Determination of $(\Delta S/S_0)^{cor}$ for REDOR and fpCTDQBU analyses

This material considers determination of $(\Delta S/S_0)^{cor}$, the contribution to $(\Delta S/S_0)^{exp}$ due only to the labeled nuclei. $(\Delta S/S_0)^{cor}$ is equivalently described by the parameter "f", the S_1/S_0 ratio for the labeled ¹³CO nuclei considering only other labeled nuclei. Comparison of $(\Delta S/S_0)^{cor}$ to $(\Delta S/S_0)^{sim}$ yields the labeled nuclei internuclear dipolar couplings and distances. In the equations in this section, the subscript *i* (referring to dephasing time τ_i) is not written. Contributions to S_0 and S_1 are considered for ¹³CO nuclei in different environments.

A. REDOR analysis of I4 peptide

The following parameters/approximations are used:

A1. There is 99% labeling of the Ala-9 ¹³CO and Ala-13 ¹⁵N sites. $S_1 = S_0$ for a labeled Ala-9 ¹³CO in a molecule with a Ala-13 ¹⁴N.

A2. Effects of natural abundance ¹⁵N on ¹³CO S_1 signals are evaluated using the following criteria: (1) $S_1 = 0$ for a labeled Ala-9 ¹³CO separated by one or two bonds from a natural abundance ¹⁵N at Ala-10 or Ala-9. Ala-9 S_1 is not affected by other natural abundance ¹⁵N. (2) $S_1 = 0$ for natural abundance backbone ¹³COs at Glu-12 or Ala-13 which are separated by one or two bonds from the labeled Ala-13 ¹⁵N. $S_1 = S_0$ for other natural abundance backbone ¹³CO sites. Criteria (1) and (2) are based on the close distance (≤ 2.5 Å) and consequent strong (≥ 200 Hz) dipolar coupling of ¹³CO and ¹⁵N nuclei separated by one or two bonds.

A3. Ten percent of the Ala-9 ¹³CO S_0 is due to molecules in random coil structures. The Ala-9 ¹³CO in these structures have $S_1 = 0$ if criterion A2-(1) is satisfied and have $S_1 = S_0$ otherwise. Previous solid-state NMR experiments suggest that the I4 peptide has $17 \pm 6\%$

random coil structure but a lower random coil population is chosen in our analysis because some of the random coil ¹³CO shifts are outside the 1 ppm integration range used to calculate S_0 and S_1 intensity values (*J. Am. Chem. Soc.*, **120**, 1998, 7039-7048).

The $(\Delta S/S_0)^{cor}$ expression is calculated using the following parameters: U_C and U_N , the fractions of Ala-9 ¹²CO sites and Ala-13 ¹⁴N sites, respectively; A_C and A_N , the ¹³C and ¹⁵N natural abundances, respectively; n, the total number of unlabeled peptide backbone CO sites in an I4 molecule; and h, the fraction of the Ala-9 ¹³CO S_0 signal due to molecules with regular secondary structure. A flow chart for the determination of $(\Delta S/S_0)^{cor}$ is given in Figure S1.

FIGURE S1. Flow chart of derivation of $(\Delta S/S_0)^{cor}$ for REDOR of the I4 peptide. The four rows in each box are in sequence: the site description, its relative population, and its contributions to S_0 and S_1 .

Derivation

Express S_0^{exp} as the sum of contributions from labeled ¹³CO nuclei (S_0^{lab}) and from

natural abundance ¹³CO nuclei ($S_0^{n.a.}$):

$$S_0^{\exp} = S_0^{lab} + S_0^{n.a.} = 1 - U_C + n A_C$$
(S1)

with:

$$S_0^{lab} = h (1 - U_C - U_N) + h U_N + (1 - h) (1 - U_C - U_N) + (1 - h) U_N$$
(S2)

and:

$$S_0^{n.a.} = 2A_C + (n-2)A_C$$
(S3)

Express S_1^{exp} as the sum of contributions from labeled ¹³CO nuclei (S_1^{lab}) and from natural abundance ¹³CO nuclei ($S_1^{n.a.}$):

$$S_1^{exp} = S_1^{lab} + S_1^{n.a.}$$
(S4)

with:

$$S_{1}^{lab} = h (1 - U_{c} - U_{N}) (1 - 2A_{N}) f + hU_{N} + (1 - h) (1 - U_{c} - U_{N}) (1 - 2A_{N}) + (1 - h) U_{N}$$
(S5)

and:

$$S_1^{n.a.} = (n-2)A_C$$
 (S6)

and the parameter *f*:

$$f = \frac{S_1^{cor}}{S_0^{cor}} = 1 - \frac{S_0^{cor} - S_1^{cor}}{S_0^{cor}} = 1 - \left(\frac{\Delta S}{S_0}\right)^{cor}$$
(S7)

Incorporate Eq. S7 into Eq. S5:

$$S_{1}^{lab} = h (1 - U_{c} - U_{N}) (1 - 2A_{N}) \left[1 - \left(\frac{\Delta S}{S_{0}}\right)^{cor} \right] + (1 - h) (1 - U_{c} - U_{N}) (1 - 2A_{N}) + U_{N}$$

$$= (1 - U_{c} - U_{N}) (1 - 2A_{N}) - h (1 - U_{c} - U_{N}) (1 - 2A_{N}) \left(\frac{\Delta S}{S_{0}}\right)^{cor} + U_{N}$$
(S8)

 U_c , U_N , and $2A_N$ are much less than 1 so that:

$$(1 - U_C - U_N)(1 - 2A_N) \cong 1 - U_C - U_N - 2A_N$$
(89)

and:

$$S_{1}^{lab} \cong 1 - U_{C} - 2A_{N} - h(1 - U_{C} - U_{N} - 2A_{N}) \left(\frac{\Delta S}{S_{0}}\right)^{cor}$$
(S10)

Incorporate Eqs. S6 and S10 in Eq. S4:

$$S_{1}^{\exp} = 1 - U_{C} - 2A_{N} - h(1 - U_{C} - U_{N} - 2A_{N}) \left(\frac{\Delta S}{S_{0}}\right)^{cor} + (n - 2)A_{C}.$$
 (S11)

Combine Eqs. S1, S2, S3, and S11:

$$S_{0}^{\exp} - S_{1}^{\exp} = \left[1 - U_{C} + nA_{C}\right] - \left[1 - U_{C} - 2A_{N} - h\left(1 - U_{C} - U_{N} - 2A_{N}\right)\left(\frac{\Delta S}{S_{0}}\right)^{cor} + (n-2)A_{C}\right](S12)$$

and simplify:

$$S_0^{\exp} - S_1^{\exp} = 2A_C + 2A_N + h(1 - U_C - U_N - 2A_N) \left(\frac{\Delta S}{S_0}\right)^{cor}$$
(S13)

Combine Eqs. S1 and S13:

$$\left(\frac{\Delta S}{S_0}\right)^{\exp} = \frac{2A_c + 2A_N + h(1 - U_c - U_N - 2A_N)\left(\frac{\Delta S}{S_0}\right)^{cor}}{1 - U_c + nA_c}$$
(S14)

and rewrite:

$$\left(\frac{\Delta S}{S_0}\right)^{cor} = \frac{1 - U_C + nA_C}{h(1 - U_C - U_N - 2A_N)} \left(\frac{\Delta S}{S_0}\right)^{exp} - \frac{2A_C + 2A_N}{h(1 - U_C - U_N - 2A_N)}$$
(S15)

Incorporate $U_C = 0.01$, $U_N = 0.01$, $A_C = 0.011$, $A_N = 0.0037$, n = 17, and h = 0.9:

$$\left(\frac{\Delta S}{S_0}\right)^{cor} = 1.345 \left(\frac{\Delta S}{S_0}\right)^{exp} - 0.034$$
(S16)

B. REDOR analysis of $HFPtr-L7_{C}F11_{N}$ samples

The following parameters/approximations are used and B1 and B2 are based on A1 and A2 for the I4 peptide.

B1. There is 99% labeling of the Leu-7 ¹³CO and Phe-11 ¹⁵N sites. $S_1 = S_0$ for a labeled Leu-7 ¹³CO in a peptide strand with a Phe-11 ¹⁴N.

B2. (1) $S_1 = 0$ for a labeled Leu-7 ¹³CO separated by one or two bonds from a natural abundance ¹⁵N at Phe-8 or Leu-7. The Leu-7 S_1 is not affected by other natural abundance ¹⁵N. (2) $S_1 = 0$ for natural abundance backbone ¹³COs at Gly-10 or Phe-11 which are separated by one or two bonds from the labeled Phe-11 ¹⁵N. $S_1 = S_0$ for other natural abundance backbone ¹³CO sites.

B3. In the HFPtr-L7_CF11_N/PC-PG sample, the natural abundance lipid ¹³CO signal is resolved from the Leu-7 labeled ¹³CO signal and does not contribute to S_0 or S_1 .

Using h = 1, Eq. (S15) is modified:

$$\left(\frac{\Delta S}{S_0}\right)^{cor} = \frac{1 - U_c + nA_c}{1 - U_c - U_N - 2A_N} \left(\frac{\Delta S}{S_0}\right)^{exp} - \frac{2A_c + 2A_N}{1 - U_c - U_N - 2A_N}$$
(S17)

Consider *n* as the average number of unlabeled backbone CO sites per strand. Using $U_C = 0.01$, $U_N = 0.01$, $A_C = 0.011$, $A_N = 0.0037$, and n = 29.33:

$$\left(\frac{\Delta S}{S_0}\right)^{cor} = 1.350 \left(\frac{\Delta S}{S_0}\right)^{exp} - 0.030$$
(S18)

C. fpCTDQBU analysis of the D-GFF SSNMR sample

The following parameters/approximations are focused on the Gly-1 ¹³CO nuclei because S_0 and S_1 signals from these nuclei are used in the experimental data analysis. C1. ¹³CO signals from Gly-1, Phe-2, and Phe-3 are completely resolved. C2. Intermolecular ¹³C-¹³C dipolar coupling is not considered. For Gly-1 ¹³CO, the closest intermolecular carbon nucleus is > 4 Å away. C3. For D-GFF, there is 99% labeling of Gly-1 ¹³CO and Phe-3 ¹³CO. $S_1 = S_0$ for a molecule with a labeled Gly-1 ¹³CO and a Phe-3 ¹²CO.

C4. S_1 values for a molecule with a labeled Gly-1 ¹³CO and nearby natural abundance ¹³C are set with the following criteria: (1) $S_1 = 0$ when $\tau_i \le 32$ ms and the labeled Gly-1 ¹³CO/natural abundance ¹³C nuclei are separated by one or two bonds. (2) $S_1 = 0$ when $\tau_i \ge 32$ ms and the labeled Gly-1 ¹³CO/natural abundance ¹³C nuclei are separated by one, $\tau_i \ge 32$ ms and the labeled Gly-1 ¹³CO/natural abundance ¹³C nuclei are separated by one, two, or three bonds. (3) S_1 is not affected by the natural abundance ¹³C if neither criterion (1) nor (2) is satisfied. The criteria are based on the ~1.5 Å, ~2.5 Å and ~3.8 Å distances for one-, two- and three-bond ¹³C-¹³C separations, respectively, and the consequent 2200 Hz, 500 Hz, and 140 Hz dipolar couplings.

C5. $S_1 = S_0$ for a natural abundance Gly-1 ¹³CO in an unlabeled GFF molecule.

Each $(\Delta S/S_0)^{cor}$ value is calculated using the following parameters: U_{CI} and U_{C2} , the fractions of Gly-1 and Phe-3 ¹²CO sites in D-GFF, respectively; A_C , the fractional ¹³C natural abundance; *n*, the ratio of unlabeled GFF to D-GFF molecules in the crystal; and *m*, the number of unlabeled carbon nuclei which satisfy either criterion C4-(1) or C4-(2).

FIGURE S2. Flow chart of derivation of $(\Delta S/S_0)^{cor}$ for fpCTDQBU of the D-GFF sample.

The fpCTDQBU expression for $(\Delta S/S_0)^{cor}$ is:

$$\left(\frac{\Delta S}{S_0}\right)^{cor} = \frac{1 - U_{c1} + nA_c}{1 - U_{c1} - U_{c2} - mA_c} \left(\frac{\Delta S}{S_0}\right)^{exp} - \frac{mA_c}{1 - U_{c1} - U_{c2} - mA_c}$$
(S19)

The values of U_{C1} , U_{C2} , A_C , and *n* are 0.01, 0.01, 0.011, and 49. For $\tau_i \le 32$ ms, m = 2 and numerical evaluation of Eq. S19 yields:

$$\left(\frac{\Delta S}{S_0}\right)^{cor} = 1.596 \left(\frac{\Delta S}{S_0}\right)^{exp} - 0.023$$
(S20)

For $\tau_i > 32$ ms, m = 4 and numerical evaluation of Eq. S19 yields:

$$\left(\frac{\Delta S}{S_0}\right)^{cor} = 1.634 \left(\frac{\Delta S}{S_0}\right)^{exp} - 0.047$$
(S21)

D. fpCTDQBU analysis of the HFPtr- $L7_{C}F11_{N}$ sample

The following parameters/approximations are used:

D1. There is 99% labeling of Leu-7 ¹³CO.

D2. S_1 values for a Leu-7 ¹³CO with nearby natural abundance ¹³C are determined by the following criteria: (1) $S_1 = 0$ for $\tau_i \le 32$ ms and Leu-7 ¹³CO/natural abundance ¹³C separated by one or two bonds. (2) $S_1 = 0$ for $\tau_i > 32$ ms and Leu-7 ¹³CO/natural abundance ¹³C separated by one, two, or three bonds. (3) S_1 is not affected by natural abundance ¹³C if neither criterion (1) nor (2) is satisfied.

D3. The following criteria are used to set S_1 values for natural abundance backbone ¹³CO sites: (1) For the Ala-6 and Phe-8 sites, $S_1 = S_0$ for $\tau_i \le 32$ ms and $S_1 = 0$ for $\tau_i > 32$ ms. These values are in accord with D2-(1) and D2-(2). (2) For other sites, $S_1 = S_0$ for all values of τ_i .

Each $(\Delta S/S_0)^{cor}$ value is calculated using the parameters U_C , A_C , n and m where: U_C is the fraction of Leu-7 ¹²CO sites; A_C is the fractional ¹³C natural abundance; n is the average number of unlabeled backbone CO sites per peptide strand; and m is the number of natural abundance sites which satisfies either D2-(1) or D2-(2).

FIGURE S3. Flow chart of derivation of $(\Delta S/S_0)^{cor}$ for fpCTDQBU of the HFPtr-L_{7C}F_{11N} sample for $\tau_i > 32$ ms.

A derivation similar to that for Eq. S19 yields an expression for $\tau_i \leq 32$ ms:

$$\left(\frac{\Delta S}{S_0}\right)^{cor} = \frac{1 - U_C + nA_C}{1 - U_C - mA_C} \left(\frac{\Delta S}{S_0}\right)^{exp} - \frac{mA_C}{1 - U_C - mA_C}$$
(S22)

The values of U_C , A_C , n, and m are 0.01, 0.011, 29.33, and 3, respectively, and numerical evaluation of Eq. S22 yields:

$$\left(\frac{\Delta S}{S_0}\right)^{cor} = 1.372 \left(\frac{\Delta S}{S_0}\right)^{exp} - 0.034; \qquad (S23)$$

For $\tau_i > 32$ ms, the contribution to S_1 of natural abundance Ala-6 and Phe-8 ¹³COs slightly modifies Eq. S22:

$$\left(\frac{\Delta S}{S_0}\right)^{cor} = \frac{1 - U_C + nA_C}{1 - U_C - mA_C} \left(\frac{\Delta S}{S_0}\right)^{exp} - \frac{(m+2)A_C}{1 - U_C - mA_C}$$
(S24)

The values of U_C , A_C , n, and m are 0.01, 0.011, 29.33, and 7, respectively, and numerical evaluation of Eq. S24 yields:

$$\left(\frac{\Delta S}{S_0}\right)^{cor} = 1.438 \left(\frac{\Delta S}{S_0}\right)^{exp} - 0.108$$
(S25)

In Eqs. S22 and S24, the small fraction of Leu-7 ¹²CO (denoted by the parameter U_C) is considered in the calculation of total signal but is neglected in the calculation of the effect of ¹³C-¹³C dipolar coupling on S_1 . This latter approximation neglects the possibilities of a Leu-7 ¹³CO being near either one or two Leu-7 ¹²COs in adjacent strands. The approximation makes a much smaller contribution to the uncertainty in $(\Delta S/S_0)^{cor}$ than does uncertainty in $(\Delta S/S_0)^{exp}$.

The experimental S_0 and S_1 intensities are determined by integration over a defined region and for the I4 and HFPtr samples, the contribution from a particular labeled or natural abundance ¹³CO site depends on its chemical shift distribution which is influenced by amino-acid identity as well as conformation. Deconvolution of individual site contributions is not feasible with the medium-linewidth (~2 ppm full-width at halfmaximum) and medium signal-to-noise spectra and in the above derivations, we made the approximation in the that labeled and natural abundance sites contribute fully to the S_0 and S_1 signals. For the HFPtr samples, the experimental signal-to-noise ratios are ~10 and this approximation makes a much smaller contribution to the uncertainty in $(\Delta S/S_0)^{eor}$ than does uncertainty in $(\Delta S/S_0)^{exp}$.