HIGH-YIELD ACTIVATION OF SCAFFOLD POLYMER SURFACES TO ATTACH CELL ADHESION MOLECULES

T. Joseph Dennes,¹ Geoffrey C. Hunt,² Jean E. Schwarzbauer,² and

Jeffrey Schwartz^{1,*}

¹Department of Chemistry, Princeton University, Princeton, NJ 08544

²Department of Molecular Biology, Princeton University, Princeton, NJ 08544

E-mail: jschwartz@princeton.edu

Supporting Information

Fluorescence intensity vs. time traces for a 2 cm^2 sample of **9** and a 4 cm^2 sample of **7**: hydrolysis of DANSYL-Cys from **9b** measured for a film of area 2 cm^2 and hydrolysis of DANSYL-Cys from **7b** measured for a film of area 4 cm^2 . Fluorescence intensity vs. time traces for a 2 cm^2 sample of **9** and a 4 cm^2 sample of **7** are shown below. Both traces are normalized with data from a control film of **3** that was soaked in DANSYL-Cys for 24 hrs.

Hydrolysis of DANSYL-Cys from **9b** measured for a film of area 2 cm^2 . No increase in dissolved fluorescent material was observed at pH 7.5 after initial removal of physisorbed material. The amount of DANSYL-Cys released at pH 12 is a measure of material that remains surface bound at pH 7.5 (0.18 nmol/cm²).

Hydrolysis of DANSYL-Cys from **7b** measured for a film of area 4 cm^2 . No increase in dissolved fluorescent material was observed at pH 7.5 after initial removal of physisorbed material. The amount of DANSYL-Cys released at pH 12 is a measure of material that remains surface bound at pH 7.5 (0.10 nmol/cm²).

