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1 Prelife

Prelife dynamics are given by

ẋi = aixi′ − (d + ai0 + ai1)xi. (1)

The index i represents all binary strings (sequences). Longer strings are produced

from shorter ones by adding 0 or 1 on the right side. Each string, i, has one precur-

sor, i′, and two followers, i0 and i1. For example, the precursor of string 0101 is

010; the two followers are 01010 and 01011. For the precursors of strings 0 and 1

we set x0′ = x1′ = 1. The constants ai denote the rate at which string i arises from

i′ by addition of an activated monomer (which is either 0∗ or 1∗). Eq.(1) assumes

that the concentration of activated monomers is constant. All strings are removed

(die) at rate d.

Prelife dynamics define a tree with the activated monomers at the root. The tree of

prelife has infinitely many lineages. A lineage is a sequence of strings that follow

each other. For example, one such lineage is 0, 00, 000, ....

At equilibrium, the right hand side of Eq.(1) is zero, so we obtain

xi = bixi′ , (2)

where bi is given by

bi =
ai

d + ai0 + ai1

. (3)
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Using Eq.(2) recursively gives us

xi = bibi′bi′′ · · · bσ, (4)

where σ is the ancestral monomer (0 or 1) of sequence i.

Let us consider super-symmetric prelife with a0 = a1 = α/2 and ai = a for all

other sequences, i. From Eq.(4), we obtain the following results.

The abundance of a sequence of length n is

xn =
α

2a

(
a

2a + d

)n

. (5a)

The total abundance of all sequences of length n is

Xn = 2nxn =
α

2a

(
2a

2a + d

)n

. (5b)

The total abundance of all sequences is

X =
∞∑

n=1

Xn =
α

d
. (5c)

The total abundance of all sequences in one lineage is

X̃ =
∞∑

n=1

xn =
α

2(a + d)
. (5d)

The average sequence length is

n̄ =

∑∞
n=1 nXn

X
= 1 +

2a

d
. (5e)

Although there are infinitely many lineages, the abundance of any one lineage is

a considerable fraction of the entire population. The reason is that short sequences

belong to many lineages and they are much more abundant than long sequences.
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2 Prelife landscape

Let us consider a random prelife landscape where reaction rates of sequences of

length more than two are randomly given by

ai =

⎧⎪⎪⎨
⎪⎪⎩

a + s (with prob. p)

a (with prob. 1− p).

(6)

The other parameters are the same as before: a0 = a1 = α/2.

From Eq.(4), at equilibrium we obtain the following results. The average abundance

of a sequence of length n is

x̄n =
α

2
ABn, (7)

where

A =
(2a + d)2 + (2a + d)(3− 2p)s + 2(1− p)2s2

a(2a + d)2 + (2a + d)(3a + pd)s + {2a + p(2− p)d}s2
(8)

and

B =
a(2a + d)2 + (2a + d)(3a + pd)s + {2a + p(2− p)d}s2

(2a + d)(2a + d + s)(2a + d + 2s)
. (9)

A sequence is selected if its equilibrium abundance is not vanishing as s →∞. For

sequence i of length n, rewriting Eq.(4) yields

xi =
1

d + ai0 + ai1

· ai

d + ai′0 + ai′1
· ai′

d + ai′′0 + ai′′1
· · · aσρ

d + aσ0 + aσ1︸ ︷︷ ︸
n−1 terms

·α
2
, (10)

where σρ represents the first two digits of sequence i. The first term in the right

hand side of Eq.(10) is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
(a+s)+(a+s)+d

s→∞−−−→ 0 (with prob. p2)

1
(a+s)+a+d

s→∞−−−→ 0 (with prob. 2p(1− p))

1
a+a+d

s→∞−−−→ 1
a+a+d

(with prob. (1− p)2).

(11)

The first term does not vanish with probability (1− p)2.
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For each of the next n− 1 terms on the right hand side of Eq.(10) we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a+s
(a+s)+(a+s)+d

s→∞−−−→ 1
2

(with prob. p2)

a+s
(a+s)+a+d

s→∞−−−→ 1 (with prob. p(1− p))

a
(a+s)+a+d

s→∞−−−→ 0 (with prob. p(1− p))

a
a+a+d

s→∞−−−→ 1
a+a+d

(with prob. (1− p)2)

(12)

Each term does not vanish with probability 1− p(1− p). Therefore, the probability

that a sequence of length n is selected (does not vanish) is given by

(1− p)2[1− p(1− p)]n−1. (13)

The expected number of sequences of length n that are selected is

2n(1− p)2[1− p(1− p)]n−1. (14)

For example, if a = 1, d = 1, α = 1 and p = 1/2 as in Figure 2, we obtain from

Eq.(7) for the average abundance of sequences of length n

x̄n =
18 + 12s + s2

36 + 42s + 11s2

(
36 + 42s + 11s2

12(3 + s)(3 + 2s)

)n

. (15)

Note that x̄n(s) a monotonically decreasing function (of s) for n ≤ 3, a one-

humped function for 3 < n < 12, and a monotonically increasing function for

n ≥ 12. From Eq.(14), the expected number of sequences of length n that survive

for large s is given by (1/3)(3/2)n.

3 Master sequence

In this section, we study the case where all reactions leading to one particular se-

quence (the master sequence) occur at the increased rate b, while all other reactions

occur at rate a.
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Suppose 0n = 00 · · · 0︸ ︷︷ ︸
n

is the master sequence. The reaction rates are given by

a0 = a1 = α/2

ai = b for i = 00, · · · , 0n

ai = a for other i.

(16)

From the general formula, Eq.(4), the abundances of sequences i = 0 · · · 0︸ ︷︷ ︸
�

1 ∗ · · · ∗︸ ︷︷ ︸
m

at equilibrium are given by

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

2a

(
a

2a + d

)m

if � = 0

α

2b

(
b

a + b + d

)�( a

2a + d

)m

if 1 ≤ � ≤ n− 1

α

2a

(
b

a + b + d

)n−1( a

2a + d

)�+m+1−n

if � ≥ n.

(17)

In particular, we are interested in the abundances of all sequences that have the

same length as the master sequence. Let xi denote the abundance of a sequence of

the form 0 · · · 0︸ ︷︷ ︸
i

1 ∗ · · · ∗︸ ︷︷ ︸
n−i

. In this notation, xn represents the abundance of the master

sequence. From eq.(17), we obtain

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

2a

(
a

2a + d

)n

if i = 0

α

2b

(
b

a + b + d

)i( a

2a + d

)n−i

if 1 ≤ i ≤ n− 1

α

2a

(
b

a + b + d

)n−1( a

2a + d

)
if i = n.

(18)

Since b > a, we find

x0 > x1 < x2 < · · · < xn−1 < xn and x0 < xn. (19)

The master sequence is most abundant among all sequences of length n.
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If b →∞, then the abundance of the master sequence converges to

xn,max = lim
b→∞

xn =
α

2(2a + d)
. (20)

Let us now calculate the condition for the abundance of the master sequence, xn, to

exceed a fraction, 1/k, of the maximum value, xn,max. From Eqs.(18) and (20), we

have

α

2a

(
b

a + b + d

)n−1( a

2a + d

)
>

1

k
· α

2(2a + d)
. (21)

This condition is rewritten as

b >
a + d

k
1

n−1 − 1
≈ a + d

ln k
n (n � 1). (22)

Hence, for a master sequence of length n to make up a significant fraction of the

population, the rate constant b must grow as a linear function of n.

4 Master sequence with mutation

As before, we assume that all reactions leading to the master sequence occur at an

increased rate, b, but there is a probability u of incorporating the wrong monomer.

The rate of those reactions that stay within the lineage leading to the master se-

quence is given by b(1− u), while the reactions that come off the lineage occur at

rate a + bu. We have

a0 = a1 = α/2

ai = b(1− u) for i = 00, · · · , 0n

ai = a + bu for i = 01, · · · , 0n−11

ai = a for all other i.

(23)

Consider sequences of the form i = 0 · · · 0︸ ︷︷ ︸
�

1 ∗ · · · ∗︸ ︷︷ ︸
m

. As always the asterisks repre-

sent either 0 or 1. From the general formula, Eq.(4), the equilibrium abundance of
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sequence i is given by

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

2a

⎛
⎝ a

2a + d

⎞
⎠m

if � = 0

α

2b(1− u)

⎛
⎝ b(1− u)

a + b + d

⎞
⎠�

if 1 ≤ � ≤ n− 1, m = 0

α

2b(1− u)
· a + bu

a

⎛
⎝ b(1− u)

a + b + d

⎞
⎠�⎛⎝ a

2a + d

⎞
⎠m

if 1 ≤ � ≤ n− 1, m ≥ 1

α

2a

⎛
⎝ b(1− u)

a + b + d

⎞
⎠n−1⎛⎝ a

2a + d

⎞
⎠�+m+1−n

if � ≥ n.

(24)

Let us now compare the abundances of all sequences of length n. Let xi denote

the abundances of sequences of the form 0 · · · 0︸ ︷︷ ︸
i

1 ∗ · · · ∗︸ ︷︷ ︸
n−i

. In this notation, the abun-

dance of the master sequence is given by xn. From eq.(24), we obtain

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α

2a

⎛
⎝ a

2a + d

⎞
⎠n

if i = 0

α

2a
· a + bu

b(1− u)

⎛
⎝ b(1− u)

a + b + d

⎞
⎠i⎛⎝ a

2a + d

⎞
⎠n−i

if 1 ≤ i ≤ n− 1

α

2a

⎛
⎝ b(1− u)

a + b + d

⎞
⎠n−1⎛⎝ a

2a + d

⎞
⎠ if i = n.

(25)

In order to understand the relative ranking of the equilibrium abundances of all

sequences of length n, we must distinguish three cases.

Case (i) u < a
2a+d

:

(i-a) If b < a(a+d)
(a+d)−u(2a+d)

then x0 < x1 > x2 > · · · > xn−1 > xn.
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(i-b) If a(a+d)
(a+d)−u(2a+d)

< b < a
1−2u

then x0 < x1 < x2 < · · · < xn−1 > xn.

(i-c) If a
1−2u

< b < a2

a−u(2a+d)
then x0 < x1 < x2 < · · · < xn−1 < xn.

(i-d) If b > a2

a−u(2a+d)
then x0 > x1 < x2 < · · · < xn−1 < xn and x0 < xn.

Case (ii) a
2a+d

≤ u < a+d
2a+d

:

(ii-a) If b < a(a+d)
(a+d)−u(2a+d)

then x0 < x1 > x2 > · · · > xn−1 > xn.

(ii-b) If a(a+d)
(a+d)−u(2a+d)

< b < a
1−2u

then x0 < x1 < x2 < · · · < xn−1 > xn.

(ii-c) If b > a
1−2u

then x0 < x1 < x2 < · · · < xn−1 < xn.

Case (iii) u ≥ a+d
2a+d

:

(iii-a) If b < a
1−2u

, then x0 < x1 > x2 > · · · > xn−1 > xn.

(iii-b) If b > a
1−2u

, then x0 < x1 > x2 > · · · > xn−1 < xn and x1 > xn.

In summary, the equilibrium abundance of the master sequence is

xn =
α

2(2a + d)

⎛
⎝ b(1− u)

a + b + d

⎞
⎠n−1

. (26)

The master sequence is most abundant among all sequences of length n if

u <
a + d

2a + d
and b >

a

1− 2u
. (27)

If b →∞, then the abundance of the master sequence converges to

xn,max = lim
b→∞

xn =
α

2(2a + d)
(1− u)n−1. (28)

For xn to exceed a fraction, 1/k, of this maximum value, xn,max, we need

α

2(2a + d)

⎛
⎝ b(1− u)

a + b + d

⎞
⎠n−1

>
1

k
· α

2(2a + d)
(1− u)n−1, (29)
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which is simplified to

b >
a + d

k
1

n−1 − 1
≈ a + d

ln k
n. (n � 1). (30)

If b →∞ and u → 0, then the abundance of the master sequence converges to

x̂n,max = lim
b→∞
u→0

xn =
α

2(2a + d)
. (31)

For xn to exceed a fraction, 1/k, of this maximum value, x̂n,max, we need

α

2(2a + d)

⎛
⎝ b(1− u)

a + b + d

⎞
⎠n−1

>
1

k
· α

2(2a + d)
, (32)

which is rewritten as ⎛
⎝a + b + d

b(1− u)

⎞
⎠n−1

< k. (33)

When b � a + d, u 	 1 and n � 1, the left hand side of Eq.(33) is approximated

by

[(
1 +

a + d

b

)
(1 + u)

]n

≈
(

1 +
a + d

b
+ u

)n

≈ exp

[
n

(
a + d

b
+ u

)]
. (34)

Therefore condition (33) is simplified to

a + d

b
+ u <

ln k

n
. (35)

For u = 0 we obtain the previous condition on b. For b → ∞ we obtain the error-

threshold

u <
ln k

n
. (36)

The mutation rate of prelife must be less than the inverse of the sequence length,

for the master sequence to reach a significant abundance in the population.
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5 Replication

Let us assume that some sequences have the ability to replicate. Incorporating repli-

cation into prelife dynamics leads to the following differential equation:

ẋi = aixi′ − (d + ai0 + ai1)xi + rxi(fi − φ). (37)

The first part of this equation describes prelife as before. The second part represents

the standard selection equation. The coefficient, r, measures the relative contribu-

tion of selection dynamics in Eq.(37). The fitness of sequence i is given by fi. The

quantity, φ, is an additional death rate, which cancels out the additional production

of sequences by replication. From

∑
i

rxi(fi − φ) = 0, (38)

we have

φ =

∑
i fixi∑
i xi

. (39)

In other words, φ represents the average fitness of the population.

For r = 0, replication is absent and we recover prelife dynamics, Eq.(1). For r →
∞, replication dominates and we obtain the standard selection dynamics.

We define the net reproductive rate of sequence i as

gi ≡ r(fi − φ)− (d + ai0 + ai1). (40)

As in the main text, the sign of the net reproductive rate predicts a phase transition

between prelife and life.

6 Replication with mutation

Imagine that sequence i of length n is the unique replicator, but its replication is

susceptible to errors. In each elongation step a wrong monomer is attached with
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probability u.

Let fi be the fitness of the replicator in the absence of errors. As replication is

error-free with probability (1− u)n, the realized fitness of the replicator becomes

(1− u)nfi. (41)

For the replicator to be selected, the net reproductive rate must be positive:

gi = r{(1− u)nfi − φ} − (d + ai0 + ai1) > 0. (42)

By using

(1− u)n ≈ exp(−un) (u 	 1 and n � 1), (43)

and by neglecting φ (which is very small at the error threshold), condition (42) can

be rewritten as

u <
1

n
log

[
rfi

d + ai0 + ai1

]
. (44)

Therefore, the replicator is selected if the mutation rate is less than the inverse of

the sequence length.
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