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A General Framework for the Impact of Multiple Interacting Stressors
on a Mixed Population. In this article, we derived an expression for
the frequency of resistance to combinations of two drugs (Eq. 2)
in the case of spontaneous mutations. We showed that the
frequency of resistance FXY is completely characterized by two
parameters: �XY, which describes how the two interacting drugs
impact the growth of one individual cell, and pXY, which describes
the structure of the population in terms of resistance to each
drug alone. Here, we extend this result to describe in a general
way the impact of multiple interacting stressors in a mixed
population.

Let us consider n environmental stressors denoted by
X1, . . . , Xn whose values are positive numbers, in analogy with
drug concentrations. We aim to describe the effect of those
stressors on a population � in terms of one given phenotypic
trait—in this article, growth and its inhibition. An individual
from this population placed in a given environment either
possesses the phenotypic trait or does not—for instance, a cell in
a medium grows or does not grow. To each individual � in �, we
associate the value �(�, x) of the phenotypic trait under the stress
x � (x1, . . . , xn): this value is one if � possesses this trait, and zero
if it does not. In the general case, an individual’s response to
stress can bear a stochastic component, as for the case of
persister cells in isogenic populations. This can be directly
accounted for in this framework by considering �(�,.) as a
probability density, rather than as a binary variable. With these
definitions, the frequency of the trait in the population under
stress is given by

F�x1, . . . , xn� � �
���

���, x1, . . . , xn�d�. [S1]

Large groups of individuals in the population may possess the
same response to stress. We therefore describe the population �
relative to the behavior of individuals under stress as follows. It
is possible to find a measurable set I of ordered indexes and
typical individuals {�i � �, i � I}, such that for any individual
� in �, there is an index i � I for which under any stress, �
behaves like �i: @x � (x1, . . . , xn) � ��n, �(�, x) � �(�i, x). We
define in this case �i(.) � �(�i,.). We then associate to any index
i � I the proportion p(i) of individuals in �, which behave like
�i. We naturally have �i�I p(i)di � 1. The equation for the
frequency of the trait then becomes

F�x1, . . . , xn� � �
i�l

�i�x1, . . . , xn�p�i�di. [S2]

The quantity p describes the population � in terms of its
response to each stress alone, while the quantities �i describe the
way the stressors together interact and impact one individual’s
phenotype, analogous to the epistasis between drugs. In other
words, I tells how many different responses to stress exist in the
population, p tells how frequent those responses are in the
population, and �i tells how the combined stresses impact one
individual. These are the three relevant, sometimes measurable,
quantities that are necessary and sufficient to describe the
response of a population to multiple interacting stressors.

This framework can potentially describe resistance of isogenic
populations of bacteria to multiple compounds, or the adapta-
tion of birds in urban environments where stressors include light,
noise, and chemical environment. In our article, we focused on
describing how the rather complex parameters (�i and p) could
be obtained from measures of simpler quantities pertaining to
single stressors. In different situations, other measures and
approximations may be relevant.

A Simple Copula-Based Model of Cross-Resistance. If � is a popu-
lation of cells and the stressors are chemical compounds, then p
is a density of probability. In the case of only one drug X, pX(x)
is the probability that a cell from � can grow in an environment
containing up to (but not more than) x of X alone. In the case
of two drugs X and Y, pXY(x, y) is the probability that a cell from
� can grow in an environment containing up to (but not more
than) x of drug X alone and can also in an environment
containing up to (but not more than) y of drug Y alone.
Equivalently, pXY(x, y) is the probability that a cell has an MIC
of X equal to x, and an MIC of Y equal to y. A relationship exists
between the two- and one-drug cases: pX and pY are the marginal
densities of pXY, i.e., pX(x) � �y�0 pXY(x, y)dy and pY(y) �
�x�0 pXY(x, y)dx. In general, for two given densities pX and pY,
there are many probability densities pXY of which they could be
the marginals. We describe here a biologically relevant model
capable of associating a single pXY from two given pX and pY, and
the level of cross-resistance between drugs X and Y. We suppose
that pX and pY are given, and we ask to what extent the added
knowledge of the degree of cross-resistance is enough to define
uniquely pXY.

Cross-resistance denotes a situation where a single mutation
confers resistance to both drugs at once. Cross-resistance can be
measured by the correlation between resistance to X and resis-
tance to Y—how much more likely is a cell to be resistant to a
drug, knowing it is resistant to the other? In our framework, this
correlation is expressed by

rXY �

�
x,y�0

�x � x���y � y��pXY�x, y�dxdy

�� �
x�0

�x � x��2pX�x�dx�� �
y�0

�y � y��2pY�y�dy�
. [S3]

This quantity is null when there is no correlation between
resistance to X and resistance to Y: in this case, pXY is uniquely
defined as pXY

Indep(x, y) � pX(x)pY(y). At the other end of the
spectrum, correlation between the two drugs could be maximal:
it was shown (1) that there exists a unique density pXY

Correl that
maximizes the correlation rXY and whose marginal densities are
pX and pY. Then, we model the function pXY as a linear combi-
nation between the case exhibiting no cross-resistance and the
case exhibiting full cross-resistance: pXY � ��pXY

Correl � (1 	
�)pXY

Indep. The parameter � tuning this linear combination is
proportional to rXY and is called in our study the degree of
cross-resistance.

Existence and uniqueness of a solution to the maximization of
rXY given pX and pY interestingly comes from a branch of
mathematical finance, copula theory, which frames this problem
in terms of probability distributions (2). The link between the
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density p and the distribution F of a stochastic variable z is F(z) �
�u
z p(u)du. Copulas, which can be defined with precision (3),
are loosely understood as function C such that, for any marginal
densities FX and FY, the function H(x, y) � C(FX(x), FY(y)) defines
a joint probability distribution. Fréchet and Hoeffding separately
showed (4, 5) that the function M � min(FX(x), FY(y)), termed the
Fréchet–Hoeffding upper bound, is the unique distribution which
maximizes the correlation between X and Y. Our density pXY

Correl is
the density of that Fréchet–Hoeffding upper-bound. The family pXY
� ��XY

Correl � (1 	 �)pXY
Indep is the density of a subclass of the Fréchet

family of copulas (1). Many other families of copulas have been
extensively studied in the second half of the 20th century from a
purely mathematical standpoint: exploring their relevance to prob-
lems in biology could be insightful.

The case where the densities are finite sums of Dirac functions
is of particular biological relevance because it signifies that the
population of cells is made of only a finite number of subpopu-
lations that differ in their response to antibiotics. In this case, as
in our article, the densities pXY are matrices. We showed (J.-B.M.
and R.K., unpublished work) that a simple characterization of
the density with maximum correlation holds:
pXY

Correl is the density of the Fréchet–Hoeffding upper bound if and
only if in any two-by-two submatrix of pXY

Correl, at least one of the two
nondiagonal elements is null:

@� i � j , k � l� ,pXY
Correl� i , l� �pXY

Correl� j , k� � 0. [S4]

From this characterization, we obtain a simple algorithm (6) that
gives pXY

Correl. The algorithm takes in any stochastic matrix whose
marginal densities are pX and pY, and outputs the unique density
with same marginals and maximizes the correlation—pXY

Correl.
Algorithm. M is the input stochastic matrix.

- For all row indexes i
j, column indexes k
1:
� If M(i, l).M(j, k) � 0:

y Continue, as Eq. S4 is verified.
� Else:

y let m � min(M(i, l).M(j, k))
y let N � M, and N(i, l) � M(i, l) 	 m, N(j, k) �

M(j, k) 	 m, N(i, k) � M(i, k) � m,N(j, l) �
M(j, l) � m. The marginals of N and M are
identical, but the correlation between X and Y is
higher with density N than M.

y run the algorithm again with N instead of M
- return M

The Multiplicative Model Implicitly Assumes Buffering and No Cross-
Resistance. It is a commonly used approximation that the fre-
quency of resistance to a combination (CX, CY) of antibiotics X
and Y equals the product of the frequencies of resistance to each
drug alone: FXY(CX, CY) � FX(CX)FY(CY). This approximation,
termed here ‘‘multiplicative model,’’ is unable to account for our
experimental data (Fig. S2). We show here that the multiplica-

tive model always assumes buffering epistatic interactions and no
cross-resistance, which may explain why it fails to capture the
frequency of resistance to drug combinations with diverse
features.

Let us first consider the region of wild-type growth, which we
characterize by the function �XY. The points (CX, CY) where the
wild type grows are such that �XY(CX, CY) � 1, and zero
otherwise. This function can be deduced from the frequency of
resistance: �XY(CX, CY) � 1 when FXY(CX, CY) � 1, and zero
elsewhere. Since FXY(CX, CY) � FX(CX)FY(CY), this amounts to
�XY(CX, CY) � 1 if and only if FX(CX) � 1 and FY(CY) � 1, which
is the case only when CX � 1 and CY � 1. Therefore, �XY(CX,
CY) � �(CX)�(CY), where �(x) was previously defined as equal
to one when x � 1 and zero elsewhere (Eq. 1). This region where
�XY(CX, CY) � 1 is the unit square: its boundary, the MIC line
of the combination X–Y, is characterized by an epistasis coeffi-
cient � � �. In other words, the multiplicative model assumes
that the drugs completely buffer each other—as long as each
drug is below its own MIC, the wild type can grow.

Then, we show that the multiplicative model does fit in our
model. Indeed, working on the expression of the frequency
of resistance for the multiplicative model FXY(CX, CY) �
FX(CX)FY(CY), we obtain from Eq. 1:

FXY�CX, CY� � ��
x,y�0

��CX

x ���CY

y �px�x�pY�y�dxdy

and

FXY�CX, CY� � ��
x,y�0

�XY�CX

x
,

CY

y �pX�x�pY�y�dxdy.

Then, defining

pXY � pXpY : FXY�CX, CY� � ��
x,y�0

�XY�CX

x
,

CY

y �pXY�x,y�dxdy.

This expression shows that the multiplicative model is
contained in our framework (Eq. 2). The multiplicative model
always assumes buffering epistatic interactions, given by
�XY(CX, CY) � �(CX)�(CY). Since pXY � pXpY, this model
always assumes no cross-resistance (� � 0). We have seen in
our study that the behavior in terms of epistasis and cross-
resistance of combinations of two drugs can be very diverse,
ranging from synergy to suppression, and degrees of cross-
resistance going from null to 1. The multiplicative model
cannot account for those features.
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Fig. S1. Drug epistasis with respect to growth inhibition. Epistasis between drugs is marked by an inhibition of wild-type growth that deviates from a null
expectation based on the effect of each drug alone. The shape of the MIC line, which bounds the region of wild-type growth, reveals epistatic interactions. (A)
The null expectation is that drugs do not interact, which results in a straight MIC line. (B) Synergistic epistasis signifies that wild-type inhibition is stronger than
expected: the drugs aggravate each other’s effects. (C–E) Conversely, antagonistic epistasis signifies that the drugs alleviate each other’s effects, so that inhibition
is weaker than expected. Antagonism between drugs can be so pronounced as to suppress each other’s effects. Adding a small concentration of drug Y to a
concentration of drug X that normally inhibits growth can suppress the inhibition: the wild type is recovered (E).
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Fig. S2. The data do not support the multiplicative model. We represent in blue or shades of red the regions where experimental data shows wild-type growth
or resistance, respectively. We represent the same regions as predicted by our model (second column) after the cross-resistance parameter was fitted to the data.
In the third column we show the predictions of the multiplicative model FXY � FXFY. This model produces surfaces whose shapes do not match the experimental
results. The multiplicative model implicitly postulates strong antagonism and no cross-resistance, contrasting with our model which accounts for any type of
epistasis and degree of cross-resistance.
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Fig. S3. Impact of epistasis on the MSW of a drug combination in the presence of cross-resistance. Five mutants exist in this bacterial populations: two are
increasingly resistant to X, two are increasingly resistant to Y, and the last mutant is resistant to both X and Y. (A and B) The MIC line of this cross-resistant mutant
is shown in thick black; in blue and red are the MIC and MPC lines of the drug combinations. Depending on the degree of epistasis, the cross-resistant mutant
can contribute to the MPC line of the combination (B). In this example, once this is the case the MSW of the drug combination no longer depends on the epistatic
interactions. (C) The MSW of the drug combination decreases as epistasis goes from synergy to antagonism, but reaches a plateau (arrow). This plateau marks
the point after which the cross-resistant mutant defines the MPC of the effective drug with smallest MSW. The position of this point can be geometrically derived
and is a function of the cross-resistance, the single-drug frequencies of resistance, and the single-drug MSW. (D) After this point, the MPC increases at the same
pace as the MIC. Note that the MSW plateaus because the cross-resistant mutant resists to equal amounts of the drugs X and Y: in general, the MSW will keep
decreasing as epistasis increases, at a slower pace in the presence of cross-resistance.
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Fig. S4. Suppressive drug combinations close the mutant selection window (MSW). We consider again the simple case where only two mutants exist, one
conferring resistance to drug X and the other to drug Y, where cross-resistance is absent and no double mutant exists due to low mutation rates. We show in
light blue the regions of wild-type growth, bounded by the MIC line (blue), and in red regions where resistant mutants grow. The smallest MSW is achieved by
combining X and Y in equal proportions: the size of this minimal MSW depends on epistatic interactions. (A) When the two drugs buffer each other (� � �), the
MIC (dashed) and the MPC (solid) of this combination of drugs are equal: drug concentrations where resistant mutants or the wild type grow are the same.
Therefore, there is no drug concentration that could selectively enrich resistant mutants. When the two drugs buffer each other, the size of the MSW is zero:
the MSW is closed. (B) If the antagonism between X and Y is so pronounced as to be suppressive, the MSW is again null, and there even exist regions where the
wild type can grow but not the resistant mutants [Chait R, Craney A, Kishony R (2007) Nature 446:668–671]. These regions of drug space (dark blue) select against
resistance: the susceptible strain is selectively enriched.
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Fig. S5. The resolution of the colony count spans nine orders of magnitude. For each two-drug concentration, we used one six-well plate, with each well
containing 7 ml of agar supplemented with the same concentration of drugs (A and B). We inoculated six different number of cells in each well (101.5, 103, 104.5,
106, 107.5, and 109 cells) and let them grow for 5 days in a controlled environment (see Materials and Methods). This setup ensures that at least one of the six
plates will contain a countable number of resistant colonies as long as the frequency of resistance is �10	9. (A) The frequency of resistance to a combination
of 0.15 FUS–0.7 AMI is on the order of 0.3. Almost all cells can grow: the plates where �103 cells were inoculated show a lawn of bacteria. Distinct colonies can
be counted in the two plates with the lowest initial number of cells. (B) The frequency of resistance to 10 FUS–1.4 AMI is low, on the order of 10	7. Only the plates
with the two highest initial numbers of cells exhibit bacterial growth. (C) We compare the estimates of the resistance frequencies obtained with different
inoculum sizes, when available (42 plates). Overall, there is no significant difference between the frequency estimates obtained with the most diluted plates or
least diluted plates (one-way ANOVA: 0.17). We do not observe a significant effect of the inoculum size on the estimates of resistance frequencies [Amsterdam
D (2005) in Antibiotics in Laboratory Medicine, ed Lorian V (Lippincott Williams & Wilkins, Philadelphia), pp 61–143].
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Fig. S6. Analysis of FUS-AMI after 3 days of incubation time. Using our automated image analysis platform, we have counted the colonies resistant to
combinations of FUS and AMI that were detectable after 3 days of growth in a controlled environment. (A) We plot the experimental points together with a
standard interpolated surface. (B) The model (Lower) is again in good agreement with the data (Upper). (C) We compare the frequencies of resistance estimated
at 3 and 5 days. The estimates stay within the same order of magnitude. Some slow-growing colonies are detectable only after 5 days of growth and not after
3 days. This can affect the precise determination of the MPC and MPC line, and is the reason why we generally conducted the analysis after 5 days rather than
after 3 days. This does not, however, affect the goodness of the fit or the estimated cross-resistance parameter (0.3 in both cases; not shown graphically).
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Fig. S7. Limited Luria–Delbrück fluctuations in the measurement of the frequencies of resistance. Five bacterial cultures were grown in five separate overnight
flasks, each inoculated with five different frozen aliquot issued from the same bacterial culture (initially prepared from one single colony). The five populations
obtained came from the same initial isogenic colony but may differ in the frequency of the different mutants (Luria–Delbrück fluctuations). We measured on
agar the frequencies of resistance of each population to increasing concentrations of FUS, ERY, and a constant combination of the two drugs, 1FUS:2ERY (see
Materials and Methods). We plot with the same color the frequencies of resistance for each population (batch A in blue, batch B in green, etc.). Fluctuations
are limited but can impact significantly the determination of the MPC.
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Table S1. Antibiotics, mode of action, and MIC

Antibiotic Abbr. MIC, 	g/ml Mode of action

Fusidic acid FUS 0.7 Protein synthesis (EFG)
Erythromycin ERY 150 Protein synthesis (50S)
Amikacin AMI 4 Protein synthesis (30S)
Ciprofloxacin CPR 0.1 DNA gyrase
Ampicillin AMP 0.3 Cell wall formation
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