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1 Prelife

Prelife dynamics are given by
Zl.fz‘ = Q;T; — (d + a;0 + ail)xi. (1)

The index ¢ represents all binary strings (sequences). Longer strings are produced
from shorter ones by adding O or 1 on the right side. Each string, ¢, has one precur-
sor, ¢/, and two followers, i0 and i1. For example, the precursor of string 0101 is
010; the two followers are 01010 and 01011. For the precursors of strings 0 and 1
we set oy = x1» = 1. The constants a; denote the rate at which string ¢ arises from
i’ by addition of an activated monomer (which is either 0* or 1*). Eq.(1) assumes
that the concentration of activated monomers is constant. All strings are removed

(die) at rate d.

Prelife dynamics define a tree with the activated monomers at the root. The tree of
prelife has infinitely many lineages. A lineage is a sequence of strings that follow

each other. For example, one such lineage is 0, 00, 000, ...

At equilibrium, the right hand side of Eq.(1) is zero, so we obtain

T = bz, (2)
where b; is given by
a;
= ———————. 3
d+ ;o + a1 ( )



Using Eq.(2) recursively gives us

z; = bbby -+ - by, “4)

where ¢ is the ancestral monomer (0 or 1) of sequence .

Let us consider super-symmetric prelife with ay = a; = «/2 and a; = a for all

other sequences, ¢. From Eq.(4), we obtain the following results.

The abundance of a sequence of length 7 is

o a n
T = 2a<2a n d) ' (52)

The total abundance of all sequences of length n is

«Q 2a n
X, =2"x, = — ) 5b
v 2a<2a+d> (5b)

The total abundance of all sequences is

X=>x,=2 (5¢)
n=1 d
The total abundance of all sequences in one lineage is
~ > o
X = n=—>— 5d
nz::l v 2(a+d) (5d)
The average sequence length is
Yy nX, 2a
e A =y 5
n X +t (5e)

Although there are infinitely many lineages, the abundance of any one lineage is
a considerable fraction of the entire population. The reason is that short sequences

belong to many lineages and they are much more abundant than long sequences.



2 Prelife landscape

Let us consider a random prelife landscape where reaction rates of sequences of

length more than two are randomly given by

a+s (with prob. p)
a; = (6)

a (with prob. 1 — p).
The other parameters are the same as before: ag = a1 = a/2.

From Eq.(4), at equilibrium we obtain the following results. The average abundance

of a sequence of length n is

z, = %AB", 7
where
B (2a + d)? + (2a + d)(3 — 2p)s + 2(1 — p)?s? ®
~a(2a+d)2+ (2a + d)(3a + pd)s + {2a + p(2 — p)d} s
and
B— a(2a + d)* + (2a + d)(3a + pd)s + {2a + p(2 — p)d}s* ©)

(2a+d)(2a + d + 5)(2a + d + 2s)

A sequence is selected if its equilibrium abundance is not vanishing as s — oo. For

sequence ¢ of length n, rewriting Eq.(4) yields

1 a; Qi Qgp «@
T = : : e =, (10)
d—+ ;0 + Qi1 d+ Qo + @41 d+ Qg + Q1 d—+ Ayo + o1 2
n—1 terms

where op represents the first two digits of sequence ¢. The first term in the right

hand side of Eq.(10) is

1 S— 00 b

(a+s)+(at+s)+d 0 (WIth prob. p2)

(a+s)1+a+d = 0 (With prob. 2]9(1 o p)) (11)
a+(11+d — a+c11+d (with prob. (1 — p)?).

The first term does not vanish with probability (1 — p)?.



For each of the next n — 1 terms on the right hand side of Eq.(10) we have

(a+s)f(ras+s)+d — % (with prob. p*)
e e | (with prob. p(1 — p))
(a+s)+a+d (12)
arerard %0 (with prob. p(1 — p))
o e a+i+d (with prob. (1 — p)?).

Each term does not vanish with probability 1 — p(1 — p). Therefore, the probability

that a sequence of length n is selected (does not vanish) is given by

(1—p)*[L=p1=p)]"" (13)

The expected number of sequences of length n that are selected is

2"(1—p)’[l —p(1—p)]" " (14)

For example, if a = 1,d = 1, = 1 and p = 1/2 as in Figure 2, we obtain from

Eq.(7) for the average abundance of sequences of length n

15)

_ 18 +12s + s> [ 36 +42s + 1152 \"
Ty =
36 + 42s + 1152 \ 12(3 + 5)(3 + 2s)
Note that z,(s) a monotonically decreasing function (of s) for n < 3, a one-
humped function for 3 < n < 12, and a monotonically increasing function for

n > 12. From Eq.(14), the expected number of sequences of length n that survive

for large s is given by (1/3)(3/2)".

3 Master sequence

In this section, we study the case where all reactions leading to one particular se-
quence (the master sequence) occur at the increased rate b, while all other reactions

occur at rate a.



Suppose 0" = 00 - - - 0 is the master sequence. The reaction rates are given by
——

n

ap = ay; = a/2
a; =>b for i =00,---,0" (16)

a; = a for other 3.

From the general formula, Eq.(4), the abundances of sequences ¢ = 0---01 *---x
—— ——

YA m
at equilibrium are given by
« a m
— if =
2a<2a+d> ' 0
a b Ly oa \™
e 2b<a+b+d) <2a+d) istsn—1 00
o b n—1 a l4+m~+1—n
- - if ¢>n.
2a<a+b+d) <2a+d> oer

In particular, we are interested in the abundances of all sequences that have the
same length as the master sequence. Let z; denote the abundance of a sequence of

the form 0 - - -0 1 * - - - x. In this notation, z,, represents the abundance of the master
N—— ——

sequence. From eq.El7), we obtain
e} a "
o T
2a<2a—|—d> =0
n={2( b )( a ) if1<i<n—1 (8
2b\a+b+d/) \2a+d - =
(o) )
— — if 1 =n.
2a\a+b+d 20 +d
Since b > a, we find
To> T < Tog< -+ < Tpo1 < Tp and To < Tp. (19)

The master sequence is most abundant among all sequences of length 7.



If b — oo, then the abundance of the master sequence converges to

«

2(2a +d)’ 20)

Tpmaz = 1M 2, =
b—oo

Let us now calculate the condition for the abundance of the master sequence, x,,, to
exceed a fraction, 1/k, of the maximum value, T, maz- From Eqs.(18) and (20), we

have

) ) b @
2a\a+b+d 2a +d k 2(2a+d)

This condition is rewritten as

d d
ps A LT s, (22)
ka1 — 1 Ink

Hence, for a master sequence of length n to make up a significant fraction of the

population, the rate constant b must grow as a linear function of n.

4 Master sequence with mutation

As before, we assume that all reactions leading to the master sequence occur at an
increased rate, b, but there is a probability u of incorporating the wrong monomer.
The rate of those reactions that stay within the lineage leading to the master se-
quence is given by b(1 — u), while the reactions that come off the lineage occur at

rate a + bu. We have

ap =a; = a/2
a; =b(1 —u) for + =00,---,0"
(23)
a; =a+bu for i =01,---,0"'1

a; = a for all other 1.

Consider sequences of the form 7 = (0---01 x - - - x. As always the asterisks repre-
—— ——

Y4 m
sent either O or 1. From the general formula, Eq.(4), the equilibrium abundance of



sequence ¢ is given by

(0 a
@ if (=
2a(2a+d> ! ¥
b1 —u) '
(0% — U
f1<f<n—1,m=
2b(1—u)(a+b+d) tlsbsn=-1m=0

L m
o a+bu b(1—u) a _
. f1</¢<n-1 >1
2b(1 — u) a (a+b+d) (2a+d> BostsnTm L me

b(l ) n—1 l+m+1—n

(0% —Uu a

= S if ¢>n.
2a(a+b—|—d> (Qa—l—d) if fzn

Let us now compare the abundances of all sequences of length n. Let x; denote

(24)

the abundances of sequences of the form 0 --- 01 * - - - x. In this notation, the abun-
N—— ——

% n—i
dance of the master sequence is given by x,,. From eq.(24), we obtain

a a e
2a(2a+d> it i =0
a a+bu [ b(1—u) i a " , ,
e fl1<i<n—1 (@25
AR b Ml—@(a+b+d>(&HﬂJ it lsrsn—1 (25
b(l ) n—1
o —u a
22—t if i = n.
2a(a+b+d> (Qa—i-d) seen

In order to understand the relative ranking of the equilibrium abundances of all

sequences of length n, we must distinguish three cases.

. a .
Case (i) u < ard:

(i—a)Ifb<%thenxo<xl>x2>--->$n_1>xn.



. a(a+d)
(l-b) If m < b

< Tp_1 > Ty

a2
wthenxo<x1<x2<---<:1:n,1<xn.

a+d ,
2a +d 2a+d*

Case (ii

(ii-a)Ifb<%thenxo<xl>x2>~-'>xn_1>xn.

a(a+d)
(11 b) If m < b

< Tp—1 > Ty

< Ty < Ty

ees at+d .
Case (iii) u > o~ nwk

> Tp—1 > Tp.

(iii-b) If b > thenxg < x1 > a9 > -+ > 2,1 < x, and 1 > x,,.

12’

In summary, the equilibrium abundance of the master sequence is

n—1
« b(1 —u)

T, = :
22a+d)\a+b+d

The master sequence is most abundant among all sequences of length n if

< atd and b > a
n )
2a +d 1—2u

If b — oo, then the abundance of the master sequence converges to

a
nmaa:zl N 1— nl
Tomes = 0 00 = 5wyt

For z,, to exceed a fraction, 1/, of this maximum value, z,, 4., We need

o b(l—u)\ 1 o et
2(2a+d)<a+b+d) >E'2(2a+d)(1_u> ’

thenzg > 21 < T9 < -+ < Tp_1 < T, and xg < T,,.

(26)

27)

(28)

(29)



which is simplified to

d d
ps FE LT s ), (30)
ka1 — 1 Ink

If b — oo and ©v — 0, then the abundance of the master sequence converges to

Q
Tnmar = M T = ————. 3D
Z:O(? 2(2a + d)
For z,, to exceed a fraction, 1/, of this maximum value, Z,, 4., We need
b(1 — 1
o (l-w) L a (32)
22a+d)\a+b+d k 2(2a+d)
which is rewritten as
n—1
a+b+d
N E— < k. 33
( b(1 —u) ) (33)

When b > a + d, u < 1 and n > 1, the left hand side of Eq.(33) is approximated
by

[<1+a:d>(1+u)] %<1+azd+u> %exp[n<azd+U>]- (34

Therefore condition (33) is simplified to

a+d Ink
b +u << —.

(35)

For © = 0 we obtain the previous condition on b. For b — oo we obtain the error-
threshold

Ink
u< 28 (36)
n

The mutation rate of prelife must be less than the inverse of the sequence length,

for the master sequence to reach a significant abundance in the population.



5 Replication

Let us assume that some sequences have the ability to replicate. Incorporating repli-

cation into prelife dynamics leads to the following differential equation:
Ty = a;vy — (d + apo + an)z; +ro(fi — ¢). (37)

The first part of this equation describes prelife as before. The second part represents
the standard selection equation. The coefficient, r, measures the relative contribu-
tion of selection dynamics in Eq.(37). The fitness of sequence i is given by f;. The
quantity, ¢, is an additional death rate, which cancels out the additional production

of sequences by replication. From

Z ra;(fi — ¢) =0, (38)
we have
. > fiti
¢ = 20T ' %)

In other words, ¢ represents the average fitness of the population.

For r = 0, replication is absent and we recover prelife dynamics, Eq.(1). For r —

00, replication dominates and we obtain the standard selection dynamics.

We define the net reproductive rate of sequence ¢ as

g =r(fi—¢) — (d+ aip+ an). (40)

As in the main text, the sign of the net reproductive rate predicts a phase transition

between prelife and life.

6 Replication with mutation

Imagine that sequence ¢ of length n is the unique replicator, but its replication is

susceptible to errors. In each elongation step a wrong monomer is attached with

10



probability .

Let f; be the fitness of the replicator in the absence of errors. As replication is

error-free with probability (1 — u)", the realized fitness of the replicator becomes
(1 —w)"fi. (41)
For the replicator to be selected, the net reproductive rate must be positive:
gi=r{(l—w)"fi — ¢} — (d+ aip + an) > 0. 42)
By using

(1—u)" =exp(—un) (u< landn>>1), (43)

and by neglecting ¢ (which is very small at the error threshold), condition (42) can

be rewritten as

1 Tfi
—log | ——| . 44
u<n0gld+aio—|—ai1] ( )

Therefore, the replicator is selected if the mutation rate is less than the inverse of

the sequence length.
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