Supporting Information

Mattila et al. 10.1073/pnas.0803022105

Fig. 51. Description of the primary screen. (*A*) The screening was based on the ability of dFoxO to drive the expression of the EGFP under a synthetic 4xFRE promoter. 4xFRE-EGFP reporter vector was transfected together with pMt-dFoxO expression vector and pMt-RFP control vector. Subsequently, the cells were treated with either *Lacl* negative control or dFoxO dsRNA. Protein expression was induced by addition of CuSO₄. Knockdown of the overexpressed dFoxO protein abolished the EGFP expression. (*B*) Outline of the screening process (1). A population of 52 cells was simultaneously transiently transfected with the 4xFRE-EGFP, pMt-dFoxO and pMt-RFP vectors (2). The next day the cells were collected and divided into a multiwell plate prealiquoted with the dsRNA library. After 24 h, the cells were induced with CuSO₄ and cultured for further 48 h. Cells were then transferred into an optical multiwell plate pretreated with concavalin A. After attachment the cells were washed and fixed (3). The plates were scanned by a high throughput microscope. Cells were identified by their RFP intensity and divided by its RFP intensity providing the relative dFoxO activity. We scanned 6,000 cells of each dsRNA treatment in triplicate (4). The average EGFP/RFP values were converted into *Z* scores. Each plate was treated independently. We chose genes having a *Z* score of 1.3 or higher in at least two out of the three replicates of all of the primary hits are provided in Table S1.

Fig. S2. The identified dFoxO regulators grouped by their regulatory mode of action. Eighteen proteins regulate dFoxO dependent transcription, eight regulate its localization, and eight its stability. Three proteins have effects in all three readouts.

IAS PNAS

Fig. S3. dFoxO bandshifts upon the hit RNAi's. dFoxO bandshift was visualized on 8% SDS/PAGE gel for AKT and PTEN in the absence (lanes 1–3) or presence (lanes 4–6) of insulin. Lanes 7–29 dFOXO mobility after knockdown of RNAi hits from the screen.

Fig. 54. FOXO3a transcriptional activity in HEK293 and HEPA1–6 cells upon overexpression of mammalian kinase orthologs. Eight mammalian orthologs of *Drosophila* proteins identified in the screen were coexpressed with FOXO3a and insulin receptor promoter luciferase reporter in HEK293 (*A*) and HEPA1–6 cells (*B*). Luciferase activity is measured with a human InR luciferase reporter.

DN A C

Table S1. Primary screen hits

PNAS PNAS

Gene	CG number	Р
akt	4006	0.08
basket (bsk)	5680	0.1
adenylyl cyclase 78c (ac78c)	10564	0.07
cg17026	17026	0.05
cg7177	7177	0.1
cg7597	7597	0.03
cyclin dependent kinase 9 (cdk9)	5179	0.02
darkener of apricot (doa)	33553	0.1
diacylglycerol kinase d (dgkd)	34384	0.08
four wheel drive (fwd)	7004	0.04
gilgamesh (gish)	6963	0.0008
greatwall (gwl)	7719	0.05
guanylyl cyclase 55b (gc55b)	33958	0.15
guanylyl cyclase at 76c (gc76c)	8742	0.1
guanylyl cyclase at 88e (gc88e)	4154	0.1
hipk	17090	0.2
hippo	11228	0.02
ia2	31795	0.07
ire-1	4583	0.08
meiotic 41 (mei-41)	4252	0.006
minibrain (mnb)	7826	0.03
myotubularin (mtm)	9115	0.006
neurospecific receptor kinase (nrk)	4007	0.09
Ninac	5125	0.08
pdgf- and vdgf-receptor related (pvr)	8222	0.000001
pdk1	1210	0.001
pkc 53e	6622	0.0006
polo	12306	0.01
protein kinase-like 17e (pk17e)	7001	0.07
protein phosphatase 19c (pp19c)	32505	0.08
protein tyrosine phosphatase 69d (ptp69d)	10975	0.07
pten	5671	0.002
shaggy (sgg)	2621	0.02
skittles (sktl)	9985	0.2
snf1alamp-activated protein kinase (snf1a)	3051	0.002
stretchin-mlck (strn-mlck)	18255	0.2
tao-1	14217	0.03
target of rapamycin (tor)	5092	0.08

Table S2. Hits and their mammalian orthologs

SANG SAL

	CG			
Hit	number	Mammalian ortholog	Accession no.	Expression vector (ref.)
cg17026	17026	inositol(myo)-1(or 4)-monophosphatase 1 (IMPA)	NP_005527	
cg7177	7177	—	—	
cg7597	7597	Cell division cycle 2-like protein kinase 5	NP_003709	
cyclin dependent kinase 9 (cdk9)	5179	cyclin-dependent kinase 9	NP_001252	
diacylglycerol kinase d (dgkd)	34384	diacylglycerol kinase δ2	NP_690618	3xFlag-CMV-7.1/hDGKδ2 (1)
four wheel drive (fwd)	7004	Phosphatidylinositol 4-kinase β (PI4K β)	NP_002642	pcDNA3-HA-Pl4K eta (2)
gilgamesh (gish)	6963	casein kinase 1, gamma 3	NP_004375	
greatwall (gwl)	7719	microtubule associated serine/threonine kinase-like	NP_116233	
ire-1	4583	Inositol-requiring protein 1 (IRE-1)	NP_001424	pCAG-hIRE1 (3)
meiotic 41 (mei-41)	4252	Serine/threonine-protein kinase ATR	NP_001175	
neurospecific receptor kinase (nrk)	4007	Muscle & skeletal receptor tyrosine protein kinase precursor (MUSK)	NP_005583	pcDNA3.1 Myc-MUSK (4)
Ninac	5125	Myosin-IIIB	NP_001077084	
pdgf- and vdgf-receptor related (pvr)	8222	Vascular endothelial growth factor receptor 1 precursor (FLT-1)	NP_002010	pcDNA hFLT-1 (5)
pkc 53e	6622	Protein kinase C alpha	NP_002728	
polo	12306	Serine/threonine-protein kinase PLK1	NP_005021	
protein kinase-like 17e (pk17e)	7001	—	_	
protein tyrosine phosphatase 69d (ptp69d)	10975	—	_	
shaggy (sgg)	2621	Glycogen synthase kinase-3 eta	NP_002084	pcDNA ratGSk3 β (6)
skittles (sktl)	9985	phosphatidylinositol-4-phosphate 5-kinase, type I, alpha	NP_003548	pcDNA3-myc-mousePIP5Kα (7)
stretchin-mlck (strn-mlck)	18255	Myosin light chain kinase, smooth muscle (smMLCK)	NP_444253	
tao-1	14217	Serine/threonine-protein kinase TAO1	NP_065842	pCMV5-ratTAO1 (8)

1. Sakane F, Imai S, Yamada K, Murakami T, Tsushima S, Kanoh H (2002) Alternative splicing of the human diacylglycerol kinase delta gene generates two isoforms differing in their expression patterns and in regulatory functions. J Biol Chem 277:43519–43526.

2. Godi A, Pertile P, Meyers R, Marra P, Di TG, Iurisci C, Luini A, Corda D, De Matteis MA (1999) ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1:280–287.

3. Imagawa Y, Hosoda A, Sasaka S, Tsuru A, Kohno K (2008) RNase domains determine the functional difference between IRE1alpha and IRE1beta. FEBS Lett 582:656-660.

4. Smith MJ, Hardy WR, Murphy JM, Jones N, Pawson T (2006) Screening for PTB domain binding partners and ligand specificity using proteome-derived NPXY peptide arrays. *Mol Cell Biol* 26:8461–8474.

5. Fragoso R, Pereira T, Wu Y, Zhu Z, Cabecadas J, Dias S (2006) VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. *Blood* 107:1608–1616.

6. Eng CH, Huckaba TM, Gundersen GG (2006) The formin mDia regulates GSK3beta through novel PKCs to promote microtubule stabilization but not MTOC reorientation in migrating fibroblasts. *Mol Biol Cell* 17:5004–5016.

7. Yamazaki M, Miyazaki H, Watanabe H, Sasaki T, Maehama T, Frohman MA, Kanaho Y (2002) Phosphatidylinositol 4-phosphate 5-kinase is essential for ROCK-mediated neurite remodeling. J Biol Chem 277:17226–17230.

8. Hutchison M, Berman KS, Cobb MH (1998) Isolation of TAO1, a protein kinase that activates MEKs in stress-activated protein kinase cascades. J Biol Chem 273:28625-28632.