
Appendix 1. Derivation of the formula (5)
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where IP and IE are the symbols of probability and expectation, respectively. Consider the first
term
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For the last to terms in (1), we have
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It follows from formula (7) that
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is an unknown constant. Considering the variances of U/ν and V/ν in a similar way, we arrive

at the formulae (5)
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