Supporting Information

Ni(II), Cu(II), and Zn(II) diethyldithiocarbamate complexes show various activity against proteasome in a breast cancer cell line

Table of Contents

- 1. Basic Information & Reaction Yields
- 2. Crystal Structure Determination
- 3. Crystal Data & Structure Refinement
- 4. Molecular Structures of Monomer Complexes
- 5. Molecular Structures of Dimers
- 6. Inhibition of MDA-MB-231 Cell Proliferation
- 7. Apoptotic Morphological Changes in MDA-MB-231Cell Line
- 8. Proteasomal Activity in Intact MDA-MB-231 Cells
- 9. Activity of Purified 20S Proteasome

 Table 1. Basic Information & Reaction Yields.

Compound	Formula	Mr	Color	Yield (%)	Dimer
Cu(EtDTC) ₂	$CuC_{10}H_{20}N_2S_4$	360.06	brown	60	yes
Zn(EtDTC) ₂	$ZnC_{10}H_{20}N_2S_4$	361.89	white	45	yes
Ni(EtDTC) ₂	$NiC_{10}H_{20}N_2S_4$	355.24	green	70	not

Crystal Structure Determination

Complexes were crystallized from mixtures of diethylether and acetone.

The intensity data were collected on a KUMA KM-4 CCD kappa-axis diffractometer using a graphite monochromatized Mo-K α radiation ($\lambda = 0.71069$ Å). The structure was solved by direct methods. Non-hydrogen atoms were refined anisotropically while hydrogen atoms were inserted in calculated positions and isotropically refined assuming a "ride-on" model. The crystal data for compound **1** and other pertinent information are summarized in Table 1. Table 2 contains atomic parameters of non-hydrogen atoms and a list of interatomic distances and angles is in Table 3. The programs used were: SHELX-97 [1] program package for the structure determination and structure refinement and tables, and the drawings were made by XP program of Bruker SHELXTL V5.1 [2] program package.

CCDC 654111 - 654116 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html

[or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; E-mail: <u>deposit@ccdc.cam.ac.uk</u>]

[1] G.M.Sheldrick: SHELX-97 program package, University of Goettingen 1997[2] G.M. Sheldrick: SHELXTL V 5.10, Bruker AXS Inc., Madison, WI, 1997

Empirical formula	$C_{10}H_{20}N_2S_4Ni$	$C_{10}H_{20}N_2S_4Zn$	$C_{20}H_{40}N_4S_8Cu_2$		
Formula weight	355.24	361.89	720.12		
Temperature	120 K				
Wavelength	0.71069 Å				
Crystal system	Monoclinic	Monoclinic	Monoclinic		
Space group	P2(1)/c	P2(1)/n	P2(1)/n		
Unit cell dimensions	a = 6.0571(12)Å	a = 9.763(2)Å	a = 9.6740(19)Å		
	b = 11.445(2)Å	b = 10.684(2)Å	b = 10.554(2)Å		
	c = 11.549(2)Å	c = 15.658(3))Å	c = 15.498(3)Å		
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$		
	$\beta = 95.89(3)^{\circ}$	$\beta = 103.97(3)^{\circ}$	$\beta = 101.67(3)^{\circ}$		
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$		
Volume	796.4(3) A ³	1584.9(5) A ³	1549.6(5) A ³		
Z	2	4	2		
Calculated density	1.481 Mg.m ⁻³	1.517 Mg.m ⁻³	1.543 Mg.m ⁻³		
Absorption coefficient	1.724 mm^{-1}	2.058 mm^{-1}	1.929 mm^{-1}		
F(000)	372	752	748		
Crystal size	0.25 x 0.10 x 0.07 mm	0.25 x 0.20 x 0.15 mm	0.25 x 0.20 x 0.10 mm		
θ range for data collection	3.55 to 27.25 $^\circ$	3.29 to 27.24 °	3.31 to 27.16 $^{\circ}$		
Limiting indices	-7<=1x=7,-14<=1x=12,-14<=14	-12<=h<=9,-13<=k<=13,-17<=k<=19	-12<=1<+12,-12<=1<+13,- 19<=1<:9		
Reflections collected / unique	6983/1658 [R _{int} =0.0733]	11500/3272 [R _{int} =0.0868]	10737/3219 [Rint=0.0542]		
Completeness to $2\theta=25,00$	99.6 %	99.7 %	99.7 %		
Absorption correction	Psi-scan	Psi-scan	Psi-scan		
Max. and min. transmission	1.000 and 0.757	1.000 and 0.839	1.000 and 0.535		
Refinement method	Full-matrix least-squares on F ²				
Data / restrains / parameters	1658 / 0 / 81	3272/0/158	3219/0/158		
Goodness-of-fit on F ²	1.051	1.059	1.063		
Final R indices [I>2 σ (I)]	R1=0.0372, wR2=0.1013	R1=0.0369, wR2=0.0971	R1=0.0298, wR2=0.0810		
R indices (all data)	R1=0.0378, wR2=0.1023	R1=0.0376, wR2=0.0981	R1=0.0305, wR2=0.0817		
Largest diff. Peak and hole	1.064 and -0.592 e.Å ⁻³	1.075 and -0.905 e.Å ⁻³	0.693 and -0.756 e.Å ⁻³		

 Table 2. Crystal Data & Structure Refinement.

Figure 1. Molecular structures of Monomer Complexes.

Figure 2. Molecular Structures of Dimers.

Figure 3. Inhibition of Breast Cancer MDA-MB-231 Cell Proliferation.

MDA-MB-231 cells were plated in 96-well plate and treated with Cu(EtDTC)₂, Zn(EtDTC)₂, or Ni(EtDTC)₂ for 24 hours, as indicated. DMSO was used as a solvent control. After the treatment, medium was removed and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) (1 mg/ml PBS) was added to each well. The cells were then incubated at 37°C for 4 h to allow for complete cleavage of the tetrazolium salt by metabolically active cells. Next, MTT was removed and 100 μ l of DMSO was added, followed by colorimetric analysis using a multilabel plate reader at 560 nm (Victor³; PerkinElmer (Wellesley, MA, USA)). Cu(EtDTC)₂ and Zn(EtDTC)₂, were equally potent by inhibiting about 90% of cell proliferation at both concentrations used, while Ni(EtDTC)₂ inhibited less than 10% of cell proliferation at 10 μ M and about 20% at 20 μ M.

Figure 4. Apoptotic Morphological Changes in MDA-MB-231Cell Line.

MDA-MB-231 cells were treated with 20 μ M concentration of each compound for 24 hours. A Zeiss (Thornwood, NY) Axiovert 25 microscope with phase contrast was used for cellular morphology imaging. Apoptotic morphological changes were observed in the cells treated with Cu(EtDTC)₂ and Zn(EtDTC)₂.

MDA-MB-231 cells were treated with each compound at 20 μ M for 24 hours, harvested and used for whole cell extract preparation. Ten (10) μ g of cell extract was then incubated with fluorogenic peptide substrate Suc-LLVY-AMC (specific for CT-like activity), in 100 μ l of assay buffer (25 mM Tris–HCl, pH 7.5). After 2 h incubation at 37°C, inhibition of proteasomal CT-like activity was measured by the release of hydrolyzed AMC groups. Cu(EtDTC)₂ and Zn(EtDTC)₂ inhibited ~90% of the proteasomal CT-like activity, while no inhibition was found after Ni(EtDTC)₂ treatment.

Figure 6. Inhibition of Purified 20S Proteasome by Diethyldithiocarbamate Complexes.

Purified rabbit 20S proteasome (17.5 ng) was incubated with fluorogenic peptide substrate Suc-LLVY-AMC (specific for CT-like activity), in 100 μ l of assay buffer (25 mM Tris–HCl, pH 7.5) in the presence of different compounds at various concentrations or equivalent volume of solvent DMSO as a control. After 2 h incubation at 37°C, inhibition of proteasomal CT-like activity was measured by the release of hydrolyzed AMC groups. All three compounds showed only minor effect against the purified rabbit 20S proteasome, with IC₅₀ > 50 μ M.