¹H NMR study of the magnetic properties and electronic structure of the hydroxide complex of substrate-bound heme oxygenase from *Nesseria meningitidis*; Influence of the axial water deprotonation on the distal H-bond network

Li-Hua Ma[†], Yangzhong Liu[†], Xuhang Zhang[‡], Tadashi Yoshida[‡] and Gerd N. La Mar [†]*

Supporting Information

Four figures (partially relaxed spectra for *Nm*HO-PH-OH, Curie plot for heme methyls and comparison of magnetic axes determination for *Nm*HO-PH-CN with and without considerations of rhombic anisotropies, and labile proton saturation factors) and one Table (chemical shifts for assigned *Nm*HO-PH-OH residues), total 5 pages.

1

		$\delta_{DSS}(obs)$				
Ala12	$\begin{array}{c} C_{\alpha}H\\ C_{\beta}H_{3} \end{array}$	3.39 1.24	H	His141	$\substack{C_{\delta 2}H\\C_{\epsilon 1}H}$	6.30 7.60
Leu15	$C_{\delta 1}H_3$	-0.60	Ι	Leu142	C _{δ2} H ₃ C _v H	0.80 0.05
Thr20	$C_{\gamma}H_{3}$	1.30	1	Asn 1/17	СН	1 15
Ala21	$C_{\beta}H_3$	1.47	Γ	1511147	$C_{\beta 1}^{\alpha H}$ $C_{\beta 2}^{\alpha H}$	1.42 1.96
Val22	$C_{\gamma 1}H_3$	0.70	7	Frn153	C H	6 95
	Cy2113	0.90		119155	Colu	0.75
Asp24	$C_{\beta 1}H$	2.82	V	Val157	C _α H C _o H	2.85
	C _{β2} 11	5.00			$C_{\gamma 1}^{\beta H}H_3$	0.37
Phe52	$C_{\alpha}H$	4.40			$C_{\gamma 2}^{\prime}H_{3}$	-0.02
	$C_{\beta 2}^{\beta 1}H$	3.13	A	Ala180	$C_{\alpha}H$	2.58
	$C_{\epsilon}^{P}Hs$	7.43			$C_{\beta}H_3$	0.58
	СξН	7.51	I	Phe181	C _{B1} H	3.57
His53	$C_{\delta 1}H$	7.45			$C_{\beta 2}^{\beta 1}H$	3.03
	$C_{\epsilon 2}H$	7.95	A	Ala182	C. H	4 10
Tyr112	C _{β1} H	3.02	1	nu102	$C_{\beta}H_{3}$	1.66
	$C_{\beta 2}^{H}$	3.30	г	Dha183	С. Н	1 53
	Colls	0.90	1	10105	$C_{\beta 1}H$	3.68
Cys113	$C_{\beta 1}H$	2.72			$C_{\beta 2}^{\beta 1}H$	3.42
	C _{β2} H	2.76			C _o Hs C _o Hs	7.64 7.37
Ala114	$C_{\alpha}H$	4.37	-			6.40
	$C_{\beta}H_3$	1.90	ľ	Fyr184	C _ð Hs CHs	6.18 6.48
Asn118	C _{β1} H	3.12			CEIIS	0.40
	C' _{β2} H	3.02	V	Val186	$C_{\alpha}H$	3.64
Ala121	$C_{\beta}H_{3}$	2.30			$C_{\gamma 2}^{\beta \Pi}$ H_3	1.25
Phe125	C _o Hs	7.04	V	Val187	$C_{\alpha}H$	3.42
	$C_{\epsilon}Hs$	7.12			$C_{\beta}H$	1.50
	СζП	1.20			$C_{\gamma 1} H_3$ $C_{\gamma 2} H_3$	0.09
Ala139	$C_{\alpha}H$	4.11			12 5	

a) $\delta_{DSS}(obs)$ in ppm referenced to DSS via the solvent resonance, in ²H₂O at pH 9.1, 100 mM bicarbonate at 25°C.

Figure S1. Curie plot (¹H NMR $\delta_{DSS}(obs)$ versus reciprocal absolute temperature (T⁻¹)) for the resolved heme methyl peak for *Nm*HO-PH-OH at pH 10.5, in ²H₂O, 100 mM bicarbonate at 25°C. The apparent intercepts, in ppm, at T⁻¹ = 0, are given in parenthesis.

Figure S2. Partially relaxed spectra in an inversion-recovery pulse sequence for the resolved upfield 600 MHz ¹H NMR spectrum of *Nm*HO-PH-²H₂O in ²H₂O 100 mM bicarbonate, pH 10.5 at 25°C. The relaxation delay times are given on the right. Peaks are labeled by amino acid number and proton position, with solid and dashed lines representing signals in *Nm*HO-PH-OH and *Nm*HO-PH-H₂O, respectively. The single proton peak z exhibits a null at ~5 ms, or a T₁ ~8 ms, and exhibits the shift ^{38, 49} and T₁ are consistent with it arising from a vinyl H_β.

Figure S3. Plots of $\delta_{dip}(obs)$ versus $\delta_{dip}(calc)$ obtained from the magnetic axes determination of *Nm*HO-PH-CN based on: (**A**) five-parameter search to determine $\Delta \chi_{ax} (= 2.48 \pm 0.1 \times 10^{-8} \text{ m}^3/\text{mol}), \Delta \chi_{rh} (= -0.52 \pm 0.09 \times 10^{-8} \text{ m}^3/\text{mol})$, the tilt of magnitude ($\beta = 8\pm 1^\circ$), tilt direction ($\alpha = 280 \pm 10^\circ$) and rhombic axes ($\kappa = 41 \pm 10^\circ$); and a three-parameter search keeping $\Delta \chi_{rh} = 0$ and $\gamma = 0$, to determine $\Delta \chi_{ax} (= 2.4 \pm 0.1 \times 10^{-8} \text{ m}^3/\text{mol})$, tilt magnitude ($\beta = 4\pm 1^\circ$) and tilt direction ($\alpha = 260\pm 10^\circ$). The residues error function, F/n, is smaller for the five-parameter (F/n = 0.05) than three-parameter (F/n = 0.06) search.

Figure 4S. 3:9:19 reference spectra ⁵² for the labile proton involved in strong H-bonds in *Nm*HO-PH- H_2O/Nm HO-PH-OH mixture in ¹H₂O, 50 mM in phosphate at 25°C, as a function of pH. Assigned peak in *Nm*HO-PH-H₂O ⁵⁰ and *Nm*HO-PH-OH are connected by bars over the reference spectra, with dashed and solid vertical lines representing the *Nm*HO-PH-H₂O and *Nm*HO-PH-OH complexes, respectively. (A) pH 7.2 (~98% *Nm*HO-PH-H₂O/2% *Nm*HO-PH-OH) (B) pH 9.4 (~60% *Nm*HO-PH-H₂O/~40% *Nm*HO-PH-OH) and (C) pH 10.2 (20% *Nm*HO-H₂O/80% *Nm*HO-OH). Magnetization difference 3:9:19 traces upon subtracting the off-resonance from the on-resonance saturation of the water signals as a function of pH as shown in A', B' and C', which demonstrate the saturation factor due to exchange and not increased (for His141 N₈H actually decreased) upon increasing pH from 7.2 to 10.2.