Supplemental Figure 1. Physical Map of the *Volvox RBR1* cDNA (Splice Variant 1) and Overlapping Fragments Used to Assemble the Complete Sequence.

Fragments obtained by RT-PCR or from an EST library are indicated. ATG, translation start site; asterisk (*), translation stop site; thick horizontal bar, open reading frame; thinner horizontal bar, 5'- and 3'-UTRs; AAA, poly A tail; arrowheads, positions of introns.

Supplemental Figure 2. Trimmed Alignment of 24 RB-Related Proteins from Green Algae, Moss, and Higher Plants and Animals.

Alignment of protein sequences was done using the MUltiple Sequence Comparison by Log-Expectation program (MUSCLE) (Edgar, 2004). Minor manual optimization of alignments, trimming, and management of multi-aligned data was done with BioEdit v7.0.9 (Hall, 1999). Source organisms: Vc RBR1, *Volvox carteri;* Ci MAT3, *Chlamydomonas incerta;* Cr MAT3, *Chlamydomonas reinhardtii;* Ot RBR, *Ostreococcus tauri;* Pp RBR, *Physcomitrella patens;* Gg RB1, *Gallus gallus;* Mm RB1, *Mus musculus;* Hs RB1 (RB), *Homo sapiens;* Hs RB2 (p130), *Homo sapiens;* Hs RBL1 (p107), *Homo sapiens;* Dm RBF, *Drosophila melanogaster;* Pt RBR, *Populus tremula x Populus tremuloides;* Ee RBR, *Euphorbia esula;* At RBR, *Arabidopsis thaliana;* Nb RBR, *Nicotiana benthamiana;* Nt RBR, *Nicotiana tabacum;* Sb RBR, *Scutellaria baicalensis;* Ps RBR, *Pisum sativum;* Chr RBR, *Chenopodium rubrum;* Zm RBR1, *Zea mays;* Zm RBR2, *Zea mays;* Zm RBR2b, *Zea mays;* Zm RBR3, *Zea mays;* Cn RBR, *Cocos nucifera.* The corresponding GenBank accession numbers are given in the Methods section.

		10		20	30	0	40		50		60		70		80		90	100
				.	$ \dots $				
Ot	RBR	TPISQAMASAS	VLQDIVC	ASSDLE	TLHKKV	DVLIFE	FFLNRI	LRAES	QVNIV	ALLQS	SRFTKS	LLACC	MEVIV	ATYTLT	FPATT	HLLGI	HPFDL	TTIIEP
Ρр	RBR	TPVSITMTTAK	LRTVIA	PLSAEP	SMKVRA	NVILYY	KVLGAM	CTAES	HRHL-	PFLPN	ERFHRC	MLACS	AELVL	ASHTMT	FPAVI	EPAGI	TAFDL	SKVIEG
Zm	RBR1	TPVTSAMTTAK	VLREVIS:	SLP <mark>DK</mark> P	SVTERV	SIVLYY	RVLEAI	CRAEL	QNNLT	PLLSN	ERFHRC	LIACS	ADLVL	ATHIMM	FPAVI	ESTGI	TAFDL	SKIIEN
Zm	RBR2b	TPITSAMTTAK	VLREVIS:	SLP <mark>EK</mark> P	SVTERV	SIVLYY	RVLEAI	CRAEL	QNNLT	PLLSN	ERFHRC	LIACS	AELVL	ATHIMM	FPAVI	ESTGI	TSFDL	SKIIEN
Zm	RBR2	TPITSAMTTAK	VLREVIS:	SLP <mark>EK</mark> P	SVTERV	SIVLYY	RVLEAI	CRAEL	QNNLT	PLLSN	ERFHRC	LIACS	ADVVL	ATHIMM	FPAVI	ESAGI	TSFDL	SKIIEN
Zm	RBR3	TPVSTAMTTAK	LRNTVS	PLPSRP	SIAHRA	GIILYY	RVLESM	ICRAES	QINLT	SLLSN	ERFHRC	MIACS	AELVL	ATHTMM	FPAVI	EKTGI	TAFDL	SKVIEG
Chi	RBR	TPVSTAMTTAK	LRTYIS	PLPSKP	SVVRRA	HIILYY	RVLETM	CTAEA	QLNLT	SLLTN	ERFHRC	MLACS	AELVL	ATHTML	FPAVI	EKTGI	TAFDL	SKVIES
At	RBR	TPVSTAMTTAK	LRTVIS	PLLPKP	SVTRRA	HIILYY	RVLEAM		QINLN	SLLTN	ERFHRC	MLACS	AELVL	ATHTML	FPAVI	ERTGI	TAFDL	SKVIES
Nt	RBR	TPVSTAMTTAR	ULRTVIA	PLQPKP	SVIRRA	QIILYY	RVLQTM	CTAES	QINLT	SLLTN	ERFHRC	MLACS	AELVL	ATHTML	FPAVI	ERTGI	TAFDL	SKVIES
Nb	RBR	TPVSTAMTTAR	ULRTVIA	PLOPKP	SVIRRA	QIILYY	RVLOTM	CTAES	QINLT	SLLTN	ERFHRC	MLACS	AELVL	ATHTML	FPAVI	ERTGI	TAFDL	SKVIES
Sb	RBR	TPVTTAMTTAK	ULRTVIA	PLPSKP	SVTRRA	QIILYE	RVLQAL	CTAES	QINLT	SLLTN	ERFHRC	MLACS	AELVL	ATHTML	FPTVI	ERTGI	TAFDL	SKVIES
Ps	RBR	TPVSTAMTTAK	LRTVIS	PLPSKP	SVIRRA	OIILYY	RVLATM		OINLT	SLLTN	ERFHRC	MLACS	AELVL	ATHTMI	FPAVI	ERTGI	TAFDL	SKVIES
Ee	RBR	TPVTTAMTTAK	LRTVIS	PLPSKP	SVTRRA	OIILSY	RVLEAM	CTAEA	OVNLT	SLLTN	ERFHRC	MLSCS	AELVL	ATHTML	FPAVI	ERTGI	TAFDL	SKVIES
Pt	RBR	TPVSTAMTTAK	ALRTIIS	PLPSKP	SVIRRA	OIILYY	RVLESM	CTAEA	OINLT	SLLTN	ERFHRC	MLACS	AELVV	ATYTML	FPAVI	ERTGI	TAFDL	SKVIES
Cn	RBR	TPVSTAMTTAK	VLRNIIS	PLPSRP	SVTRRA	SIILYY	RVLETM		~ HINLT	SLLSN	DRFHRC	MLACS	AELVL	ATHTMM	FPAVI	EKTGI	TAFDL	SKVIES
Vc	RBR1	TPVSEIMSTSA	LRGITA	SLAAEP	SLNORV	OELVYY	LSLERI	LOAEE	KNGVT	SLLSA	GKFHRA	LVACS	AEVVT	ACYSCI	FPKVI	DALHI	KAFDL	AKMIOC
Ci	MAT3	TPISEAMGASA	VLRGVTS:	SMAAEP	SLMKRV		HSLETI	MLNEE	RTAAL	ALLGS	AKFOR	LIACC	IEVVA	ACYSCA	FPKV	DALRI	KAFDM	ASIIGT
Cr	MAT3	TPISEAMGASA	VLRGVTSI	MVAEP	SLMKRV	RDLLYC	HSLDTI	LONEO	RTAAL	ALLGS	AKFORG	LIACC	IEVVA	ACYSCA	FPNVI	DALRI	KAFDM	ANIIGT
Gα	RB1	TPVRAAMNTIO	DLMMILN	SATDKP	SILKRV	ES-LYY		LKSEE	ERNFS	KLLND	NIFHTS	LLACA	LEIVM	ATYDLS	FPWII	NVFDI	KAFDF	YKVIES
Hs	RB1	TPVRTVMNTIO	~ OLMMILN:	SASDOP	SILKRV	KDILYY		LKSEE	ERNFS	KLLND	NIFHMS	LLACA	LEVVM	ATYDLS	FPWII	NVLNI	KAFDF	YKVIES
Mm	RB1	TPVRTVMNTIO	~ OLMVILNS	SASDOP	SILKRV	KDVLYY		LKSEE	ERNFS	KLLND	NIFHMS	LLACA	LEVVM	ATYDLS	FPWII	NVLNI	KAFDF	YKVIES
Dm	RBF	EPVRNATNNVK	OLSAF	GRITEP	TLLSII	EEIFFF	YLLDOI	LOAEI	RNDLK	RLLVO	KIFNIT	LMACC	VELVL	EAYELK	FPWVI	DCFST	SAFEF	OKIIEI
Hs	RBL1	TPVASATOSVS	RLOSIVA	GLKNAP	SIMKIL	KGILYY	KILETV	MVOET	RRDMS	VLLEO	DIFHRS	LMACC	LEIVL	FAYPRT	FPWII	EVLNI	OPFYF	YKVIEV
Hs	RB2	TPVSTATHSLS	RLHTMLT	GLRNAP	SIANRL	KEMLYY	KVLESV	IEOEO	KRDLS	GILEO	DAFHRS	LLACC	LEVVT	FSYPGN	FPFIT	EIFDV	PLYHE	YKVIEV

		110	120	130	140	150	160	170	180	190	200
			.	.						.	
Ot	RBR	FVRADMDLPREIVRH	FNSLEEKTLER	LAWCKGSALF	DFLVLQIFF	AKVMQLAARRL(GDLASRLTRDV	YALIEHVIYE	QTNLVYNRH	VDQIILASVY	GVCK
₽р	RBR	FVRHEETLPRELKRH	LNSIEERLLES	MAWEKGSSMF	NCLPINVFF(QKVLKLAAVRI	RNLCERLVERV	NRALHHALNI	ETGLFFNRH	IDQIILCCVY	GICK
Zm	RBR1	FVRHEETLPRELKRH	LNSLEEQLLES	MAWEKGSSLY	NSLPI <mark>HIFF</mark>	SKILKLAAIRI	RNLCERVTERV	YNVFKQILE(QTTLFFNRH	IDQLILCCLY	GVAK
Zm	RBR2b	FVRHEETLPRELKRH	LNSLEEQILES	MAWEKGSSLY	NSLPIQIFF:	SKILKLAAIRI	RNLCERITERV	YNVFKQILDÇ	QTTLFFNRH	MHQLILCCLY	GVAK
Zm	RBR2	FVRHEETLPRELKRH	LNSLEEQILES	MAWEKGSSLY	NSLPIQIFF	SKILKLAAIRI	RNLCERITERV	YNVFKQILD	QTTLFFNRH	IDQLILCCLY	GVAK
Zm	RBR3	FVRHEDTLPRELKRH	LNSLEERLLES	MAWEKGSSMY	NSLPI <mark>GVFF</mark>	SKISKLAAIRI	RSLCERLLERV	YSLVQQILSQ	QT <mark>GLFFNRH</mark>	IDQIILCSIY	GVAK
Chr	RBR	FIRHEDSLPRELRRH	LNSLEERLLES	MAWEKGSSMD	NSLPINIFF	SKIVKLAAVRII	NGMIERLRENV	YCRFHIILNG	RTSLFFNRH	IDQIILCAFY	GVAK
At	RBR	FIRHEDSLPRELRRH	LNSLEERLLES	MVWEKGSSMY	NSLPINIFF:	FKINKLAAVRI	NGMVERLRESV	YCFFQHVLAG	RTSLLFSRH	IDQIILCCFY	GVAK
Nt	RBR	FIRHEESLPRELRRH	LNSLEERLLES	MVWEKGSSMY	NSLPINVFF(KIVKLAAVRI	NGMIERLRETV	YCLFQKILS	RTSLFFNRH	IDQIILCSFY	GVAK
Nb	RBR	FIRHEESLPRELRRH	LNSLEERLLES	MVWEKGSSMY	NSLPINVFF(GKIVKLAAVRII	NGMIERLRETV	YCLFQKILS	RTSLFFNRH	IDQIILCSFY	GVAK
Sb	RBR	FIRHEESLPRELRRH	LNSLEERLLES	MVWEKGSSMY	NSLPVNVFF	SKIVKLAAVRII	NGMVERLRESV	YCLFQKILS	ORTTLFFNRH	IDQILLCCFY	GVSK
Ps	RBR	FIRYEESLPRELRRH	LNSLEERLLES	LVW <mark>EKG</mark> SSMY	NSLPISVFF	SKIVKLGAVRI	SGMVERLRENV	YCLFQRILNG	WTSLFFNRH	IDQIILCCFY	GVAK
Ee	RBR	FIRHEESLPRELRRH	LNSLEERLLES	MVWEKGSSMY	NSLPISIFF	CKINKLAAVRII	NGMIERLRENV	YRLFQQILS	RTSLFFNRH	IDQIILCCFY	GVAK
Ρt	RBR	FIRHEESLPRELRRH	LNSLEERLLDS	MVWEKGSSLY	NSLPINVFF	PKINKLAAVRII	NGMIEKLRENV	YRLFQLILS	QTSLFFNRH	ID QIILCCFY	GVAK
Cn	RBR	FVRHEETLPRELKRH	LNSLEERLLES	MAWERGSSMY	NSLPINIFF	KIVKLAAIRI	RSLCERLLEWV	YC LIQQILS(RTALFFNRH	IDQIILCSFY	GVAK
Vc	RBR1	FVRSITTLPRDLKRH	LFLVEEKILES	LAWEADSPLY	SLIKLNHFC	CKVLKLAAFRL	AVLCDNFNTKV	YQTIEHALFI	QTHLFYNRH	I <mark>D</mark> QIILSALY	GFCK
Ci	MAT3	FVKSIATLPRELKRH	LFLIEEKILEC	LAWQPGSSLY	HLIPLFEFL	RKVLKLTSFRL	ALLCENVSSKV	YETIEHALYE	QTHLFYNRH:	IDQVMLSTLY	GYCK
\mathtt{Cr}	MAT3	FVKSIATLPRELKRH	LFLIEEKILEC	LAWEPGSSLY	HLIPLFEFL	RKVLKLTSFRL	ALLCENFNSKV	YEAIEHALYE	QTHLFYNRH:	IDQIMLSTLY	GYCK
Gg	RB1	FIKVEPSLTRDMIKH	LERCEHRIMES	LAWQSDSPLF	DLIQLSLFY	KKVFRLAYLRL	HTLFFRLEPLI	WTLFQHTLQI	ESELMRDRH	LDQIMMCSMY	GICK
Hs	RB1	FIKAEGNLTREMIKH	LERCEHRIMES	LAWLSDSPLF	DLIQLSLFY	KKVYRLAYLRLI	NTLCERLEHII	WTLFQHTLQI	EYELMRDRH	LDQIMMCSMY	GICK
Mm	RB1	FIKVEANLTREMIKH	LERCEHRIMES	LAWLSDSPLF	DLIQLALFY	KKVYRLAYLRLI	NTLCARLEHII	WTLFQHTLQI	EYELMRDRH	LDQIMMCSMY	GICK
Dm	RBF	VVRHEGCLNRSLIKH	LNSIEETCLER	LAWARNSTVW	EMIPLQIFL	RKVYLLGWLRI	QKLCSELPESI	WHIFEHSITH	ETELMKDRH	LDQNIMCAIY	IYIR
Hs	RBL1	VIRSEEGLSRDMVKH	LNSIEEQILES	LAWS <mark>HD</mark> SALW	EALALALFY	RKVYHLASVRL	RDLCLKLRRKI	WTCFEFTLV	ICPDLMKDRH	LDQLLLCAFY	IMAK
Hs	RB2	FIRAEDGLCREVVKH	LNQIEEQILDH	LAWKPESPLW	EKIPLSLFF1	RKVY <mark>HLAAVRLI</mark>	RDLCAKLRKKI	WTCFEFSIIG	CPELMMDRH	LDQLLMCAIY	VMAK

	210 220
Ot RBR	DIISFYNKVFVSRVRTFLLA
Pp RBR	DIIRFYNEVFVPSTKSFLLQ
Zm RBR1	GIITFYNEVFVPAAKPFLVS
Zm RBR2b	DIITFYNEVFVPAAKPFLVS
Zm RBR2	DIITFYNEVFVPAAKPFLVS
Zm RBR3	DIITFYNEVFIPAVKSLLVE
Chr RBR	DIITFYNEVFIPSVKPLLGE
At RBR	DIITFYNEIFIPAVKPLLVE
Nt RBR	DIITFYNEMFIPSVKPLLVE
Nb RBR	DIITFYNEMFIPSVKPLLVE
Sb RBR	DIITFYNEIFVPAVKPLLVE
Ps RBR	DIISFYNEVFIPSVKPLLVE
Ee RBR	DIITFYNEIFIPAAKPLLVE
Pt RBR	DIITFYNEIFIPAAKPLLVD
Cn RBR	DIITFYNEVFIPSVKPLLVE
Vc RBR1	DIIAFYNQVFVPCMKSFLLR
Ci MAT3	DIIAFYNAVFVPAMKSFLLK
Cr MAT3	DIIGFYNAVFVPAMRNFLLK
Gg RB1	SIIVFYNLVFMQKLKTNILQ
Hs RB1	SIIVFYNSVFMQRLKTNILQ
Mm RB1	SIIVFYNSVFMQRLKTNILQ
Dm RBF	DIIHFYNHTYVPLMRQFVID
Hs RBL1	DLIKFYNTIYVGRVKSFALK
Hs RB2	DLIQFYNNIYIKQIKTFAMK

Supplemental Figure 3. Nucleotide Sequence Alignment of *Volvox RBR1* and *Chlamydomonas MAT3* Coding Sequences.

BLASTn result (basic local alignment search tool, nucleotide) using the National Center for Biotechnology Information (NCBI) databases. Numbers on both sides of the sequence alignment correspond to nucleotide numbering of *Volvox RBR1* and *Chlamydomonas MAT3* coding sequences.

Identit	ies:	637 of 962 nucleotides (66%), gaps: 45 of 962 nucleotid	des (4%).
RBR1	160	GACTACGCGGGCGAGCAGGATGAAGAGGTCAAACATCTTTGTACACAGGCGAGCCTTCTT	219
MAT3	151	GAGTATGCGGGCGACCAGGACGAGGACGTGAAGCAGGCGTGCAAGCAGGCCAGCCTGCTC	210
RBR1	220	TTCGTGGCGCGCGTACTTTTCGCGGCGCAGGCGCAAGGA-GGCAGAACAG	268
MAT3	211	TTCGTGGCGCGAGTTCTCTCCCCGGCGCAGAAGAAGGAAG	270
RBR1	269	TATCC-AACTTTGG-CTGTCCAATATCACGGATTGTTGCTGCTGCGGGCATTAATCTTCT	326
MAT3	271	CCTTCGAACTTGGGGCTTTCCATT-TCTCGCATCGTGGCTGTGGCCGGCATCAACCTGCT	329
RBR1	327	TGATTTTTTCCGCGAGGTGAATGTCGTGGTCAGCAAGCTTTCTTCATACTTTGAAGCGCG	386
MAT3	330	GGACTTCTTTCGCGAGGTGCACGTCGTCGTCGTCGGCGAGCTGTCGGCTTATTTCGAGTCGCG	389
RBR1	387	TGGGGGTAGTTCGCGATTGTTTGCGCAGCAGGCTCAGCTGAAGGAGAATTCGGAGACTGT	446
MAT3	390		449
RBR1	447	TGTAGTCATGGGTTTGCTCGCCAAAAAGTACAAGGACAATTTCGGCATGCTTCTGCATCA	506
MAT3	450	GGTCGTGATGGGACTCCTGGCCAAGAAATACAAGGACAACTTCAACACCTTCCTGCACCA	509
RBR1	507	GTTAGACTTCTTTAAGCAGATAGTGCTTAAGCTTGGGTGGAACGCATTCCTTGTGCTACG	566
MAT3	510	GCTGGACTTCTACAAGCAGGTCGTCCTGCGCCTGGGCTGGGAGCGCTTTTCTCGTGCTGCG	569
RBR1	567	GATCAAGCTTTTGAGTTCCTTTCCCGATGTCGTCAGTTGCGTTGAACTTCTACCGTGCGT	626
MAT3	570	AGTCAAGCTCCTGAGCGCGTTTCCCGACGTTGTGGAGCTGTGGGGCTGCTGCCGCCTGCAT	629
RBR1	627	TTTCGCCATCCTCGTTAGTCACGCCCCGCAGCTTCCAGACTGCCTTAGCCATGTCAGTGG	686
MAT3	630	CTTCGCCATCCTTGCCAGCCATGCGCCGCGTCTTCCGGACTGCCTCACGCACATCACGCG	689
RBR1	687	GGCAGAATACCGTTCAGCACTTCTCAAATCACTTTCAGAGATATGCAAGGCAGACT	742
MAT3	690	GGAAGACCGGGGGAAGTTTCTCCTGAAGAGCA-TGGCGGACACGTGCAAGGCGGACT	745
RBR1	743	ACAGCAGGGTGCAGGCGCGTATTCCCAGTGTCGAAGCTCTGCTCTCATGTCCTGACGT	802
MAT3	746	ACGGGCGCGTGCAGGCGCGGATGCCAAGCGTGGAGGCGCTACTCACGCAAGTGTTCACTA	805
RBR1	803	CTGCTGTTCCAGAATGGCGGGGGGGGGGGGGCGTCCCATGCCCAATTGGAATCAAACTTAGCAA	862
MAT3	806	GTGCCGTGCCGGAGTGGCGCACAGCGGTAGCGGAGGCGAAGGCG	849
RBR1	863	AAAGTGCAACCGCA-GCGGAAAAGTGCAC-ATTTCCGGGGGTTGTGGACCTTGTATCT	918
MAT3	850	AAGGCGCTGTCGGACGCGTCGGGCCCTGCTGCCGTTGGAGGCGTGGACCTGGTTGCT	906
RBR1	919	AGTCGTTTGCTGGAGGGCCTTGTCACAGATGGCAATCGCATGCAGCGCGCACTTTCTGCG	978
MAT3	907	TCGCCGGTGCTGGAGGGCCTGGTGACGGACACGGACCGCATGAACCGCGTCGTGGCCGCT	966
RBR1	979	TTGGAGACGGAATACGCGCAGCATTACACACGCGGCGGCAGCGAACTCGATGAAAGAGAG	1038
MAT3	967	CTGGAGCGCGAGTATGAGCAGCACTACTCGCGCGGCGCCACGGAGCTGGACGAGCGCGAG	1026
RBR1	1039	TTCTTGTTCACAGACTTCACAAAATTTGCATCGCCCCGTTTTTCACCACGGCACATGCAG	1098
MAT3	1027	TTCCTGTCCACGGACTTCACCAAGTTTGCGTCGCCGCGCGCTTCTCGCCGGGGCACATGCAC	1086
RBR1	1099	TC 1100	
MAT3	1087	TC 1088	

Identit	ies: 2	251 of 365 nucleotides (68%), gaps: 6 of 365 nucleotide	es (1%).
RBR1	1558	GAGCGGCGTATTGAGGTCACTAAGGTATATTACCTTAGCCTGGAGCGCATCTTGCAGGCC	1617
MAT3	1516	GAGCGGCGTATTGAAGCCACCAAGCTGTACTGCCACAGCCTGGACACCATCCTGCAGAAC	1575
RBR1	1618	GAGGAGAAGAACAACGGTGTGGCAGGTGTTACT-TCCCTCCTTTCAGCTGGCAAGTTCCA	1676
MAT3	1576	GAACAG-CGCACAAACGGGCTGCCGCCGCGCGCGCGCGCGCGCCGCCCAGTTCCA	1634
RBR1	1677	TCGCGCCTTAGTTGCGTGTTCTGCCGAGGTGGTGACTGCATGCTATCGCATGGTTTCT	1734
MAT3	1635	GCGCGGCCTCATTGCCTGCTGCATCGAGGTCGTGGCGGCCTGCTACCGCATGGTCTCC	1692
RBR1	1735	TGTACGTTCCCAAAAGTGTTGGATGCATTACATATCAAGGCGTTTGACTTGGCCAAGATG	1794
MAT3	1693	TGCGCCTTTCCCAATGTGCTGGACGCGCTGCGCATCAAGGCCTTCGACATGGCCAACATC	1752
RBR1	1795	ATACAATGCTTCGTCAGGAGTATTACAACGTTGCCCCGGGATCTCAAACGGCACCTTTTC	1854
MAT3	1753	ATCGGCACCTTCGTCAAGAGCATCGCCACGCTGCCGCGTGAGCTCAAGCGCCACTTGTTC	1812
RBR1	1855	CTCGTTGAAGAAAAAATCCTCGAATCCTTGGCGTGGGAGGCGGATTCTCCACTCTACAGC	1914
MAT3	1813	CTGATCGAGGAGAAGATCCTGGAGTGTCTGGCTTGGGAGCCGGGCTCGTCACTCAC	1872
RBR1	1915	CTCAT 1919	
MAT3	1873	LI II CTGAT 1877	

Identities: 248 of 347 nucleotides (71%), gaps: 0 of 347 nucleotides (0%).

RBR1	2230	AAGGTACTGAAGCTTGCCGCCTTCAGGCTTGCGGTCTTATGCGATAACTTTGACTTCAGT	2289
MAT3	2461	AAGGTGCTGAAGCTCACGTCGTGTCCGCCTGGCGCTGCTGTGCGAGAACTTCGATTTCAGC	2520
RBR1	2290	CCCTTGCAACGTCTAGATGTCAATACAAAGGTGTATCAGACCATCGAGCATGCTCTGTTC	2349
MAT3	2521	CCGCTAGAGGGGCCCCGAGGTCAACAGCAAGGTGTACGAGGCCATTGAGCATGCGCTGTAC	2580
RBR1	2350	TTCCAGACACACTTGTTCTATAATCGGCACATCGACCAGATAATCCTCTCGGCACTTTAT	2409
MAT3	2581	AAGCAGACGCACCTGTTCTACAACCGCCACATCGACCAGATCATGCTGTCGACACTGTAC	2640
RBR1	2410	GGTTTTTGCAAAGTTCACAGGCTGGCCCAGGTTTCATTCGTGAAATAATCGCACATTAC	2469
MAT3	2641	GGCTACTGCAAGGTGCACAAGCTGTCGCAGGTCTCCTTCCGCGAGATCATCGCGCAGTAC	2700
RBR1	2470	CGCAAGCAGCCTCAAGCACAACCGTCCATATTCCGTTCGGTCGTGGTTGAGCAGTCAAAT	2529
MAT3	2701	CGCAAGCAGCCGCAGGCGCAGCAGTCGATCTTCCGCTCGGTCGTCATCGACCAGGTGCTG	2760
RBR1	2530	CCAAGCTTGCAGGTGGGGGGGGGGGGGGGGGGGGGGGGG	
MAT3	2761	CCAACGCTGCAGATCCAGTCGCGCGCCGACATCATCGGCTTCTACAA 2807	

Identities: 39 of 48 nucleotides (81%), gaps: 0 of 48 nucleotides (0%).

RBR1	3004	GAGCACCAAATACCAGATGGCTTAGCGGCACTGCTGCAGGCACTGGAC	3051
MAT3	3319	GAGCATAAGATTCCAGAGGGCTTGGCCGCACTGCTGCAGGCGTTGGAC	3366

Supplemental Figure 4. Amino Acid Sequence Alignment of Volvox RBR1 and Chlamydomonas MAT3.

BLASTp result (basic local alignment search tool, protein) using the National Center for Biotechnology Information (NCBI) databases. Numbers on both sides of the sequence alignment correspond to amino acid residue numbering of *Volvox* RBR1 and *Chlamydomonas* MAT3. Identical and similar ("+") amino acid residues are given between the sequences.

Identi	ities:	381 of 639 residues (59%), similarities: 471 of 639 residu	es (73%),
gaps:	25 of	639 residues (3%).	
RBR1	17	LLKEVNFGDAIS-QEGFLQLYRELRASYECQENASPASDYAGEQDEEVKHLCTQASLLFV L+K + G+ + Q L+LY EL+ +YE QE A+P +YAG+QDE+VK C QASLLFV	75
МАТЗ	14	LIKGLTIGNVPALQPDVLELYAELKGAYEAQERAAP-REYAGDQDEDVKQACKQASLLFV	72
RBR1	76	ARVLFAAQAQGGRT-VSNFGCPISRIVAAAGINLLDFFREVNVVVSKLSSYFEARGG ARVL AAQ + G T SN G ISRIVA AGINLLDFFREV+VVVS+LS+YFE+RG	131
МАТЗ	73	ARVLSAAQKKEKDGSETQPSNLGLSISRIVAVAGINLLDFFREVHVVVSELSAYFESRGS	132
RBR1	132	SSRLFAQQAQLKENSETVVVMGLLAKKYKDNFGMLLHQLDFFKQIVLKLGWNAFLVLRIK SS+ F+QQA LKENSETVVVMGLLAKKYKDNF LHQLDF+KQ+VL+LGW+AFLVLR+K	191
MAT3	133	SSKQFSQQALLKENSETVVVMGLLAKKYKDNFNTFLHQLDFYKQVVLRLGWSAFLVLRVK	192
RBR1	192	LLSSFPDVVSCVELLPCVFAILVSHAPQLPDCLSHVSGAEYRSALLKSLSEICKADYSRV LLS+FPDVVSCVELLPC+FAIL SHAP+LPDCL+H++ + LLKS+++ CKADY RV	251
МАТЗ	193	LLSAFPDVVSCVELLPCIFAILASHAPRLPDCLTHITREDRGKFLLKSMADTCKADYGRV	252
RBR1	252	QARIPSVEALLSHVLTSAVPEWREAASHAQLESNLAKSATAAEKCTFPGVVDLVSSRLLE QAR+PSVEALL+ V TSAVPEWR A + A+ AK+ + A G VDLV+S +LE	311
MAT3	253	QARMPSVEALLTQVFTSAVPEWRTAVAEAKAKALSDASGPAAVGGVDLVASPVLE	307
RBR1	312	GLVTDGNRMQRALSALETEYAQHYTRGGSELDEREFLFTDFTKFASPRFSPRHMQSAVMK GLVTD +RM R ++ALE EY QHY+RG +ELDEREFL TDFTKFASPRFSP HM S + K	371
MAT3	308	GLVTDTDRMNRVVAALEREYEQHYSRGATELDEREFLSTDFTKFASPRFSPGHMHSTMAK	367
RBR1	372	LRAGPLPIRQGSLLGPGAHTTASYAISPSSMNPKTSLLARMHSPLPKLNLGVETGPPV LR+G +P+R G LGPG HT +P+ P+ L +HSPLP ++L G P	429
MAT3	368	LRSGSMPLRSGGPLGPGLHTATPAHPGPQQLHLVPLGLHSPLPMMHLNAGPGVPG	422
RBR1	430	TPVSEIMSTSAWLRGITASLAAEPSPSVMRYLAEVAVPPDGEQGACVTVTLSAAEQLNQR TP+SE M SAWLRG+T+++ AEPSP++ R+LA A+P + V +QL +R	489
MAT3	423	TPISEAMGASAWLRGVTSNMVAEPSPTLQRFLAALPINSNSSGPTPVQQLMKR	475
RBRI	490	VQELVSCIMPEEKIPSLLGSFPLLQPSLVSERRIEVTKVYYLSLERILQAEEKNNGVAGV V++LV+ ++P+E PSLLG FPLL SL ERRIE TK+Y SL+ ILQ E++ NG+	549
MAT3	476	VRDLVASVIPDEAAPSLLGPFPLLNTSLGVERRIEATKLYCHSLDTILQNEQRTNGLPAA	535
RBRI	550	TSLLSAGKFHRALVACSAEVVTACYRMVSCTFPKVLDALHIKAFDLAKMIQCFVRSITTL +LL + KF R L+AC EVV ACYRMVSC FP VLDAL IKAFD+A +I FV+SI TL	609
MAT3	536	LALLGSAKFQRGLIACCIEVVAACYRMVSCAFPNVLDALRIKAFDMANIIGTFVKSIATL	595
RERI	610	PRDLKRHLFLVEEKILESLAWEADSPLYSLICSTVAQDE 648 PR+LKRHLFL+EEKILE LAWE S LY LI + ++E	
MAT3	596	PRELKRHLFLIEEKILECLAWEPGSSLYHLIVNVHTENE 634	

Identities: 116 of 194 residues (59%), similarities: 142 of 194 residues (73%), gaps: 3 of 194 residues (1%).

RBR1	695	FSPVKKAR-MEGSQHAVHRYLRKLPPCIGAKFVESAHTDGCAAALNHFCCKVLKLAAFRL SP KKAR +G H+ Y+ LP +G + G A L F KVLKL +FRL	753
МАТЗ	772	MSPAKKARGTDGGAHSTQSYIESLPNAVGFP-PAAGAAQGQAGLLFEFLRKVLKLTSFRL	830
RBR1	754	AVLCDNFDFSPLQRLDVNTKVYQTIEHALFFQTHLFYNRHIDQIILSALYGFCKVHRLAQ A+LC+NFDFSPL+ +VN+KVY+ IEHAL+ QTHLFYNRHIDQI+LS LYG+CKVH+L+Q	813
МАТЗ	831	ALLCENFDFSPLEGPEVNSKVYEAIEHALYKQTHLFYNRHIDQIMLSTLYGYCKVHKLSQ	890
RBR1	814	VSFREIIAHYRKQPQAQPSIFRSVVVEQSNPSLQVGRRADIIAFYNQVFVPCMKSFLLRS VSFREIIA YRKQPQAQ SIFRSVV++Q P+LQ+ RADII FYN VFVP M++FLL+S	873
МАТЗ	891	VSFREIIAQYRKQFQAQQSIFRSVVIDQVLPTLQIQSRADIIGFYNAVFVPAMRNFLLKS	950
RBR1	874	GKGEYPGTIGPTIG 887 + G GP +G	
MAT3	951	-ESNGSGASGPGLG 963	

Identities: 41 of 111 residues (36%), similarities: 56 of 111 residues (50%), gaps: 13 of 111 residues (11%).

RBR1	1002	EHQIPDGLAALLQALDSQQGGADNCGTESQQYCEVGSRLNAGPGWVLRPVGLDGGPKSCT	1061
		EH+IP+GLAALLQALDSQ+ +N E ++ EV + V R T	
MAT3	1107	EHKIPEGLAALLQALDSQKAAEENTAEEEEEEEEVDADEEQPQARVTRSGRT	1158
RBR1	1062	GLDQSFNGQAACAGLDVFDDADTYDCSQFQKTCRRQRTPNRKHGSD 1107	
RBR1	1062	GLDQSFNGQAACAGLDVFDDADTYDCSQFQKTCRRQRTPNRKHGSD 1107 D+S + + DD D + D Q+T RRQRTPNR++G+D	

Supplemental Figure 5. Expression Level of *RBR1* Splice Variants in Female *Volvox* Relative to the Background Noise Obtained in Real-Time PCR Experiments with Male *Volvox*.

The expression level (prior to embryogenesis) of the four *RBR1* splice variants (var1 to var4) in female *Volvox* was compared to the background noise obtained in real-time PCR experiments with male 281-1. Error bars refer to the standard deviation (S.D.) of the y-value. All real-time RT-PCR experiments were carried out in triplicate from technical repeats.

Supplemental Figure 6. Localization of PCR Primers and DNA Gel Blot Probes within the *RBR1* Gene Used to Confirm the Absence of the *RBR1* Gene in Males.

The localization of sequences coding for N1-N3 domains as well as A and B domains are indicated within the physical map of exon and intron segments in the *Volvox RBR1* gene (splice variant 1). Standard PCR primers are given in green and degenerate PCR primers are given in red. Horizontal bars indicate the relative position of the primers given above the bars. Probes for DNA gel blot analyses are indicated in blue. The length of each probe is indicated in bp. ATG, translation start site; asterisk (*), translation stop site; thick horizontal bars, exons; numbers above exons, numbering of exons; thinner horizontal bars, introns and 5'- and 3'-UTRs; thinnest horizontal bars, upstream and downstream sequences.

Supplemental Figure 7. Presence of *RBR1* in Male Transformants: PCR Results with *RBR1*-Specific Primers.

Genomic DNA of the males TRef1, T175-6-1, T175-3-2 and T175-4-6 was analyzed by PCR using *RBR1*-specific primers (sequences presented in Supplemental Table 2 online). TRef1 is a transgenic male descendant of 281-1 that has been transformed only with the *nit*A selectable marker gene, and transformants T175-6-1, T175-3-2 and T175-4-6 are descendants of 281-1 that have been transformed with both the *nit*A gene and the female *RBR1* gene.

The expected sizes of *RBR1* fragments were as follows:

(A) 274 bp (primers ON12 and ON01).

(B) 449 bp (primers ON36 and ON37).

The localization of PCR primers is indicated on the map of the *RBR1* gene in Supplemental Figure 6 online.

Supplemental Table 1. Sequence Comparison of Putative Orthologs Identified Both at the Mating Type Locus of *C. reinhardtii* and on a Small Genomic Fragment of the Female *V. carteri* Genome (Scaffold 43) that Contains the *RBR1* Gene.

Number	Gene product / Protein	Protein ID	Protein ID	Percent identity	Percent similarity
(As		V. carteri	C. reinhardtii	(Number of	(Number of similar
given in				identical amino	amino acid
the				acid residues / total	residues / total
text)				number of	number of
				residues)	residues)
1	Spermine synthase	76291	206416	76.36%	87.54%
				(239/313)	(274/313)
2	Protein of unknown	127490	182394	76.33%	83.43%
	function			(129/169)	(141/169)
3	Predicted Na ⁺ -dependent	82799	112377	78.88%	88.45%
	cotransporter			(239/303)	(268/303)
4	AMP-activated protein	82801	112765	83.40%	91.12%
	kinase			(216/259)	(236/259)
5	N-myristoyl transferase	106391	97790	78.06%	85.97%
				(306/392)	(337/392)
6	Splicing factor 3a,	106397	196072	73.87%	79.09%
	subunit 2			(212/287)	(227/287)
7	Vacuolar ATP synthase,	106399	187322	73.99%	87.94%
	subunit C			(276/373)	(328/373)
8	Cytoplasmic dynein 1b	64869	24009	86.61%	92.96%
	heavy chain			(3765/4347)	(4041/4347)
9	Hydroxyproline-rich	118743	195937	34.63%	44.59%
	glycoprotein			(160/462)	(206/462)
10	Retinoblastoma-related	127148	187248	45.99%	61.1%
	protein RBR1/MAT3			(566/1231)	(752/1231)
11	Predicted sugar kinase	82819	126745	88.37%	93.02%
				(304/344)	(320/344)

Protein IDs are as given in the sequence databases maintained by the DOE Joint Genome Institute. See JGI *C. reinhardtii* genome portal 3.0 (http://genome.jgi-psf.org/Chlre3/Chlre3.home.html) and JGI *V. carteri* genome portal 1.0 (http://genome.jgi-psf.org/Volca1/Volca1.home.html).

Supplemental Table 2. Oligonucleotide Primers.

Primer name	Primer sequence	Comment
ON01	5'-CGTGACTAACGAGGATGGC	<i>RBR1</i> , 19-mer
ON02	5'-GTATGTGTTTCGCTCGACGG	<i>RBR1</i> , 20-mer
ON03	5'-ATCGCATAAGACCGCAAGCC	<i>RBR1</i> , 20-mer
ON04	5'-CGCAGCAGGCTCAGCTGAAG	<i>RBR1</i> , 20-mer
ON05	5'-ATGAGCTGCTGACAGTTCGC	<i>RBR1</i> , 20-mer
ON06	5'-TGACTGCATGCTATCGCATG	<i>RBR1</i> , 20-mer
ON07	5'-TTGGTTACCGTCCTCGGTTC	<i>RBR1</i> , 20-mer
ON08	5'-AGCCCTGACAATGTTACTGG	<i>RBR1</i> , 20-mer
ON09	5'-CGTCCTTCATATGCTCGAAG	<i>RBR1</i> , 20-mer
ON10	5'-GACGAAGCATTGTATCATCTTG	<i>RBR1</i> , 22-mer
ON11	5'-TAGAGATTAACCGACCTAACG	<i>RBR1</i> , 21-mer
ON12	5'-GCAGATAGTGCTTAAGCTTGG	<i>RBR1</i> , 21-mer
ON13	5'-CGGCAGCATTAAACCATTTCTG	<i>RBR1</i> , 22-mer
ON14	5'-CGATGGTCTGATACACCTTTGT	<i>RBR1</i> , 22-mer
ON15	5'-AACCTGGGCCAGCCTTTGT	<i>RBR1</i> , 19-mer
ON16	5'-CTGTGGCGAAGCAGTCAAATC	<i>RBR1</i> , 21-mer
ON17	5'-CTGCGCAAACAATCGCGAAC	<i>RBR1</i> , 20-mer
ON18	5'-CTGCTGCGGGCATTAATCTTC	<i>RBR1</i> , 21-mer
ON19	5'-GATTGACCCGAAAGATAGCAGG	<i>RBR1</i> , 22-mer
ON20	5'-TGAGAAGACGTACGAGCTGC	β-actin, 20-mer
ON21	5'-CCTCCATGCCGATTAGGCTA	β-actin, 20-mer
ON22	5'-CAATCCGTGATATTGGACAGC	<i>RBR1</i> , 21-mer
ON23	5'-CTKGAYTTYWTYCGCGAGGTG	RBR1, 21-mer, 32-fold degeneracy
ON24	5'-TCTCCTKSAGCWGMGCCTGCT	RBR1, 21-mer, 16-fold degeneracy

ON25	5'-GCTYYTGAGYKCSTTTCCCGA	RBR1, 21-mer, 32-fold degeneracy
ON26	5'-TGSSYRAGGCAGTCYGGAAG	RBR1, 20-mer, 32-fold degeneracy
ON27	5'-TGCTGGAGGGCCTKGTSAC	RBR1, 19-mer, 4-fold degeneracy
ON28	5'-GASTGCATGTGCCSYGGYG	RBR1, 19-mer, 16-fold degeneracy
ON29	5'-GAGTTCYTGTYYACRGACTTCAC	RBR1, 23-mer, 16-fold degeneracy
ON30	5'-AGCCAYGCRGACGYGCYCATT	RBR1, 21-mer, 16-fold degeneracy
ON31	5'-TTCTAYAAYCGSCACATCGACCA	RBR1, 23-mer, 8-fold degeneracy
ON32	5'-GCYTGMGGCTGCTTGCGGTA	RBR1, 20-mer, 4-fold degeneracy
ON33	5'-TACCGCAAGCAGCCKCARGC	RBR1, 20-mer, 4-fold degeneracy
ON34	5'-TCRAYSACGACCGARCGGAA	RBR1, 20-mer, 16-fold degeneracy
ON35	5'-GAGCAGGATGAAGAGGTCAAAC	<i>RBR1</i> , 22-mer
ON36	5'- AGCCAGCACGCTGTTCATC	<i>RBR1</i> , 19-mer
ON37	5'- CAAAAACCATAAAGTGCCGAGAGG	<i>RBR1</i> , 24-mer

Supplemental Table 3. Comparison of a Subset of Sex-Related and Sex-Unrelated Proteins of *C. reinhardtii* with the Corresponding Putative Orthologs of *V. carteri*.

C. reinhardtii protein	Putative orthologous protein in	Percent	Percent	Sex-
	V. carteri	identity	similarity	related?
		(Number of	(Number of	
		identical amino	similar	
		acid residues /	amino acid	
		total	residues / total	
		number of	number of	
		residues)	residues)	
Retinoblastoma-related protein	Retinoblastoma-related protein	45.99%	61.10%	Yes
MAT3	RBR1	(566/1231)	(752/1231)	
(Acc. No. AF375824)	(Acc. No. EF123087)			
Plus mating structure				Yes
glycoprotein FUS1	(no significant putative			
(Acc. No. U49864)	ortholog)			
Minus dominance protein MID	Putative transcription factor	34.21%	76.31%	Yes
(Acc. No. U92071)	with RWP-RK motif	(26/76)	(58/76)	
	(V. carteri protein ID 127314)			
Minus agglutinin SAD1	Putative forkhead transcription	17.45%	25.30%	Yes
(Acc. No. AY450929)	factor	(493/2826)	(715/2826)	
	(V. carteri protein ID 94393)			
Small G-protein	Small G-protein	95.10%	99.00%	No
YPTC1/RABD1	YptV1	(193/203)	(201/203)	
(Acc. No. U13168)	(Acc. No. M93438)			
β1-Tubulin	β1-Tubulin	99.70%	99.70%	No
(Acc. No. M10064)	(Acc. No. X12855)	(442/443)	(442/443)	
Actin	Actin	98.10%	99.50%	No
(Acc. No. D50838)	(Acc. No. M33963)	(370/377)	(375/377)	
Nitrate reductase NIT1	Nitrate reductase NitA	80.70%	95.90%	No
(Acc. No. XM_001696645)	(Acc. No. X64136)	(697/864)	(829/864)	
Oxygen-evolving enhancer	Oxygen-evolving enhancer	88.00%	96.90%	No
protein 1, PSBO	protein 1, PsbO	(257/292)	(283/292)	
(Acc. No. XM_001694647)	(Acc. No. AF110780)			
Light harvesting protein LHCA9	Light harvesting protein LhcA	87.80%	97.60%	No
(Acc. No. XM_001692496)	(Acc. No. AF110787)	(187/213)	(208/213)	
Bi-ubiquitin	Polyubiquitin	100.00%	100.00%	No
UBQ1a	UbiA	(152/152)	(152/152)	
(Acc. No. XM_001701327)	(Acc. No. X74214)			