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Detailed derivations for the mathematical expressions in the text are given.

I. ELONGATION INITIATION INTERVAL AND CORRELATION

Let C(t) be the time-dependent activity after the clearance of both the promoter and the operator. Then it
can also be regarded as a correlation function of the transcription initiation, and it is related to the initiation
interval distribution p(τ) as

C(t) = p(t) +
∫ ∞

0

dτ1

∫ ∞

0

dτ2 δ(t − τ1 − τ2) p(τ1)p(τ2)

+
∫ ∞

0

dτ1

∫ ∞

0

dτ2

∫ ∞

0

dτ3 δ(t − τ1 − τ2 − τ3) p(τ1)p(τ2)p(τ3)

+ · · · . (1)

Since each term in the right hand side is a convolution of p(τ), the Laplace transformation

C̃(s) ≡
∫ ∞

0

C(t)e−stdt (2)

can be obtained easily as a sum of geometrical series;

C̃(s) =
∞∑

n=1

p̃(s)n =
p̃(s)

1 − p̃(s)
(3)

with p̃(s) being the Laplace transform of p(τ).

II. BARE PROMOTERS

In this section, the explicit expressions for p(τ) and C(t) for a bare promoter of each model are derived within
the approximation that the self-occlusion effect is ignored.

A. Single step model

For the single step model, the elongation initiation is a simple Poissonian process with the rate Ω0, thus we
have

p(τ) = Ω0e
−Ω0τ , p̃(s) =

Ω0

s + Ω0
, (4)

and

C̃(s) =
Ω0

s
, C(t) = Ω0. (5)
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B. Two step model

In the two step model, each elongation interval consists of an off-state period and an on-state period, whose
length distributions, poff(τoff) and pon(τon), are Poissonian given by

poff(τoff) = kone−konτoff , and pon(τon) = kee
−keτon , (6)

respectively. Since the elongation interval is the sum of the off-period length and the on-period length, the
elongation interval distribution p(τ) for the two step model is given by

p(τ) =
∫ ∞

0

dτoff

∫ ∞

0

dτon δ(τ − τoff − τon)poff(τoff)pon(τon). (7)

Again, the right hand side is a convolution of poff(τoff) and pon(τon), thus in the Laplace transform, we have

p̃(s) = p̃off(s) p̃on(s) =
konke

(s + kon)(s + ke)
, (8)

which gives

p(τ) =

 konke
e−keτ − e−konτ

kon − ke
for kon 6= ke

k2
e τ e−keτ for kon = ke

. (9)

Then, the correlation function is given by

C̃(s) =
konke

s(s + kon + ke)
, C(t) = Ω0

(
1 − e−(kon+ke)t

)
(10)

with Ω0 being the bare activity for the two step model:

Ω0 =
konke

kon + ke
=

1
τon + τe

; τon ≡ 1
kon

, τe ≡ 1
ke

. (11)

Note that the last expression simply represents that the average interval between elongation 1/Ω0 is the sum
of the average waiting time to become the on-state τon and the time for the elongation τe.

C. Three step model

In the three step model, the initial transition between the off-state and the closed complex state is reversible,
which means that the closed state goes either back to the off-state or forward to the open complex state with
the branching ratios ku and ko, or with the probabilities

p ≡ ku

ku + ko
, and q ≡ ko

ku + ko
= 1 − p, (12)

respectively. Therefore, the promoter may get into the closed state many times before an RNAP starts elon-
gation. Let n be the number of times that the promoter gets in the closed state before elongation, then the
sequence of states and their probabilities are

n state sequence probability
1 (off - closed) • open - elong q

2 (off - closed) ◦ (off - closed) • open - elong p q

· · ·
n (off - closed ◦)n−1(off - closed) • open - elong pn−1q

· · ·

, (13)

where ◦ and • represent the branching probabilities p and q, respectively.
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Let pn(τ) be the elongation interval distribution for the interval during which the promoter goes through the
closed state n times, then it is given by a convolution of the life time distribution of the off-state poff(τ), the
closed state pcl(τ), and the open state pop(τ); For example, p1(τ) is given by

p1(τ) =
∫ ∞

0

dτoff

∫ ∞

0

dτcl

∫ ∞

0

dτop δ(τ − τoff − τcl − τop)poff(τoff)pcl(τcl)pop(τop). (14)

In the same way, the Laplace transform of pn(τ) for general n is given by

p̃n(s) =
(
p̃off(s)p̃cl(s)

)n

p̃op(s) (15)

with

p̃off(s) =
kb

s + kb
, p̃op(s) =

ku + ko

s + ku + ko
, p̃cl(s) =

ke

s + ke
. (16)

The elongation interval distribution p(τ) is the average over pn(τ) with the probability given by (13), and
can be calculated as follows;

p̃(s) =
∞∑

n=1

p̃n(s) pn−1q =
p̃off(s)p̃cl(s)

1 − p̃off(s)p̃cl(s)p
p̃op(s) q =

kbkoke

(s + k+)(s + k−)(s + ke)
(17)

with

k± ≡ 1
2

[
(kb + ku + ko) ±

√
(kb + ku + ko)2 − 4kbko

]
, (18)

from which we obtain

p(τ) =
kbkoke

(ke − k+)(ke − k−)
e−keτ +

kbkoke√
(kb + ko + ke)2 − 4kbko

[
e−k−τ

ke − k−
− e−k+τ

ke − k+

]
. (19)

From eqs.(3) and (17), we have

C̃(s) =
kbkoke

s(s + kC
+)(s + kC

−)
; kC

± ≡ 1
2

[
(kb + ku + ko + ke) ±

√
(kb + ku + ko − ke)2 − 4kbko

]
, (20)

which leads to

C(t) = Ω0

[
1 −

kC
+e−kC

−t − kC
−e−kC

+t

kC
+ − kC

−

]
(21)

where Ω0 is the bare activity for the three step model:

Ω0 =
kbkoke

kC
+kC

−
=

1
τb + τ∗

o + τe
; τb ≡

1
kb

, τ∗
o ≡ 1

k∗
on

=
1
ko

+
ku

ko
· 1
kb

, τe ≡ 1
ke

. (22)

The average interval between elongations, 1/Ω0, are the sum of the three times: (1) τb, the time for RNAP to
bind and form the closed complex for the first time, (2) τ∗

o , the time for RNAP to form the open complex after
the first binding, and (3) τe, the time to start elongation. Note that the validity of this expression is not limited
to the case within the two step approximation, where k∗

on can be interpreted as the effective on-rate.
The time τ∗

o consists of two parts: (i) 1/ko, the time to go forward to the open state, and (ii) the re-binding
time 1/kb after unbinding multiplied by the average number of unbindings ku/ko. Mathematical derivation of
this expression is given in the appendix. We will encounter similar expressions in the following.

III. REGULATED PROMOTERS

Now, we derive the expressions for p(τ) and C(t) for each model of a bare promoter in the case where the
promoter is repressed by a transcription factor (TF). In the case where the suppression is strong by a slow
binding TF, the transcription activity occurs in bursts. The averaged activity is given by the long time limit
t → ∞ of C(t).
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A. Single step model

The state sequence between elongations can be classified according to the number of TF bindings, and the
probability and the interval distribution for each case are obtained as

n state sequence probability interval distribution
0 off • elong q p̃off(s)
1 (off ◦ TF) - off • elong p q p̃off(s)p̃TF(s)p̃off(s)
2 (off ◦ TF)2 - off • elong p2q

(
p̃off(s)p̃TF(s)

)2
p̃off(s)

· · ·
n (off ◦ TF)n - off • elong pnq

(
p̃off(s)p̃TF(s)

)n
p̃off(s)

· · ·

, (23)

where TF represents the state with TF at the operator site and

p̃off(s) ≡ kTF
b + Ω0

s + kTF
b + Ω0

, p̃TF(s) ≡ kTF
u

s + kTF
u

, p ≡ kTF
b

kTF
b + Ω0

, q ≡ Ω0

kTF
b + Ω0

. (24)

Thus, we have

p̃(s) =
∞∑

n=0

pnq
(
p̃off(s)p̃TF(s)

)n
p̃off(s) =

p̃off(s)q
1 − p̃off(s)p̃TF(s)p

=
(s + kTF

u )Ω0

(s + k+)(s + k−)
; (25)

k± ≡ 1
2

[
kTF

b + kTF
u + Ω0 ±

√
(kTF

b + kTF
u + Ω0)2 − 4kTF

u Ω0

]
(26)

and

C(t) =
Ω0

kTF
b + kTF

u

(
kTF

u + kTF
b e−(kTF

b +kTF
u )t

)
. (27)

Thus, the steady state activity ΩTF for the single step model is given by

ΩTF = lim
t→∞

C(t) =
kTF

u

kTF
b + kTF

u

Ω0 =
nbst

τbst + τTF
(28)

with

τbst ≡
1

kTF
b

, nbst ≡ Ω0τbst, τTF ≡ 1
kTF

u

. (29)

The last expression for ΩTF allows a simple interpretation in terms of bursting activity; τbst and τTF are the
bursting time and the quiescent time, respectively, and nbst is the number of transcriptions during the bursting
time.

B. Two step model

For the two step model, the state sequences, their probabilities, and the interval distributions are

n state sequence probability interval distribution
0 off • on - elong q p̃off(s)p̃on(s)
1 (off ◦ TF) - off • on - elong p q p̃off(s)p̃TF(s)p̃off(s)p̃on(s)
2 (off ◦ TF)2 - off • on - elong p2q

(
p̃off(s)p̃TF(s)

)2
p̃off(s)p̃on(s)

· · ·
n (off ◦ TF)n - off • on - elong pnq

(
p̃off(s)p̃TF(s)

)n
p̃off(s)p̃on(s)

· · ·

, (30)
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with

p̃off(s) =
kTF

b + kon

s + kTF
b + kon

, p̃TF(s) =
kTF

u

s + kTF
u

, p̃on(s) =
ke

s + ke
, p ≡ kTF

b

kTF
b + kon

, q ≡ kon

kTF
b + kon

. (31)

From these, we obtain

p(τ) = kekon

[
kTF

u − ke

(k+ − ke)(k− − ke)
e−keτ +

1
k+ − k−

(
kTF

u − k−

ke − k−
e−k−τ − kTF

u − k+

ke − k+
e−k+τ

)]
(32)

k± ≡ 1
2

[
kTF

b + kTF
u + kon ±

√
(kTF

b + kTF
u + kon)2 − 4kTF

u kon

]
(33)

C(t) =
kekonkTF

u

kC
+kC

−
+

kekon

kC
+ − kC

−

[
kC
− − kTF

u

kC
−

e−kC
−t −

kC
+ − kTF

u

kC
+

e−kC
+t

]
(34)

kC
± ≡ 1

2

[
(kTF

b + kon + kTF
u + ke) ±

√
(kTF

b + kon + kTF
u + ke)2 − 4(konkTF

u + kTF
u ke + kTF

b ke)
]
(35)

The steady state activity ΩTF is now

ΩTF = lim
t→∞

C(t) =
kekonkTF

u

kC
+kC

−
=

kekon

kon + ke + (kTF
b /kTF

u )ke
=

nbst

τbst + τTF
, (36)

with

nbst ≡
kon

kTF
b

, τbst ≡
1

kTF
b

+ nbst
1
ke

. (37)

The number of transcriptions during a bursting period is given by the winning ratio of RNAP to TF.
It is interesting to see that eq.(36) can be also put in the form,

ΩTF =
1

τon + τe
; τon(TF) ≡ τon +

kTF
b

kon
τTF, τon =

1
kon

, τe =
1
ke

, (38)

which is similar to the expression for the bare promoter (11). The expression for τon(TF) allows a similar
interpretation with that for eqs.(22); the time to reach the on-state from the off-state, τon(TF) is the sum of
the two times: (1) τon, the time to reach the on-state without TF binding, and (2) the TF unbinding time, τTF,
multiplied by the number of TF bindings, kTF

b /kon, before an RNAP binds.
In the case kTF

b À ke À kTF
u ≈ 0, the correlation function C(t) shows a plateau. As the lowest order estimate,

we put simply kTF
u = 0, then we obtain

C(t) ≈ kekon

kTF
b + kon

(
e−kC

−t − e−kC
+t

)
; kC

+ ≈ kTF
b + kon, kC

− ≈ kTF
b ke

kTF
b + kon

. (39)

therefore, C(t) behaves as

C(t) ≈


konket for t ∼< (kTF

b + kon)−1

kekon

kTF
b + kon

for (kTF
b + kon)−1

∼< t ∼< tpl

kekon

kTF
b + kon

exp
[
− kTF

b ke

kTF
b + kon

t

]
for t ∼> tpl

with the plateau time

tpl ≡
1
ke

(1 + nbst) (40)

and the plateau value

Cmax ≈ kon

kTF
b + kon

· ke =
nbst

tpl
. (41)
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C. Three step model

For the three step model, additional complication is that there are two reversible transitions, i.e. the transition
between the off-state and the closed state, and the transition between the off-state and TF binding state, thus
there exist two sequences of transitions within each elongation interval. This can be nicely represented by a
binominal expansion;

state sequence interval distribution with probability
off ¯ cl • op - elong, p̃off(s)q1p̃cl(s)q2p̃op(s)(

(off⊗TF-)+(off¯cl ◦)
)

off ¯ cl • op - elong,
(
p̃off(s)p1p̃TF(s) + p̃off(s)q1p̃cl(s)p2

)
p̃off(s)q1p̃cl(s)q2p̃op(s)(

(off⊗TF-)+(off¯cl ◦)
)2 off ¯ cl • op - elong,

(
p̃off(s)p1p̃TF(s) + p̃off(s)q1p̃cl(s)p2

)2
p̃off(s)q1p̃cl(s)q2p̃op(s)

· · ·(
(off⊗TF-)+(off¯cl ◦)

)n off ¯ cl • op - elong,
(
p̃off(s)p1p̃TF(s) + p̃off(s)q1p̃cl(s)p2

)n
p̃off(s)q1p̃cl(s)q2p̃op(s)

· · ·

with the period length distributions

p̃off(s) =
kTF

b + kb

s + kTF
b + kb

, p̃TF(s) =
kTF

u

s + kTF
u

, p̃cl(s) =
ku + ko

s + ku + ko
, p̃op(s) =

ke

s + ke
,

and the branching probabilities

p1 =
kTF

b

kTF
b + kb

, q1 = 1 − p1, p2 =
ku

ku + ko
, q2 = 1 − p2,

which are represented by the marks: ⊗ for p1, ¯ for q1, ◦ for p2, and • for q2. This gives

p̃(s) =
p̃off(s)q1p̃cl(s)q2p̃op(s)

1 −
(
p̃off(s)p1p̃TF(s) + p̃off(s)q1p̃cl(s)p2

) , (42)

and the expression for p(τ) is

p(τ) = kbkoke

[
kTF

u − ke

(k1 − ke)(k2 − ke)(k3 − ke)
e−keτ +

3∑
i=1

kTF
u − ki

(ki+1 − ki)(ki−1 − ki)(ke − ki)
e−kiτ

]
(43)

with −ki (i = 1, 2, 3) being the solution of the cubic equation

s3 + As2 + Bs + C = 0 (44)

with the coefficients

A ≡ kTF
b + kb + kTF

u + ku + ko

B ≡ kTF
u (ku + kb + ko) + kTF

b (ku + ko) + kbko

C ≡ kbkok
TF
u .

Note that we define ki as a decay rate with a positive real part.
From eqs.(3) and (42), the correlation function C(t) is given by

C(t) =
kbkokek

TF
u

kC
1 kC

2 kC
3

− kbkoke

3∑
i=1

(kTF
u − kC

i )e−kC
i t

kC
i (kC

i+1 − kC
i )(kC

i−1 − kC
i )

, (45)

with −kC
i (i = 1, 2, 3) being the solution of the cubic equation

s3 + Ds2 + Es + F = 0 (46)

with the coefficients

D ≡ kTF
b + kb + kTF

u + ku + ko + ke

E ≡ (kTF
b + kTF

u )(ku + ko + ke) + kb(kTF
u + ko + ke) + (ku + ko)ke

F ≡ kTF
u kb(ko + ke) + (kTF

b + kTF
u )(ku + ko)ke.
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The steady state activity ΩTF is

ΩTF = lim
t→∞

C(t) =
kbkokek

TF
u

kTF
u kb(ko + ke) + (kTF

b + kTF
u )(ku + ko)ke

(47)

=
nbst

τbst + τTF
=


Ω0 for kTF

b

kTF
u

→ 0

nbst

τTF
for kTF

b

kTF
u

→ ∞
, (48)

with

nbst ≡
kb

kTF
b

ko

ko + ku
, τbst ≡

1
kTF

b

+ nbst

(
1
ko

+
1
ke

)
, τTF =

1
kTF

u

, (49)

and Ω0 being the bare activity of the three step model (22). The number of transcriptions nbst in a burst is now
given by the winning ratio of RNAP kb/kTF

b multiplied by the branching ratio in the closed state ko/(ko + ku).
The expression for ΩTF can also be put in the form analogous to eq.(22),

1
ΩTF

=
[

1
kb

+
kTF

b

kb
· 1
kTF

u

]
+

[
1
ko

+
ku

ko
·
(

1
kb

+
kTF

b

kb
· 1
kTF

u

)]
+

1
ke

= τb(TF) + τ∗
o (TF) + τe (50)

with

τb(TF) ≡ τb +
kTF

b

kb
· τTF, τ∗

o (TF) ≡ τo +
ku

ko
· τb(TF), τb =

1
kb

, τo =
1
ko

. (51)

This allows a similar interpretation with that for eq. (38); The average interval of elongation 1/ΩTF is the sum
of three times: (1) τb(TF ), the time for RNAP to bind the promoter, (2) τ∗

o (TF ), the time to form a open
complex for the first time after RNAP binding, and (3) τe, the time to elongate after forming the open complex.
The time τb(TF ) is the sum of (i) τb, the RNAP binding time, and (ii) the unbinding time, τTF, multiplied by
the number of TF bindings, kTF

b /kb, before an RNAP binds. Similarly, the time τ∗
o (TF ) is the sum of (i) τo, the

time to form an open complex, and (ii) the binding time τb(TF ) multiplied by the average number of RNAP
unbindings, ku/ko, before it forms an open complex.

IV. PROMOTER INTERFERENCE

If there is another promoter, pA, competing with the promoter pS in the parallel or converging position,
then their activities interfere with each other. Here, we consider only the interference effect on pS by pA. The
activity of pA is given by the elongation interval distribution pA(τ).

We consider two effects for the transcription interference: occlusion and sitting duck interference. The
occlusion is the effect that an RNAP cannot bind to the promoter site of pS while the RNAP from pA is passing
over the promoter site. The time that RNAP needs to pass through the promoter site is the occlusion time τocc.
The sitting duck interference is that the RNAP sitting on the promoter site pS is removed by the RNAP from
pA comes to pS.

Under the interference of pA, the pS activity is limited within the elongation intervals from pA. Therefore,
the average activity of pS under these effects ΩTI is the average over the activity within the interval τ and the
average by the probability that a time is in the interval of the length τ ; This is given by

ΩTI =

∫ ∞

τocc

pA(τ) τ

(
1
τ

∫ τ−τocc

0

C(t) dt

)
dτ∫ ∞

0

pA(τ) τ dτ

, (52)

using the transcription initiation correlation function C(t) without interference effects.
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A. Interference with unregulated promoters

First, we consider the cases where the promoter pS is not regulated by TF. In this case, the correlation
function C(t) is rather simple and the interference effect can be represented by a simple factor χ, that is the
averaged fraction of time that is not occluded:

χ ≡

∫ ∞

τocc

pA(τ) τ

(
τ − τocc

τ

)
dτ∫ ∞

0

pA(τ) τ dτ

. (53)

If we assume the simple Poissonian for pA with the activity ΩA,

pA(τ) = ΩAe−ΩAτ , (54)

then χ is given by

χP = e−ΩAτocc . (55)

(i) In the case that pS can be described by the single step model, C(t) is given by the constant ke = Ω0 as
has been calculated (5), thus eq.(52) gives

ΩTI =

∫ ∞

τocc

pA(τ) τ

(
1
τ

∫ τ−τocc

0

Ω0 dt

)
dτ∫ ∞

0

pA(τ) τ dτ

= χΩ0, (56)

which means that the interference effects reduce the activity by the factor χ.
(ii) In the case of the two step model with the Poissonian pA, eq.(52) can be estimated as

ΩTI = χP Ω0
kon + ke

kon + ke + ΩA
(57)

using eq.(10). Here, Ω0 is the bare activity (11) for the two step model[1].

B. Interference with regulated promoters

Only difference from the cases above is that we use the correlation C(t) under the effect of TF. We give
explicit expressions only for the Poissonian pA (54).

For the single step promoter pS, using eqs.(28) and (52), we obtain

ΩTI = χP Ω0

[
kTF

u

kTF
u + kTF

b

+
kTF

b

kTF
u + kTF

b

· ΩA

ΩA + kTF
u + kTF

b

]
= χP

nbst

τbst +
τTFΩ−1

A

τTF + Ω−1
A

(58)

with χP given by eq.(55) and nbst and τbst by eq.(29). The last expression simply shows that the quiescent
period is interrupted to be Ω−1

A when Ω−1
A < τTF.

For the two step promoter, we give the expression only for τocc = 0, namely, without the occlusion effect:

ΩTI =
kekonkTF

u

kC
+kC

−
+

kekon

kC
+ − kC

−

[
kC
− − kTF

u

kC
−

ΩA

ΩA + kC
−

−
kC
+ − kTF

u

kC
+

ΩA

ΩA + kC
+

]
= ΩTF

[
1 −

ΩA(ΩA + kC
+ + kC

− − kC
+kC

−/kTF
u )

(ΩA + kC
−)(ΩA + kC

+)

]
with kC

± given by eq.(35) and ΩTF being the steady activity under TF by eq.(36).
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In the same approximation as eq.(39), kTF
b À ke À kTF

u ≈ 0, using the approximate form of kC
±, we obtain

ΩTI ≈ kon
ke

ΩA + kTF
b ke/(kTF

b + kon)
· 1
1 + (kTF

b + kon)/ΩA
=

nbst

tpl + Ω−1
A

· kTF
b + kon

kTF
b + kon + ΩA

≈


nbstΩA for ΩA ¿ 1/tpl = kTF

b

kTF
b

+kon
ke

nbst

tpl
for 1/tpl ¿ ΩA ¿ (kTF

b + kon)

nbst

tpl

kTF
b + kon

ΩA
=

konke

ΩA
for (kTF

b + kon) ¿ ΩA

with nbst (37) and tpl (40). The maximum value of ΩTI is achieved at ΩA ≈
√

kTF
b ke. The behavior of C(t) in

(39) and ΩTI as a function of ΩA correspond to each other by the correspondence t ∼ 1/ΩA.
For the three step model, we give only a formal solution for Poissonian pA:

ΩTI =
kbkokek

TF
u

kC
1 kC

2 kC
3

− kbkoke

3∑
i=1

(kTF
u − kC

i )
kC

i (kC
i+1 − kC

i )(kC
i−1 − kC

i )
ΩA

ΩA + kC
i

, (59)

with the same kC
i (i = 1, 2, 3) with those in eq.(45).

APPENDIX: MATHEMATICAL EXPLANATION FOR τ∗
o IN (22)

In this appendix, we will give a mathematical explanation for the expression of τ∗
o in eq.(22).

This is the time for RNAP and promoter to form the open complex after the first binding of RNAP. Since
the initial binding/unbinding process is reversible, after the first binding, the system may either go forward to
form the open complex, or may go backward to unbind with the probabilities,

q =
ko

ko + ku
and p =

ku

ko + ku
, (A.1)

respectively. The average waiting time for either of the cases to happen is

1
ko + ku

. (A.2)

If the system goes backward to unbind the RNAP, then after the time

1
kb

, (A.3)

another RNAP binds to form the closed complex again, and the situation becomes the same as before.
If the system goes backward to unbind n times before it proceeds to form the open complex, the times that

the system spends and the probabilities that should occur are given

n time probability

1
1

ko + ku
q

2
1

ko + ku
+

1
kb

+
1

ko + ku
p q

· · ·

n

(
1

ko + ku
+

1
kb

)
n +

1
ko + ku

pn q

· · ·

(A.4)

thus the average time is given by

∞∑
n=0

[(
1

ko + ku
+

1
kb

)
n +

1
ko + ku

]
pn q =

1
ko

+
ku

ko

1
kb

(A.5)
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which is τ∗
o in eq.(22).

[1] Eq.(57) disagrees with the corresponding expression

ΩTI = Ω0
χ(kon + ke)

χkon + ke + ΩA

of eq.(4) and Figure 1(d) in Sneppen et al. [J. Mol. Biol. 346 (2005) 399–409](the notations have been changed from
the original ones). It is not difficult, however, to see that this expression cannot be correct because this does not
reduce to that for the single step case (56) in the kon → ∞ limit. In its derivation, only the on-rate was reduced by
the factor χ, and it was not taken into account that the total probability of the states available to RNAP is limited
by the factor χ.


