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1. LIMITATIONS OF EXISTING ALGORITHM 

1.1 Initialization sensitivity, local optimum and solution reproducibility 
There are multiple local optimums of partitional clustering objective functions such as KMC and 
mixture modeling. Standard learning methods optimize the objective function and thus find the 
local optimum solution “nearest to’’ the model initialization. More sophisticated methods or 
initialization schemes, which seek to avoid poor local optimums, exist, but require significant 
computation and normally do not ensure convergence to the global optimum (Rose, 1998). The 
quality of the local optimum may be decidedly poor, compared to that of the global optimum. 
This is especially true for genomic data sets, with high dimensionality and small sample size 
(Bishop, 1995; Duda, et al., 2001; Zhu, et al., 2008). On the other hand, methods such as 
conventional agglomerative Hierarchical Clustering (HC) perform a very simple, greedy 
optimization, which severely limits the amount of search they perform over the space of possible 
solutions, and thus limits the solution accuracy. 

1.2  Solution reproducibility 
Since clustering may help drive scientific hypotheses, it is extremely important that 

solutions be reproducible/robust. This refers to the ability of a clustering algorithm to identify the 
same (or quite similar) structure under different model initializations, in the presence of small 
data set perturbations or additive noise, as well as when analyzing independent data sets drawn 
from the same underlying distribution. KMC and mixture modeling, which are sensitive to model 
initialization, do not yield reproducible solutions when random model initialization is applied. 
However, more sophisticated initialization, e.g., applying the splitting algorithm (Hartigan, 1975) 
to initialize KMC cluster centers, will yield less variable KMC solutions. Likewise, robust KMC 
solutions can in turn be used to provide a robust initialization for mixture model fitting. On the 
other hand, agglomerative HC (e.g., the single linkage algorithm (Duda, et al., 2001)) is highly 
sensitive to the particular data sample and to the noise in the data. 

1.3 Order selection: estimating the number of clusters 
For hierarchical clustering, simple heuristics are typically applied to estimate the number of 
clusters, such as identifying the order at which a large improvement in fitting accuracy occurs. 
For mixture modeling, information-theoretic model selection criteria such as minimum 
description length (MDL) are often applied. These criteria consist of a data fitting term 
(mismatch between data and model) and a model complexity term. For sample clustering on 
genomic data, with high feature/gene dimensionality and small sample size, use of such criteria is 
likely to grossly underestimate the number of clusters because each gene will entail at least one 
free parameter per cluster, leading to a very high complexity penalty when increasing the number 
of clusters. This can be mitigated by front-end gene selection or embedding feature selection 
within clustering (Graham and Miller, 2006; Wang, et al., 2008), which reduce the gene number 
and, thus, model complexity, for a given number of clusters. 
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1.4 Unsupervised feature selection 
Unsupervised informative gene selection for sample clustering is a critical yet difficult problem 
due to the existence of many irrelevant genes respective to the phenotypes/sub-phenotypes of 
interest (Jiang, et al., 2004; Xu and Wunsch, 2005) – without first possessing correct clusters, it is 
difficult to identify relevant genes, and without good gene selection to eliminate many 
noisy/irrelevant ones, it is very difficult to discern the true underlying cluster structure. Iterative 
algorithms, which embed gene selection within sample clustering to bootstrap this problem, have 
been developed and tested only for the two-cluster case (Roth and Lange, 2004; Xing and Karp, 
2001). There is also work on this problem from the machine learning community, e.g. (Dy and 
Brodley, 2000; Graham and Miller, 2006) that is not limited to the two-cluster case. However, 
more research effort specifically targeting genomic data is needed. 

1.5 Confounding variables and multiple sources of cluster structure 
A fundamental, flawed assumption in much clustering work is that there is a single source of 
clustering tendency in the data – e.g., “disease’’ vs. “non-disease’’. There may be other sources of 
clustering tendency, based either on measured or even unmeasured (latent) factors, e.g. gender, 
environment, measurement platform (Benito, et al., 2004), or other  biological processes that are 
peripheral or at any rate not of direct interest in the current study (Clarke, et al., 2008). While 
there is some research in this area (Benito, et al., 2004), more work is needed in removing or 
accounting for confounding influences in genomics research (Miller, et al., 2008; Wang, et al., 
2008). 

1.6 Exploitation of prior knowledge and human interaction 
The most fundamental limitation in clustering is the ill-posed nature of the problem. The number 
of clusters depends on the scale at which one views the data (Rose, 1998) and the data grouping 
clearly depends on the geometric or statistical assumption/definition of cluster (Duda, et al., 
2001; Lange, et al., 2004). Even when there is a known parametric mixture model form, there 
may be no unique solution, i.e. there is the mixture identifiability problem (Duda, et al., 2001). 
What can break nonuniqueness and ill-posedness is to incorporate prior knowledge. Incorporating 
prior knowledge may also help to focus the clustering analysis on interesting data structure and 
remove the effect of confounding variables. Unfortunately, most clustering algorithms do not 
have mechanisms for exploiting prior information – exceptions include semi-supervised gene 
clustering methods that utilize gene annotations to form gene clusters (Brown, et al., 2000; Pan, 
2006; Qu and Xu, 2004) and some other more general semi-supervised methods (Zhu, 2006). 
Besides auxiliary database information, the user’s (expert’s) domain knowledge and the human 
gifts for pattern recognition and data visualization in low-dimensional spaces can also help to 
produce accurate and meaningful clustering outcomes (Chien, 1978; Zou and Nagy, 2006). For 
example, Bishop and Tipping developed a hierarchical data visualization and exploration scheme 
based on a mixture of latent variables model with human-data interaction (Bishop and Tipping, 
1998; Tipping and Bishop, 1999).  

1.7 Inflexibility and non-adaptivity of standard methods 
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Most clustering algorithms have a standalone nature and make underlying statistical or geometric 
assumptions about clusters. When these assumptions are violated, the method may fail badly, and 
with no “backup plan’’, i.e. no capability to modify the assumptions to seek a better result. A 
recent strategy with some ability to mitigate this is ensemble or consensus clustering (Strehl and 
Ghosh, 2002; Topchy, et al., 2005), wherein multiple algorithms are applied and their results then 
fused so as to maximize a clustering “consensus’’ function. However, these methods, again being 
fully automated, cannot benefit from human interaction and expert knowledge, which can guide 
algorithm choices in a flexible, adaptive manner, to match the underlying data characteristics and 
the (domain-specific) clustering structure of interest. In particular, as demonstrated in this paper, 
clustering and data visualization can complement each other, providing a “transparent’’ clustering 
process that enhances the user’s understanding of the data and that informs clustering via choices 
based on expert knowledge and human intelligence. 
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2. METHOD 

2.1    Algorithm for gene clustering and sample clustering 

Let t = {t1, t2, …, tN | ti ∈ Rp, i = 1, 2, …, N} denote N p-dimensional data points to be clustered. 
Suppose that the hierarchical exploration proceeds to the lth level, i.e. Kl clusters are detected at 
level l and the posterior probability of data point xi belonging to cluster k (k = 1, …, Kl) is zi, k. 

2.1.1   Visualization by complementary structure-preserving projections 

For cluster k, VISDA projects the cluster onto 2-D spaces by five projection methods, Principal 
Component Analysis (PCA), Principal Component Analysis – Projection Pursuit Method (PCA–
PPM) (Wang, et al., 2003), HC–KMC–SFNM–DCA (Zhu, et al., 2006), Locality Preserving 
Projection (LPP) (He and Niyogi, 2004), and APC–DCA, where SFNM refers to Standard Finite 
Normal Mixture, DCA refers to Discriminative Component Analysis and APC refers to Affinity 
Propagation Clustering (Frey and Dueck, 2007).  
 

PCA uses the eigenvectors associated with the largest eigenvalues of the cluster’s 
covariance matrix as projection directions. The covariance matrix of cluster k is calculated by 
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where μt, k is the mean of cluster k, Σt, k is the covariance matrix of cluster k. The subscript ‘t’ 
indicates that these parameters model the data in the original data space. 
 

PCA–PPM selects two of the eigenvectors on which the projected data distribution has 
the smallest kurtosis, because flat distributions or distributions with thick tails usually reveal 
structure information and kurtosis measures the peakedness of a distribution (Hyvärinen, et al., 
2001). For any projection vector w, the kurtosis of the projected data distribution is calculated by 
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where yi is the image of ti after projection.  
 

The HC–KMC–SFNM–DCA projection takes four steps. (1) Apply HC on the data points 
that most likely belong to the cluster, i.e. the data points that have a bigger posterior probability 
of belonging to cluster k than to all other clusters. On the HC dendrogram, the user chooses a 
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distance threshold to cut the cluster into sub-clusters. Very small sub-clusters are merged into 
their nearest larger sub-clusters. (2) Run KMC on the data points using the sub-clusters obtained 
from HC as initialization. (3) Use the result of KMC to initialize an SFNM model in the 
visualization space, and run the EM algorithm to refine the model. The SFNM model and the 
corresponding EM algorithm take the form of Equation (12) and Equation (13), respectively. (4) 
DCA based on the weighted Fisher criterion uses the two eigenvectors associated with the largest 
eigenvalues of the weighted Fisher Scatter Matrix (wFSM) calculated based on the refined 
SFNM partition to project the cluster (Duda, et al., 2001; Loog, et al., 2001). Compared to the 
Fisher criterion, this weighted Fisher criterion confines the influence of class pairs that are well 
separated, and emphasizes on the class pairs that are overlapped. DCA based on the weighted 
Fisher criterion is expect to get a good total Bayesian classification accuracy, while a projection 
based on the Fisher criterion can be highly influenced by the well separated class pair, which is 
not so important for reducing the classification error. Suppose that Kk sub-clusters exist after the 
SFNM model fitting. Let μt, (k, j) and Σt, (k, j) be the mean and covariance of sub-cluster j in the 
SFNM model. The wFSM is calculated by  
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where ri is the sample proportion of sub-cluster i within cluster k, and erf(•) is the Gaussian error 
function. The two eigenvectors found in this way are not guaranteed to be orthogonal, so they 
need to be orthogonalized by the Gram–Schmidt process to achieve an affine projection.  
 

LPP also works on the data points that most likely belong to the cluster. The projection 
directions are obtained through minimizing a compactness cost function, which is a weighted 
summation of the pair-wise distances between points in the projection space. The weights are 
assigned in a way that the distances between neighboring points have big weights while the 
distances between far apart points have small weights. Thus the minimization emphasizes on 
keeping the neighboring data points still close in the projection space and preserves the local data 
structure. The minimization is achieved by the generalized eigenvalue decomposition (He and 
Niyogi, 2004). The eigenvectors are also orthogonalized by the Gram–Schmidt process to form 
the projection matrix. 

 
The APC–DCA projection follows the idea of using DCA to evaluate/confirm 

unsupervisedly obtained partitions, but the process is automatic. APC is applied on the data 
points that most likely belong to the cluster to find a partition. Being quite different from the 
KMC, which needs an initialization of cluster centers, APC simultaneously considers all data 
points as potential cluster centers. By viewing each data point as a node in a network, the affinity 
propagation method recursively transmits along edges of the networks real-valued messages, 
whose magnitude reflects the current affinity that one data point has for choosing another data 
point as its cluster center, until a good set of cluster centers and corresponding clusters emerges 
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(Frey and Dueck, 2007). The messages are updated to search for minima of the cost function, 
which is the sum of dissimilarities between data points and their cluster centers. It was shown 
that the affinity propagation method finds a “neighborhood minima” solution, i.e. the obtained 
solution is the best solution in a particular large region around it (Frey and Dueck, 2007; Weiss 
and Freeman, 2001). This condition is weaker than a global minimum but stronger than a local 
minimum. Compared to randomly initialized KMC, APC achieves a better cost function value in 
a time efficient manner (based on comparing a single run of APC with 10,000 runs of randomly 
initialized KMC) (Frey and Dueck, 2007). In addition, APC has an automatic model selection 
scheme. Here, DCA is also based on the wFSM calculated by Equation (3), but specialized for 
the “hard” case, because APC generates a hard partition, not a soft partition like SFNM fitting. 
Orthogonalization of the eigenvectors by the Gram–Schmidt process is needed to achieve an 
affine projection. 
 
 Obviously, VISDA’s projection suite framework is scalable and extensive to incorporate 
various existing clustering and visualization algorithms to increase the chance of revealing data 
structure of interest. When all the projections are made and shown to the user, the user will be 
asked to select one projection that he/she thinks best reveals the data structure as the final 
visualization. An interesting question is how effective a particular projection is. It may be 
agreeable that the bench mark criteria in visual exploration are very different and difficult 
(Nielson, 1996). As shared by Bishop and Tipping (Bishop and Tipping, 1998), we believe that in 
data visualization there is no objective measure of quality, and so it is difficult to quantify the 
merit of a particular data visualization method, and the effectiveness of such a techniques is often 
highly data dependent and application dependent. A possible alternative is to perform a rigorous 
psychological evaluation using a simple and controlled environment, or to invite domain experts 
to directly evaluate the efficacy of the algorithm for a specified task. For the practical use of 
VISDA, the user has two guidelines for selecting the best projection. One guideline is human 
inspection/discernment on sub-cluster separability, i.e. if in a projection, the sub-clusters are 
well-separated and show clear data structure, this projection is a good projection. The other 
guideline is domain knowledge. If the user is certain about the relationship between some 
samples or genes under the particular experimental condition, he/she can choose a projection that 
favors this relationship. For example, in gene clustering, if several genes are well studied in 
previous researches and are known to be co-regulated and co-expressed under the particular 
experimental condition that produces the data, a projection that has these genes closely located is 
more preferred than a projection that has these genes located far apart. 
 
 Besides the two guidelines given above, from the experience of performing the 
experiments in this paper, authors also got some empirical understanding of using the projection 
suite. When the data size is pretty big, e.g. doing gene clustering of thousands of genes, the HC-
KMC-SFNM-DCA, LPP, and APC-DCA projection may be slow and may even encounter the 
“out of memory” error, because they need to calculate square matrices with dimensionality of the 
data size in the clustering process. So for very big dataset, we did not use these three projections, 
but only use the PCA and PCA-PPM projections. When the data size is moderate, although all 
projections may be used as the final visualization, the authors used HC-KMC-SFNM-DCA and 
APC-DCA slightly more frequently, especially HC-KMC-SFNM-DCA. A possible reason is that 
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DCA finds the projection directions with which the obtained sub-clusters show best separability. 
Compared with APC-DCA, HC-KMC-SFNM-DCA can handle bigger dataset than APC-DCA 
and runs faster. It also includes more human data interaction and lets the user control the number 
of sub-clusters by cutting on the dendrogram of HC. When the data size is very small and the 
data dimensionality is high, i.e. the sample-to-dimensionality ratio is very low, the DCA based 
projections may always find a projection space that the sub-clusters show good separability, or 
even greatly squeeze the sub-cluster, so that it looks like one point in the projection space. In 
such cases, we normally did not choose DCA based projections.     

2.1.2 Cluster decomposition in visualization space 

We use the two-level hierarchical SFNM model to present the relationship between the lth and 
the l + 1th levels of the VISDA’s hierarchical exploration. The probability density function for a 
two-level hierarchical SFNM model is formulated as:  
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where Kk, l+1 sub-clusters exist at level l + 1 for each cluster k of level l, πk is the mixing 
proportion for cluster k in level l, πj|k is the mixing proportion for sub-cluster j within cluster k, 
g(•) is the Gaussian probability density function, and θt, (k, j) are the associated parameters of sub-
cluster j. When the cluster labels of the samples in level l are known, the conditional distribution 
is formulated as  
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where ri, k is a binary cluster label indicator of sample i, i.e. one of {ri, 1, …, , li Kr } is one and 
others are all zeros. In fact, we only have partial, probabilistic, information in the form of the 
posterior probability zi, k for cluster k having generated ti. Taking the expectation of the 
conditional log-likelihood and focusing only on cluster k, we get 
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According to the projection invariant property of normal distributions, i.e. a Gaussian distribution 
is still a Gaussian distribution after a linear projection, the projected data have an expectation of 
conditional log-likelihood given by 
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where x = {x1, x2, …, xN | xi ∈ R2, i = 1, 2, …, N} indicates all the projected data points, the 
subscript ‘x’ indicates that these parameters model the data in the visualization space. Equation 
(7) is a weighted log-likelihood, whose value can be maximized or locally maximized by the 
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Expectation Maximization (EM) algorithm (Dempster, et al., 1977). The EM algorithm 
iteratively performs the E-step and M-step to monotonically increase the log-likelihood until 
convergence. The E-step calculates the expectation of the samples’ sub-cluster labels conditioned 
on the data and the current model parameters.  
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where zi, (k, j) is the posterior probability of data point xi belonging to the jth sub-cluster in cluster 
k, μx, (k, j) and Σx, (k, j) are the mean and covariance matrix of sub-cluster j in cluster k. The M step 
updates the model parameters using formulas given by 
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Models with different numbers of sub-clusters are initialized by the user and trained by 
the EM algorithm. The obtained partitions of all the models are displayed to the user as a 
reference for model selection. The MDL criterion is also utilized as a theoretical validation for 
model selection (Rissanen, 1978; Schwarz, 1978). Because the data size of the microarray gene 
expression dataset is usually small, the MDL model selection with Gaussian distributions has the 
tendency to select complex models in low dimensional space (Ridder, et al., 2005). Based on our 
experimental experience and reference to (Liang, et al., 1992; Ridder, et al., 2005), we use a 
modified formula to calculate the description length given by  
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where Ka and Nk are the number of free adjustable parameters and the effective number of data 
points in the cluster, respectively. This modified MDL formula not only eases the trend to 
overestimate the sub-cluster number when the data size is small, but also is asymptotically 
consistent with the classical MDL formula, which is  
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2.1.3 The full dimensional model and its training algorithm 
The probability density function of the SFNM model is 
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parameters of the kth cluster at level l+1. The EM algorithm to refine the model is 
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The E-step and the M-step run iteratively until convergence.  

2.2 Algorithm extension for sample clustering 
Let {g1, …, gN} be the expression values of a gene. The variance of {g1, …, gN} is calculated by  
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The absolute difference between the minimum and maximum gene expression values across all 
the samples is calculated by  
 { } { }1 1max , , min , ,N Ng g g g− . (15) 
These two criteria can be used to identify and then remove constantly expressed genes. A rank of 
all the genes for each of the two variation criteria can be formed.  
 

Discrimination power analysis uses a 1-D SFNM model to fit the gene’s expression 
values. The probability density function of the model and its corresponding EM algorithm take 
the form of Equation (12) and Equation (13), respectively, but in 1-D space. To determine the 
model order, we followed the iterative procedure in (Miller and Browning, 2003). The SFNM 
model is initialized with a high model order (much bigger than the true component number), with 
randomly chosen means and uniform variances. In each iteration, we (one-by-one) trial-delete 
each component and rerun the fitting algorithm. The component whose removal yields minimum 
description length will be permanently removed. This iterative process ends when only one 
component remains, and the optimum model order is then determined by comparing the 
description length (or modified description length if the sample size is small) values of solutions 
in the sequence. Once the SFNM model is trained, genes with single component mixture are 
removed, because they do not support any cluster structure. For the other genes, the accuracy in 
classifying samples to components resulting from applying the Maximum A Posteriori probability 
(MAP) rule (based on the samples’ posterior probabilities for belonging to the components) 
quantifies the gene’s discrimination power. Thus, a rank of genes according to their 
discrimination power can be constructed.  

 
The classification accuracy of a K-component mixture has a low limit of 1/K, which 

decreases when K increases. However, this may not impact but actually may improve the 
clustering performance of VISDA due to the following reasons. (1) VISDA performs a 
hierarchical exploration process where the data decomposition models are initialized by data 
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structures presented in multiple subspaces. The combinatory power of multiple subspaces helps 
VISDA to detect all clusters. Thus a single gene or a single subspace is not required to discern 
among many or all the clusters. (2) With a fewer number of components, the statistics of each 
component can be better estimated, which is important for sample clustering on genomic data, 
where the sample size is normally small. (3) With a fewer number of components in the subspace, 
the local decomposition problem at each node of the VISDA hierarchical exploration process is 
simpler to solve. (4) In many genomic research applications where gene expression values are 
required to be quantized or genes are analyzed in terms of states, genes are normally assumed to 
take very few (two or three) discrete values or states, which corresponds to down-regulation and 
up-regulation or low, middle, and high states (Xing and Karp, 2001).     
 

Besides the two kinds of non-informative genes discussed above, “redundant” genes 
(genes that are highly correlated with other genes) provide only limited additional separability 
between sample clusters. However, this limited additional separability may in fact greatly 
improve the achievable partition accuracy (Guyon and Elisseeff, 2003). Thus, we take removal of 
redundant genes as an optional step. If the dimensionality of the gene space after variation 
filtering and discrimination power filtering can not be well handled by the clustering algorithm 
(i.e. if the samples-to-genes ratio is not sufficiently large), we suggest removing highly correlated 
genes. Here, we provide a simple scheme to remove redundant genes. In the gene list resulting 
from variation filtering and discrimination power analysis, keep the most discriminative gene and 
remove the genes that are highly correlated with it, then keep the second most discriminative 
gene in the remaining list and remove the genes that are highly correlated with this gene. Keep 
performing this procedure until no further removal can be done. The correlation between genes 
can be measured by the Pearson correlation coefficient or mutual information normalized by 
entropy. A threshold needs to be set to identify the highly correlated genes. 

2.3 Algorithm extension for phenotype clustering 
Suppose that the exploration process has proceeded to the lth level and level l has Kl phenotype 
clusters. For each phenotype cluster k (k = 1, …, Kl) at level l, we do the following to visualize 
and decompose the cluster. 

2.3.1 Locally discriminative gene subspace and visualization 

Let t = {t(1), …, t(Qk)} denote the phenotypes in the cluster. Qk is the number of phenotypes in 
cluster k. t(q) = {t(q)

 i , i = 1, 2, …, N(q)} (q = 1, …, Qk) is the set of  samples in phenotype q. To 
achieve an effective visualization, we first use a supervised gene selection method to select top 
discriminative genes to form a locally discriminative gene subspace, and then project the samples 
from the discriminative gene subspace to a 2-D visualization space through DCA.  
 

Let μq and σq be the mean and standard deviation of a gene’s expression values in 
phenotype q. A gene’s discrimination power is measured by  
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where rq is the sample proportion of phenotype q and equal to ( ) ( )
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discrimination power, top discriminative genes can be selected to form a locally discriminative 
gene subspace. The number of selected genes is ngQk, where ng is the number of selected genes 
per phenotype. We use DCA based on the Fisher criterion to find a projection matrix to project 
the samples from the gene subspace onto a 2-D visualization space. The projection matrix is 
obtained by orthogonalizing the eigenvectors associated with the largest two eigenvalues of the 
Fisher Scatter Matrix (FSM) that is calculated based on the phenotypic categories (Duda, et al., 
2001). Here, we use the Fisher criterion not the weighted Fisher criterion (i.e. do not weight the 
phenotype pairs in the objective function) for the purpose of preserving original data structure by 
treating all phenotype pairs fair. Thus the identified TOP will not be distorted. Let μs, i and Σs, i be 
the mean and covariance matrix of phenotype i in the gene subspace. The FSM is calculated by  
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2.3.2 Cluster decomposition in the visualization space  

In the visualization space, we use a class-pooled finite normal mixtures model to fit and 
decompose the cluster. Let x = {x(1), …, x(q), …, x(Qk)} denote the projected samples from each 
phenotype. x(q) = {x(q)

 i , i = 1, 2, …, N(q)} is the set of  samples in phenotype q. The probability 
density function for all samples from phenotype q is  

 ( )( ) ( )
( )

, 1 , 1
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1 11
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j i j j
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π π
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where cluster k at level l is decomposed into Kk, l+1 sub-clusters at level l + 1, πj and θx, j are the 
mixing proportion and parameters associated with sub-cluster j. The EM algorithm used to train 
this model is formulated as  
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where z(q), j is the posterior probability of phenotype q (all samples from phenotype q) belonging 
to sub-cluster j, and μx, j and Σ x, j are the mean and covariance matrix of sub-cluster j in the 
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visualization space. To select the “optimal” model from models with different number of sub-
clusters, the MDL model selection criterion is also applied for theoretical validation. For the 
small sample size case, the description length is calculated by 
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− +

−xx θ π , (20) 

where L(x|θx, π) is the log-likelihood, Ka is the number of free adjustable parameters, and N is the 
number of samples. L(x|θx, π), Ka, and N are given by 
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The user can override the MDL model selection by specifying the number of sub-clusters 
according to his/her justification.  
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3. ADDITIONAL DISCUSSION 
In further research, some modifications can be made to improve VISDA. For example, 3-D 
visualization and model initialization can be implemented without theoretical obstacles. 
Nonlinear projections may also be used to visualize data cluster, but two things need to be noted. 
(1) Suitable data models need to be defined in the visualization space and in the original data 
space. (2) A corresponding inverse (or approximate inverse) transform of model parameters from 
the visualization space to the original data space must also be defined. For phenotype clustering, 
in the current version of VISDA, the gene subspace is formed by selecting individually 
discriminative genes. Because the jointly most discriminative gene set does not necessarily solely 
consist of the genes that are most discriminative individually (Jain, et al., 2000), an improvement 
based on selecting jointly discriminative genes can be made using methods such as (Xuan, et al., 
2007), at the cost of increased computation time. 
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4. SOFTWARE AVAILABILITY 
VISDA is a toolkit of caBIGTM (https://cabig.nci.nih.gov/). Open source caBIGTM VISDA 
software package is free available at https://gforge.nci.nih.gov/projects/visda. (Wang, et al., 
2007) is an application note introducing the caBIGTM VISDA software. An updated version of 
the installation guide for this open source software is available at 
http://www.cbil.ece.vt.edu/software/VISDA_InstallationGuide.pdf. Matlab code implementing a 
full functional version of VISDA is free available at 
http://www.cbil.ece.vt.edu/software/VISDA_Package.zip.  
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Supplement Table 1. A summary of the datasets used in the evaluation experiment. 

Diagnostic task Biological category (number of samples in the 
category) 

Class number / 
number of 

selected genes 
Source 

Synthetic data  4 Gaussian distributed classes, each class has 100 
samples  4 / 3  

Small round blue cell 
tumours 

Ewing sarcoma (29), burkitt lymphoma (11), 
neuroblastoma (18), rhabdomyosarcoma (25) 4 / 60 (Khan, et al., 2001) 

Multiple human tumour 
types 

Prostate cancer (10), breast cancer (12), kidney 
cancer (10), lung cancer (17) 4 / 7 (Su, et al., 2001) 

Lung cancer sub-types 
and normal tissues 

Adenocarcinomas (16), normal lung (17), 
squamous cell lung carcinomas (21), pulmonary 

carcinoids (20) 
4 / 13 

(Ben-Dor, et al., 1999; 
Bhattacharjee, et al., 

2001) 
Classification of 

multiple human cancer 
types 

Brain cancer (73), colon cancer (60), lung cancer 
(91), ovary cancer (119, including 6 uterine cancer 

samples) 
4 / 8 (Giordano, et al., 2001)

Ovarian cancer sub-
types and clear cell 

Ovarian serous (29), ovarian mucinous (10), 
ovarian endometrioid (36), clear ovarian cell (9) 4 / 25 (Schwartz, et al., 2002; 

Shedden, et al., 2003 ) 
Human cancer data 

from multi-platforms 
and multi-sites 

Breast cancer (22), central-nervous 
meduloblastoma (57), lung-squamous cell 

carcinoma (20), prostate cancer (39) 
4 / 15 (Bloom, et al., 2004) 

Human cancer data 
from multi-platforms 

and multi-sites 

Central-nervous glioma (10), lung cancer (58), 
lung-squamous cell carcinoma (21) lymphoma-

large B cell (11), prostate cancer (41) 
5 / 20 (Bloom, et al., 2004) 
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Supplement Table 2.  A brief introduction of the muscle dystrophy dataset. 

Phenotype Sample Number Description 
JDM 25 Juvenile dermatomyositis 

FKRP 7 Fukutin related protein deficiency 
DMD 10 Duchenne muscular dystrophy, dystrophin deficiency 
BMD 5 Becker muscular dystrophy, hypomorphic for dystrophin 

Dysferlin 10 Dysferlin deficiency, putative vesicle traffic defect 
Calpain III 10 Calpain III deficiency 

FSHD 14 Fascioscapulohumeral dystrophy 
AQM 5 Acute quadriplegic myopathy 
HSP 4 Spastin haploinsufficiency, microtubule traffic defect 

Lamin A/C 4 Emery dreifuss muscular dystrophy, missense mutations 
Emerin 4 Emery dreifuss muscular dystrophy, emerin deficient 

ALS 9 Amyotrophic lateral sclerosis 
NHM 18 Normal skeletal muscle 
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Supplement Table 3. A brief introduction of the multi-class cancer dataset. 

Phenotype Sample Number 
Breast Cancer 11 

Prostate Cancer 10 
Lung Cancer 11 
Colon Cancer 11 

Lymphoma Cancer 22 
Melanoma Cancer 10 

Bladder Cancer 11 
Uterus Cancer 10 

Leukemia Cancer 30 
Kidney Cancer 11 

Pancreas Cancer 11 
Ovary Cancer 11 

Mesothelioma Cancer 11 
Central Nervous System Cancer 20 

 


