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Full Power Analysis. Statistical power in these null models is
expected to be a function of both a species prevalence (deter-
mining how much information there is in a pattern) and signal
strength (the tightness of the association between species dis-
tribution and climate). We assessed the effects of prevalence and
signal strength by using the same null model-generating proce-
dure described in the main text: the rank of the climate envelope
model AUC score for the focal pattern within the AUC scores
of statistical replicates conserving the spatial autocorrelation
structure of the focal pattern but independent of climate.

To assess the information effect, using the prevalence for each
real species, we generated a pattern completely determined by
climate. When we used the null model test described in the main
text on these deterministic ‘‘species,’’ all but one were correctly
identified as matching climate, indicating that any failure to
detect associations between observed species distributions and
climate is not simply attributable to failure of the analytical
method. The one pattern that was not correctly identified was the
pattern with the lowest prevalence: presence in only three
squares. This appears to be a result of our climate envelope for
this species having an exceptionally low AUC score.

To assess the signal-to-noise noise effect, for each species we
used its prevalence to generate a single artificial distribution that
was part deterministic and part noise. These patterns were
generated as described in the main text, by first producing a fully
deterministic pattern with the same prevalence as each real
species, then allowing this species to disperse into all neighboring
squares. This generates a pattern with false positives and higher
prevalence than the true species distribution, so we sequentially
removed presences from these patterns until the pattern had the
desired prevalence again, selecting squares to remove that would
improve the match between the spatial correlation structure of
the simulated distribution and the true species distribution.

This algorithm [implemented in the function allClim() below]
necessarily results in patterns that have a correlation between
prevalence and signal strength: allowing a species that has very
low prevalence to disperse into neighboring squares will result in
a new pattern with a proportionally higher false positive rate
than doing the same to a species with initially much higher
prevalence. After this process it is quite possible for patterns with
very low initial prevalence to have prevalence several times
higher than the initial prevalence: this is clearly impossible for a
species with much higher initial prevalence. On ‘‘erosion’’ back
to the original prevalence, the pattern with proportionally more
false positives will also risk losing more of the original deter-
ministic pattern than a pattern with initially high prevalence.
Both these processes and our definition of noise result in higher
noise in patterns with low prevalence than those with high
prevalence. Although this may be seen as a drawback of using a
biologically plausible pattern generation method, it is worth
noting that using our definition of signal strength (the proportion
of an original deterministic pattern that remains in the final
pattern after dispersal and erosion), whatever method is chosen,
it is completely impossible to generate patterns simultaneously
with high prevalence and low signal strength. Moreover, because
the effect of prevalence is symmetrical, �0.5 our method, when
combined with the completely deterministic patterns, samples
most of the practical parameter space.

For the patterns generated with both deterministic signal and
noise, Kappa for the climate envelope models ranged from 0 to
0.80 (median, 0.54) and AUC values ranged from 0.73 to 0.98

(median, 0.90). We found that AUC scores of ANN models for
the deterministic patterns were ranked in the top 5 of the 99
simulations for 75 species. This means that, in our sample, adding
a variable amount of noise to a perfect distribution–climate
match reduces the number of correctly identified patterns from
99 to 75.

To further explore the relationships between signal strength,
prevalence, and power we fitted a binomial logistic regression,
modeling the probability of successfully fitting a climate enve-
lope as a quadratic function of both signal strength and preva-
lence. Because the information contained within a binary pat-
tern is symmetrical and highest at a prevalence of 0.5, we
constrained the relationship with prevalence to be symmetrical
�0.5. As expected from the separate analyses, we found that
power was strongly affected by signal strength and weakly
affected by prevalence, with particularly good power (�0.8) for
patterns that were at least 50% deterministic [supporting infor-
mation (SI) Fig. S1]. This means that adding 50% noise to a
perfect distribution–climate match would still result in our
method correctly identifying �80% of patterns. We consider
that as our methods are powerful at detecting all patterns with
at least 50% deterministic signal, they are should identify
meaningful climate envelopes for real species patterns. We note
that choosing a less strict �-level for significance testing (e.g., 0.1)
will result in increased type I errors, but will further increase the
power of these tests. Note also that if the middomain effect
mentioned in the main text were influencing our results, we
would expect to see low power with intermediate presence, not
the high power we observe here.

Congruence of Modeling Methods, Goodness-of-Fit Statistics, and
Climate Variables. For each of the 100 real species we generated
99 null distributions with similar spatial structure and preva-
lence. To each of these 10,000 distribution patterns we fitted
climate envelopes by using three methods and two separate
datasets, resulting in 90,000 models. We also generated 200
further patterns, each with 99 null distributions during the power
analysis, resulting in a total of 150,000 unique climate envelopes,
each summarized by an AUC score, a Kappa statistic, and
measures of sensitivity and specificity. For the 300 actual climate
envelopes for real distributions on real climate variables, Kappa,
sensitivity, and specificity values ranged from 0 to 1 (median,
0.53 for Kappa) and AUC values ranged from 0.27 to 0.997
(median, 0.851). Four GAM models (for species with very low
prevalence) failed to converge. Within this overall range, models
fitted by using GLM and ANN generally resulted in slightly
higher AUC than those fitted with GAM (F2,293 � 91.4, P �
0.0001), but the difference was not significant when measured
with Kappa statistics (F2,293 � 0.567, P � 0.567). To assess the
impact of choosing different modeling methods, different cli-
mate variables, and different goodness-of-fit measures, we as-
sessed the congruence between the methods by using Kendall’s
W with significance assessed by permutation. All fitting methods,
all climate variable sets, and all four goodness-of-fit measures
were congruent overall (W � 0.552; P � 0.001) and each
individual ranking was congruent with all others (P � 0.001 in
all cases). The rankings within the 99 null distributions given to
each individual species distributions were therefore similar
irrespective of modeling choice, climate variable, or preferred
goodness-of-fit statistic. Overall numbers of species identified as
significant varied slightly, but our results are qualitatively similar
whatever method is chosen (Table S2). Because all results were
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broadly similar we concentrate the main text on the results of
ANN models and AUC scores, methods that are regularly
preferred in comparative studies (1, 2) and were closest to the
median in our sample of methods. We anticipate that our results
would be broadly similar by using any of the additional modeling
methods currently used in climate envelope studies.

The Effects of Choosing Alternative Significance Levels. In the main
text we chose a significance level of 0.05. This implies that we
expect 5 of the 32 patterns to show significant associations with
climate by chance alone. Choosing a more stringent significance
level in line with adjustments for multiple testing would further
reduce the number of species we identify as significantly asso-
ciated with climate. In this analysis, however, we chose not to

adjust significance levels for multiple testing, as the more
conservative option. Even more conservative would be choosing
a significance level of 0.1; this would increase by another five the
number of patterns expected to be significantly associated with
climate by chance alone, but would increase the power of the test.
In our dataset, however, this still identifies only 46 of the patterns
as a better match than chance alone, 10 of which may be expected
as false positives. Further changes in the significance level result
in no more increases in the number of patterns identified as
significantly associated with climate than is completely consis-
tent with the increased frequency of false positives, suggesting
that the choice of significance level does not substantially affect
our findings.

1. Huntley B, et al. (2004) The performance of models relating species geographical
distributions to climate is independent of trophic level. Ecol Lett 7:417–426.

2. McPherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the
accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl
Ecol 41:811–823.
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Fig. S1. The relationship between prevalence, signal strength, and power. Each point identifies prevalence and signal strength (the proportion of the pattern
that was deterministic) in a simulated distribution. The 100 fully deterministic patterns are indicated by diamonds, triangles indicate the 100 patterns that are
deterministic plus added noise (see Materials and Methods). Blue points identify patterns that were fitted by climate envelopes significantly better than 99
distributions with the same spatial structure and prevalence as the deterministic pattern. Red points identify patterns that were not fitted better than the null
models. Power is indicated by contours. The effect of prevalence is constrained to be symmetrical around 0.5. Note that, where signal strength is �0.5, power
to detect deterministic patterns is very good.
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Table S1. Species list: Describing the 100 species included in the analysis, the reason for their inclusion (used as a nuisance variable in
one analysis), their prevalence, the mean latitude of their distribution in the study area, the AUC score for the climate envelope
fitted with neural networks and an indication of whether the AUC score was in the top 5% of AUC scores for the null models

Species

Endemicity
(reason for
inclusion) Prevalence

Mean
latitude

(°N) AUC
Migrant
status

Wetland
habitat

Well
fitted

Accipiter gentilis Widespread 0.59 51.9 0.82 PM FALSE FALSE
Accipiter nisus Widespread 0.64 51.52 0.74 PM FALSE FALSE
Acrocephalus paludicola Endemic 0.01 52.49 0.93 LD TRUE FALSE
Acrocephalus palustris Widespread 0.35 51.16 0.91 LD FALSE TRUE
Alectoris graeca Endemic 0.07 42.24 0.82 R FALSE FALSE
Alectoris rufa Endemic 0.18 43.79 0.93 R FALSE FALSE
Anthus campestris Widespread 0.23 45.19 0.82 LD FALSE TRUE
Anthus petrosus Endemic 0.07 58.13 0.89 R FALSE FALSE
Anthus pratensis �60% 0.52 56.82 0.89 PM FALSE FALSE
Aquila pomarina �60% 0.11 50.11 0.92 LD FALSE TRUE
Ardea cinerea Widespread 0.43 51.51 0.81 PM FALSE FALSE
Athene noctua Widespread 0.47 45.41 0.84 R FALSE FALSE
Bubulcus ibis Widespread 0.02 39.81 0.93 R FALSE FALSE
Buteo buteo Widespread 0.72 49.48 0.85 R FALSE TRUE
Buteo rufinus Widespread 0.03 40.37 0.93 R FALSE FALSE
Calandrella brachydactyla Widespread 0.12 40.67 0.89 LD FALSE TRUE
Calidris alpina Widespread 0.11 61.16 0.89 LD TRUE TRUE
Calidris maritima Widespread 0.05 64.5 0.98 SD TRUE TRUE
Caprimulgus europaeus Widespread 0.35 48.46 0.73 LD FALSE FALSE
Carduelis carduelis Widespread 0.69 47.22 0.87 R FALSE FALSE
Carduelis chloris Widespread 0.77 49.69 0.76 R FALSE FALSE
Carduelis flavirostris Widespread 0.05 60.54 0.97 PM FALSE TRUE
Certhia brachydactyla Endemic 0.36 46.08 0.82 R FALSE FALSE
Certhia familiaris Widespread 0.47 53.31 0.88 R FALSE TRUE
Cettia cetti Widespread 0.17 41.62 0.91 R TRUE TRUE
Charadrius morinellus Widespread 0.05 62.12 0.91 LD FALSE FALSE
Chlidonias niger Widespread 0.14 51.29 0.87 LD TRUE FALSE
Ciconia ciconia �60% 0.38 47.93 0.91 LD TRUE FALSE
Coccothraustes coccothraaustes Widespread 0.43 49.18 0.89 R FALSE TRUE
Corvus corone Widespread 0.78 50.18 0.77 R FALSE FALSE
Corvus frugilegus Widespread 0.37 50.9 0.9 R FALSE TRUE
Cyanopica cyanus Widespread 0.03 39.27 0.95 R FALSE FALSE
Delichon urbica Widespread 0.88 50.32 0.8 LD FALSE FALSE
Dendrocopos leucotos Widespread 0.09 51.03 0.79 R FALSE FALSE
Dendrocopos medius �60% 0.23 48.5 0.87 R FALSE FALSE
Emberiza caesia Widespread 0.04 38.42 0.95 LD FALSE FALSE
Emberiza cia Widespread 0.19 42.36 0.77 R FALSE FALSE
Emberiza cirlus �60% 0.25 42.37 0.89 R FALSE FALSE
Emberiza citrinella Widespread 0.64 52.29 0.9 PM FALSE TRUE
Falco columbaris Widespread 0.16 63.17 0.97 PM FALSE TRUE
Falco eleonorae �60% 0.02 38.24 0.98 LD FALSE TRUE
Falco peregrinus Widespread 0.23 44.33 0.81 PM FALSE FALSE
Falco subbuteo Widespread 0.43 50.3 0.76 LD FALSE FALSE
Ficedula albicollis �60% 0.1 48.07 0.86 LD FALSE FALSE
Ficedula semitorquata Widespread 0.02 41.08 0.88 LD FALSE FALSE
Fringilla coelebs Widespread 0.84 50.4 0.78 PM FALSE FALSE
Fulmarus glacialis Widespread 0.06 57.92 0.98 PM FALSE TRUE
Glareola pratincola Widespread 0.03 40.52 0.9 LD FALSE FALSE
Glaucidium passerinum Widespread 0.12 57.65 0.91 R FALSE TRUE
Gypaetus barbatus Widespread 0.01 40.14 0.85 R FALSE FALSE
Haematopus ostralegus Widespread 0.22 57.51 0.85 SD TRUE FALSE
Himantopus himantopus Widespread 0.08 41.95 0.88 PM TRUE TRUE
Hippolais pallida Widespread 0.08 40.91 0.91 LD FALSE FALSE
Hippolais polyglotta Endemic 0.17 43.51 0.88 LD FALSE FALSE
Lagopus lagopus Widespread 0.16 63.11 0.99 R FALSE TRUE
Lanius minor Widespread 0.13 44.2 0.87 LD FALSE FALSE
Lanius nubicus Widespread 0.02 40.16 0.97 LD FALSE FALSE
Locustella luscinioides Widespread 0.14 48.38 0.82 LD TRUE FALSE
Locustella naevia Widespread 0.22 52.14 0.84 LD FALSE FALSE
Loxia scotica Endemic 0 57.05 0.99 R FALSE FALSE
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Species

Endemicity
(reason for
inclusion) Prevalence

Mean
latitude

(°N) AUC
Migrant
status

Wetland
habitat

Well
fitted

Lullula arborea �60% 0.42 47.38 0.76 PM FALSE FALSE
Luscinia luscinia Widespread 0.2 54.45 0.92 LD FALSE FALSE
Lymnocryptes minimus Widespread 0.03 64.91 0.92 SD TRUE FALSE
Melanocorypha calandra Widespread 0.1 40.83 0.91 PM FALSE TRUE
Merops apiaster Widespread 0.24 42.73 0.87 LD FALSE TRUE
Milvus milvus �60% 0.15 47.77 0.86 PM FALSE FALSE
Motacilla alba Widespread 0.82 50.78 0.75 SD FALSE FALSE
Nyctea scandiaca Widespread 0.02 67.46 0.98 R FALSE TRUE
Otis tarda Widespread 0.04 42.46 0.91 PM FALSE FALSE
Parus cinctus Widespread 0.04 66.76 0.99 R FALSE TRUE
Parus montanus Widespread 0.48 55.28 0.89 R FALSE TRUE
Parus palustris Widespread 0.46 50.49 0.84 R FALSE FALSE
Passer domesticus Widespread 0.84 50.53 0.79 R FALSE FALSE
Passer hispaniolensis Widespread 0.1 40.31 0.93 R FALSE FALSE
Pernis apivorus �60% 0.38 51.23 0.8 LD FALSE TRUE
Phylloscopus bonelli �60% 0.13 43.47 0.79 LD FALSE FALSE
Phylloscopus collybita Widespread 0.61 51.11 0.8 SD FALSE FALSE
Phylloscopus sibilatrix Widespread 0.45 52.68 0.85 LD FALSE FALSE
Pica pica Widespread 0.83 50.85 0.86 R FALSE TRUE
Pinicola enucleator Widespread 0.04 65.56 0.99 R FALSE TRUE
Prunella modularis �60% 0.57 53.08 0.82 R FALSE FALSE
Pyrrhocorax pyrrhocorax Widespread 0.09 42.05 0.86 R FALSE FALSE
Regulus ignicapillus �60% 0.23 46.34 0.83 PM FALSE FALSE
Regulus regulus Widespread 0.47 53.56 0.82 PM FALSE FALSE
Saxicola torquata Widespread 0.47 45.4 0.85 PM FALSE FALSE
Scolopax rusticola Widespread 0.38 54.97 0.78 SD FALSE FALSE
Serinus citrinella Endemic 0.04 44.27 0.81 R FALSE FALSE
Serinus serinus �60% 0.51 45.73 0.86 PM FALSE FALSE
Sitta whiteheadi Endemic 0 42.08 0.26 R FALSE FALSE
Strix aluco Widespread 0.59 49.55 0.79 R FALSE FALSE
Strix nebulosa Widespread 0.03 63.35 0.96 R FALSE TRUE
Strix uralensis Widespread 0.09 59.19 0.94 R FALSE TRUE
Sylvia atricapilla Widespread 0.72 49.38 0.81 SD FALSE FALSE
Sylvia cantillata Endemic 0.16 40.6 0.93 LD FALSE TRUE
Sylvia sarda Endemic 0.01 40.38 0.98 R FALSE FALSE
Sylvia undata Endemic 0.11 41.57 0.91 R FALSE FALSE
Tetrao urogallus Widespread 0.24 57.94 0.95 R FALSE TRUE
Troglodytes troglodytes Widespread 0.73 50 0.79 R FALSE FALSE
Turdus merula Widespread 0.84 49.63 0.81 PM FALSE FALSE
Turdus torquatus �60% 0.15 53.78 0.85 SD FALSE TRUE

Migrant status (PM � partial migrant, LD � long-distance migrant, SD � short-distance migrant, R � resident) and wetland habitat are partially subjective
assignments, but neither showed significant relationships in logistic regression models with how well the species distributions were modeled: Migrant status �2 �
0.722, df � 3, P � 0.868; Wetland habitat �2 � 0.638, df � 1, P � 0.424. Because these values are nonsignificant phylogenetic adjustment will not change the
results.
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Other Supporting Information Files

Appendix (PDF)

Table S2. Numbers of significant patterns using different
climate datasets, different modeling methods and different
goodness-of-fit (GOF) measures

Climate
variable set

Fitting
method GOF measure

Number
significant

1 NNET Kappa 42
1 NNET AUC 32
1 NNET Sensitivity 18
1 NNET Specificity 24
1 GLM Kappa 44
1 GLM AUC 43
1 GLM Sensitivity 31
1 GLM Specificity 18
1 GAM Kappa 47
1 GAM AUC 46
1 GAM Sensitivity 34
1 GAM Specificity 21
2 NNET Kappa 50
2 NNET AUC 38
2 NNET Sensitivity 26
2 NNET Specificity 27
2 GLM Kappa 49
2 GLM AUC 52
2 GLM Sensitivity 28
2 GLM Specificity 22
2 GAM Kappa 51
2 GAM AUC 48
2 GAM Sensitivity 30
2 GAM Specificity 23
3 NNET Kappa 40
3 NNET AUC 33
3 NNET Sensitivity 15
3 NNET Specificity 18
3 GLM Kappa 49
3 GLM AUC 40
3 GLM Sensitivity 28
3 GLM Specificity 12
3 GAM Kappa 48
3 GAM AUC 38
3 GAM Sensitivity 24
3 GAM Specificity 20

Results described in main paper highlighted in bold.
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