGACGATTCATCATC
Vh81X-R	GTCCTCAGACCTCAGACTGCTCAT
Vh81X-TaqMan	CCAGAGACAATACCAAGAAGACCCTGTACCTGC
Vh101-F	CAAGGCCACAYTSACTGTAGACA
Vh101-R	AGGCTGMTGAGCTGCATGT
Vh101-MGB	AYCCTCCAGCACAGCC
JhS1-R	GCCAGCTTACCTGAGGAAACG
JhS4-F	CCAGGGGTGATTCTAGTCAGACTCT
JhS4-R	AGACCTGGAGAGGCCATTCTTAC
JhS4-TaqMan	TCAAGGAACCTCAGTCACCGTCTCCTCA
DhFL16.1-F	TACGGTAGTAGCTACCACAGTGCTATATCCATC
DhFL16.1-R	CCGTAGTAATAAACACAGTAGTAGATCCCTTCACAA
DhSP2.9-F	TTTTTGTCAAGGGATCTACTACTGTGTCT
DhSP2.9-R	TTTTTGTAGCTGGATATATCACTGTGGTA
DhQ52-F	GCGGAGCACCACAGTGCTA
DhQ52-R	CCACGTGTCACCGTGGTC

LM-PCR Primers

Oligo Name	Sequence
JhS2-F1	TCACTGGGTCTATAATTACTCTGATGTCTAGGAC
JhS2-F2	GTCAGGTGAGTCCTGCATCTGGG
Va7.2-F1	CAACCAAACCGGTAATGTGCCTTTC
Va7.2-F2	CTGTGTAGCGTGTGCTCTATCTCAGGC
Vβ18-R1	CATTTCTCGTGACTGGTGTCTGTAGTAAGTCCT
Vβ18-R2	TGAACAGGTGTCAGCCGAATCTGTG
Vβ14-F1	ATGTTGTTTTCCAGACTTCAACTTGAC
Vβ14-F2	GACTATCAGCCAGAAATTCAGTGGCAA
Vδ4-R1	CCAACTCAGCTCCAGCCTTTCTTATCAG
Vδ4-R2	AGGAGGTCTCATCTCAGATGTGCTGC
Vδ5-F1	CCCATTGAACCCAGAGTGAGAGGTG
Vδ5-F2	GAAGCCAGTCTTTCCTGTGCCAGG
β -Glob-F1	TTTGGCTAGTCACTTCGGCA
B-Glob-R2	GTGTGTCCGCTATGCCTCCT

Supplementary Table 2: Sequence diversity of products obtained from Figure 1.

		WT	cR2
Vβ8/Dβ1	Unique	8	12
	Total	18	16
Vβ8/Dβ2	Unique	12	14
	Total	12	15
Vh101/DhFL16.1	Unique	1	8
	Total	8	11

Supplementary Table 3, Part 1

Deta2 Coding Deletion

	D B 2 RSS12	D eta 2 Coding	D B 2 RSS23
	cttttttgtatcacgatgtaacattgtg	GGGACTGGGGGGGC	cacaatgattcaactggaagaggtgcttttacaaa
cR2 4-13	cttttttgtatcacgatgtaacattgtg		cacaatgattcaactggaagaggtgcttttacaaa

Supplementary Table 3 Part 2

Deta1 to Deta2 Deletions

		D β 1 RSS12	D eta 1 Coding	·	D eta 2 Coding	D β 2 RSS23
		cttttttgtataaagctgtaacattgtg	GGGACAGGGGGC	Ν	GGGACTGGGGGGGC	cacaatgatt
WΤ	5-1	cttttttgtataaagctgtaacattgtg				cacaatgatt
	25-3-10	cttttttgtataaagctgtaacattgtg				cacaatgatt
	13-2-2	cttttttgtataaagctgtaacattgtg		А	С	cacaatgatt
	14-2-3	cttttttgtataaagctgtaacattgtg		Т		cacaatgatt
	16-3-1	cttttttgtataaagctgtaacattgtg		Т		cacaatgatt
	21-3-6	cttttttgtataaagctgtaacattgtg		TC		cacaatgatt
	22-3-7	cttttttgtataaagctgtaacattgtg	GG			cacaatgatt
	24-3-9	cttttttgtataaagctgtaacattgtg	GG			cacaatgatt
	5-2	cttttttgtataaagctgtaacattgtg	GGGACAGGGGG	TTG	GGGACTGGGGGGGC	cacaatgatt
	15-2-4	cttttttgtataaagctgtaacattgtg	GGGACAGGG			atgatt
	17-3-2	cttttttgtataaagctgtaacattgtg	GGGACA	Т	GACTGGGGGGGC	cacaatgatt
	18-3-3	cttttttgtataaagctgtaacattgtg	GGGACAGGGG	ATGA	GGGACTGGGGGGGC	cacaatgatt
	20-3-5	cttttttgtataaagctgtaacattgtg	GGGACAGGGGG	AG	TGGGGGGC	cacaatgatt
	23-3-8	cttttttgtataaagctgtaacat			ACTGGGGGGGC	cacaatgatt
cR2	6-1	cttttttgtataaagctgtaacattgtg				cacaatgatt
	73-5-7	cttttttgtataaagctgtaacattgtg				cacaatgatt
	62-4-6	cttttttgtataaagctgtaacattgtg		AGA		cacaatgatt
	64-4-8	cttttttgtataaagctgtaacattgtg			С	cacaatgatt
	66-4-10	cttttttgtataaagctgtaacattgtg			GC	cacaatgatt
	70-5-4	cttttttgtataaagctgtaacattgtg		AG		cacaatgatt
	57-4-1	cttttttgtataaagctgtaacattgtg	GGGACAGGG	TATTGTGGGGACACA	GGACTGGGGGGGC	cacaatgatt
	58-4-2	cttttttgtataaagctgtaacattgtg	GGGACAGGGG		ACTGGGGGGGC	cacaatgatt
	68-5-2	cttttttgtataaagctgtaacattgtg	GGGACAGGGG		ACTGGGGGGGC	cacaatgatt
	60-4-4	cttttttgtataaagctgtaacattgtg	GGGACAGGG		ACTGGGGGGGC	cacaatgatt
	63-4-7	cttttttgtataaagctgtaacattgtg	GGGACAGGGG		CTGGGGGGGC	cacaatgatt
	69-5-3	cttttttgtataaagctgtaacattgtg		Т	GACTGGGGGGGC	cacaatgatt
	71-5-5	cttttttgtataaagctgtaacattgtg	GGGACAGGGGGC	G	CTGGGGGGGC	cacaatgatt
	74-5-8	cttttttgtataaagctgtaacattgtg	GGGACAGGGGGC		TGGGGGGGC	cacaatgatt
	67-5-1	cttttttgtataaagctgtaacattgtg	GGGACAGGG	CCT	•	agtggactca
				Cryptic RSS +106bps	from D β 2 is shown	underlined

Supplementary Table 3, Part 3

$D\delta 2 >$ to < $D\beta 1$ Translocations

	RSS	D ð 2 Coding		D eta 1 Coding	RSS
	ggtttttgcaaagctctgtagcaccgtg	ATCGGAGGGATACGAG	Ν	GGGACAGGGGGC	cacggtgatt
cR2 c1-F	ggttt		AGG		cacggtgatt
cR2 c2-F	ggtttttgcaaagctctgtagcac		GAG		acggtgatt
cR2 c6-F	ggtttttgcaaagctctgtagcaccg				cggtgatt
cR2 c5-F	ggttt		CCTC	*ca	cagtcctctac

*not RSS sequence

$D\delta 2 > to < D\beta 2$ Translocations

		RSS	D ð 2 Coding		D eta 2 Coding	RSS
		ggtttttgcaaagctctgtagcaccgtg	ATCGGAGGGATACGAG	N	GGGACTGGGGGGGC	cacaatgatt
WΤ	dl-F	ggtttttgcaaagctctgtagcaccgtg				cacaatgatt
WΤ	d2-F	ggtttttgcaaagctctgtagcacg			GGGACTGGGGGGGC	cacaatgatt
WΤ	d3-F	ggtttttgcaaagctctgtagcaccgtg				cacaatgatt
cR2	d4-F	ggtttttgcaaagctctgtagcaccgtg				cacaatgatt
cR2	d6-F	ggtttttgcaaagctctg		GA		gatt

$D\beta_2 > to < D\delta_1$ Translocations

		RSS	D eta 2 Coding		D ð 1 Coding	RSS
		cttttttgtatcacgatgtaacattgtg	GGGACTGGGGGGGC	Ν	GTGGCATATCA	cacaggttga
WΤ	al-F	ctttttgtatcacgatg		AACCCCCCNN		caggttga
cR2	a2-F	cttttttgtatcacgatgtaacattgtg	GGGACTGGGGGG	С		acaggttga
cR2	a4-F	cttttttgtatcacgatgtaacattgtg	GGGACTGGGGGG		CATATCA	cacaggttga

$D\beta_2 >$ to < $D\overline{\delta}_2$ Translocations

		RSS	D eta 2 Coding		D ð 2 Coding	RSS
		ctttttgtatcacgatgtaacattgtg	GGGACTGGGGGGGC	Ν	ATCGGAGGGATACGAG	cacagtgttg
WΤ	b2-F	cttttttgtatcacgatgtaacattgtg	GGGACTGGGGGGGC	GCG	TCGGAGGGATACGAG	cacagtgttg
WΤ	b4-F	ctttttgtatcacgatgtaacattgtg		TC		cacagtgttg
cR2	b5-F	cttttttgtatcacgatgtaacattgtg	GGGAC	TGGGTT		cacagtgttg
cR2	b6-F	cttttttgtatcacgatgtaacattgtg	GGGACTGGGGGGG	ACGTGGCCCGT		cagtgttg
cR2	b7-F	cttttttgtatcacgatgtaacattgtg				cacagtgttg

Supplemental Figure 2

