SUPPORTING INFORMATION

Supplemental Table 1: Primers used in PurE Mutagenesis						
Primer ID	Primer Name	Sequence $(5' \rightarrow 3')^a$				
1	H45N.KUNK	CGGGGGTGCGGTTAGCAGAAACCAC				
2	H45Q.KUNK	TATCGGGGGTGCG TTG AGCAGAAACC				
3	H45W.DN	GGGGGTGCGCCAAGCAGAAACCACTTCAACGTG				
^a Mutagenic	sites are in bold.					

Decarboxylation at Various pH Values						
		Non-enzymatic CAIR				
pH	$\Delta \varepsilon_{250} (\mathrm{M}^{-1} \mathrm{cm}^{-1})$	Decomposition				
		$(\Delta A_{250}/\text{min})$				
5.1	2129	-0.02				
5.6	3650	-0.01				
6.1	4646	-0.01				
6.6	5331	-0.01				
7.0	5513	0.00				
7.3	5955	0.00				
7.6	6083	0.00				
7.9	6230	0.00				
8.2	6091	0.00				
8.5	5970	0.00				
8.8	5764	0.00				
9.2	5361	0.00				
9.5	4960	0.00				

Supplemental Table 2: $\Delta \epsilon_{250}$ and Rates of CAIR Decarboxylation at Various pH Values

Supplemental Table 3: ESI MS Results for PurE Mutants						
Observed Mass	Expected Mass					
17,650.4	17,650.1					
17,626.0	17,626.0					
17,640.0	17640.1					
17,698.0	17,698.2					
	Observed Mass 17,650.4 17,626.0 17,640.0 17,698.0					

Supplemental Table 4. SV-AUC Results for WT and Mutant PurE Proteins						
Drotain	Prodicted MW (Do)	Observed MW (Da)	RMSD of Fit of SV-			
FIOtem	Fiedleted Wiw (Da)		AUC Data			
WT	141,200	140,740	0.0046			
H45N	141,010	146,430	0.0044			
H45Q	141,120	149,940	0.0043			
H45W	141,590	139,500	0.0045			

Supplemental Table 5. Summary of the available PurE structures

PDB ID	organism	mutation	рН	monomers per asu	ligand *
1QCZ	E. coli	wt	8.0	1	none
1XMP	B. anthracis	wt	7.5	8	none
2FWA	A. aceti	H89N	7.0	2	none
2FWB	A. aceti	H89F	8.0	2	none
2FW7	A. aceti	H59N	8.0	2	none
2FW8	A. aceti	H89G	8.0	2	none
1Q4V	T. maritima	wt	5.6	1	sulfate
2FW9	A. aceti	H59F	8.0	2	sulfate/none
2FW1	A. aceti	wt	8.5	2	acetate A/acetate B
1U11	A. aceti	wt	5.4	2	citrate A/citrate B
2FW6	A. aceti	H59N	5.4	2	citrate/none
1D7A	E. coli	wt	8.0	8	AIRx (4)/none(4)
2FWI	A. aceti	H59D	7.0	2	AIR/none
2FWJ	A. aceti	wt	7.0	2	AIR/none
2FWP	A. aceti	H59N	5.4	2	isoCAIR/citrate
	E. coli	H45N	8.0	1	CAIR
	E. coli	H45Q	8.0	1	CAIR
2ATE	E. coli	wt	8.0	1	nitroAIR
	E. coli	H45Q	8.0	1	nitroAIR

*PurE octamers containing bound ligands and multiple monomers per asymmetric unit usually show the same ligand structure for fourfold related monomers and different ligand structures for twofold related monomers. The two different ligand structures corresponding to the latter case are separated by a slash.

Supplemental Figure 1: 15% SDS-PAGE Gel of PurE Proteins. Lane 1: total cell lysate of wt PurE/PurK expression in PCO135 *E. coli* t = 0 h; 2: total cell lysate at t = 4 h after heat induction; 3: MW Markers; 4: wt PurE; 5: H45Q PurE; 6: H45W PurE; 7: H45N PurE. For lanes 4-7, 5 μ g of protein was loaded.

Supplemental Figure 2: Observed changes in fluorescence upon titration of PurE. (A) Titration of wt PurE with NO₂-AIR. (B) Titration of H45N PurE with CAIR. (C) Titration of H45Q PurE with CAIR. After background subtraction, fluorescence decreases at a λ_{max} of 335 nm for (A) and (C) and a decrease and blue shift from 345 \rightarrow 335 nm (B) were observed.

Supplemental Figure 3: Distribution of molecular weights obtained from SedFit analysis of SV-AUC data for PurE mutants. (A) wt PurE. (B) H45N (black), H45Q (red), and H45W (blue) PurE mutants.

Supplemental Figure 4: Computational studies on the effects of protonation of compounds t-3 and t-1 on loss of CO₂ and bond lengths.

Supplemental Figure 5: Surface representation of the wt PurE octamer in grey. NO₂-AIR molecules on one face of the octamer are shown in spacefilling representation and colored using a CPK scheme. NO₂-AIR binds close to the surface. While the ribose-5'- phosphate moiety is exposed to the solvent, the aminoimidazole and nitro groups are buried.

Supplemental Figure 6. Overlay of the active sites of apo wt EcPurE (blue) and the wt EcPurE NO₂-AIR co-crystal structure (grey). Conformational changes occurring upon ligand binding are limited to residues involved in binding the 5'-phosphate.

Supplemental Figure 7. Active site of EcPurE-H45Q-NO₂-AIR complex with fo-fc density (2σ) shown.

Supplemental Figure 8. Active site of EcPurE-H45N-CAIR complex with fo-fc density (2σ) shown.

Supplemental Figure 9. A comparison of substrate binding conformations in PurE. (A) Superposition of H45Q EcPurE with CAIR (blue) and wt EcPurE-AIRx (grey). (B) Superposition of H45Q EcPurE with CAIR (blue) and isoCAIR from H59N AaPurE (red).

Supplemental Figure 10. Comparison of the NO₂-AIR/EcPurE (wt) with AIR/AaPurE (wt) complexes. EcPurE is in blue, AaPurE is in grey. Numbering is for EcPurE.