Appendix 2. Proof of the Assertion 1

Denote by $f(\mathbf{t}) = f(t_1, \ldots, t_m)$ the multivariate characteristic function (c.f.) of $(X_{1,1}, \ldots, X_{1,m})$. Then the c.f. of $\mathbf{Z}_k = \mathbf{U}_k / \nu_k$, where $\mathbf{U}_k = U_{k,1}, \ldots, U_{k,m}$, is given by

$$\mathbb{E}e^{i(\mathbf{U}/\nu_k,\mathbf{t})} = \sum_{n=1}^{\infty} f^n(t_1/n,\dots,t_m/n) \mathbb{P}\{\nu_k=n\},$$
(1)

where $\mathbf{t} = (t_1, \ldots, t_m)$. Let $\mathbf{a} = (a_1, \ldots, a_m)$ be the vector of mean values for $(X_{1,1}, \ldots, X_{1,m})$. We have

$$f^{n}(\mathbf{t}/n) = \left(1 + i(\mathbf{a}, \mathbf{t})\frac{1}{n} + o(\|\mathbf{t}\|/n)\right)^{n} \rightarrow e^{i(\mathbf{a}, \mathbf{t})} = \prod_{j=1}^{m} e^{ia_{j}t_{j}},$$
(2)

as $n \to \infty$. The convergence in (1) is uniform with respect to **t** taking on values from a compact set. It follows from (1) and (2) that

$$|\mathbb{E}e^{i(\mathbf{U}/\nu_{k},\mathbf{t})} - e^{i(\mathbf{a},\mathbf{t})}| = |\sum_{n=1}^{\infty} \left(f^{n}(t_{1}/n, \dots, t_{m}/n) - e^{i(\mathbf{a},\mathbf{t})} \right) \mathbb{P}\{\nu_{k} = n\}|$$

$$\leq \sum_{n=1}^{\infty} |f^{n}(t_{1}/n, \dots, t_{m}/n) - e^{i(\mathbf{a},\mathbf{t})}| \mathbb{P}\{\nu_{k} = n\}.$$
(3)

From (2), we can claim that for any $\varepsilon > 0$ there exists such $N_{\varepsilon} > 1$ independent on k that

$$\left|f^{n}(\mathbf{t}/n) - e^{i(\mathbf{a},\mathbf{t})}\right| < \varepsilon \tag{4}$$

for all $n > N_{\varepsilon}$ and all **t** from any fixed compact set. Using (3) and (4) one can write

$$\left|\mathbb{E}e^{i(\mathbf{Z}_{k},\mathbf{t})} - e^{i(\mathbf{a},\mathbf{t})}\right| \le 2\sum_{n=1}^{N_{\varepsilon}} \mathbb{P}\{\nu_{k} = n\} + \varepsilon.$$
(5)

Since $\nu_k \to \infty$ as $k \to \infty$, we can assert that $\mathbb{P}\{\nu_k = n\} \to 0$ as $k \to \infty$ for any $n \leq N_{\varepsilon}$. It finally follows from inequality (5) that

$$\left| \mathbb{E}e^{i(\mathbf{Z}_{k},\mathbf{t})} - e^{i(\mathbf{a},\mathbf{t})} \right| \to 0 \tag{6}$$

as $k \to \infty$. This completes the proof of the convergence

$$\mathbf{Z}_k \xrightarrow{d} \mathbf{a}.$$
 (7)