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Web Appendix A: Demonstration of the Existence of Joint Densities Satisfying

the Semiparametric Model

At the end of Section 2 of the main paper, the semiparametric model framework within

which we derive the proposed methods is stated, and is repeated here for convenience.

The data from a clinical trial are denoted by (Yi, Xi, Zi), i = 1, . . . , n, assumed iid across

i, where Y denotes the response of interest; X is a vector of baseline auxiliary covariates; and

Z = 1, . . . , k depending on to which of k possible treatment groups subject i was randomized,

with randomization probabilities P (Z = g) = πg, g = 1, . . . , k,
∑k

g=1 πg = 1. Randomization

guarantees that Z⊥⊥X. We assume that interest focuses on a parameter β involved in charac-

terizing treatment comparisons, defined in the context of a model for the conditional density

of Y given Z, pY |Z(y|z; θ, η), where θ = (βT , γT )T . Here, γ represents a finite-dimensional

vector of possible additional parameters, and η is a finite- or infinite-dimensional nuisance

parameter required to describe fully the class of models under consideration. Examples of

such models are discussed in Section 2 of the main paper.

The semiparametric model introduced in Section 2 of the main paper consists of all joint

densities pY,X,Z(y, x, z ; θ, η, ψ, π) = pY,X|Z(y, x | z; θ, η, ψ)pZ(z;π) such that the conditional

densities for (Y,X) given Z, denoted pY,X|Z(y, x | z; θ, η, ψ), satisfy

(i)

∫
pY,X|Z(y, x | z; θ, η, ψ) dx = pY |Z(y|z; θ, η), (A.1)

(ii)

∫
pY,X|Z(y, x | z; θ, η, ψ) dy = pX(x), (A.2)

where pX(x) refers to any arbitrary marginal density for the auxiliary covariates, and (ii)
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follows because Z⊥⊥X. The additional nuisance parameters ψ and η together are used to

specify conditional densities satisfying (i) and (ii).

We now demonstrate that joint distributions for (Y,X,Z) satisfying conditions (i) and

(ii) in (A.1) and (A.2) may be constructed. For simplicity, we consider scalar Y and a

two-armed trial, k = 2; extensions to vector Y and arbitrary k ≥ 2 are straightforward.

Begin with a given marginal density pX(x) for X and the conditional density pY |Z(y|z; θ, η)

of interest. A joint distribution for (Y,X,Z) may then be developed through the following

steps:

1. Generate X from pX(x).

2. GenerateW0 andW1 from any arbitrary conditional densities pW0|X(w0 |x) and pW1|X(w1 |x),

where, clearly, W0 and W1 have marginal densities

pWk
(wk) =

∫
pWk|X(wk |x)pX(x) dx, k = 1, 2.

A transformation of these variables is used in step 4 below to derive the response

variable Y .

3. Generate a random Bernoulli Z random variable (taking values 1 and 2) independently

of X, W0, and W1, with “success” probability P (Z = 2) = π2. (Here, P (Z = 1) =

π1 = 1 − π2.)

4. Let FWk
(u) = P (Wk ≤ u), k = 1, 2, be the cumulative distribution functions (cdfs)

for Wk, k = 1, 2, and write FY |Z=k(u; θ, η) = P (Y ≤ u |Z = k; θ, η), k = 1, 2, the cdfs

corresponding to pY |Z(y|z; θ, η). Generate Y as

Y = I(Z = 1)F−1
Y |Z=1{FW1

(W1); θ, η} + I(Z = 2)F−1
Y |Z=2{FW2

(W2); θ, η}.
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This construction guarantees that Z⊥⊥X, that the conditional distribution of Y given Z

has the required density pY |Z(y|z; θ, η), and allows for flexible relationships for (Y,X) given

Z. The derivation may be generalized straightforwardly to vector Y , as in the case of

longitudinal response.

Web Appendix B: Derivation of Estimating Functions for Treatment Effect

We consider the semiparametric framework given at end of Section of 2 in the main paper,

restated in Web Appendix A, and apply the principles of semiparametric theory to derive

equation (12) of the main paper.

Before we present the detailed argument, we summarize the general approach. Under

the semiparametric theory perspective, one views estimating functions as elements of the

Hilbert space H consisting of all functions h(Y,X,Z) such that E{h(Y,X,Z)} = 0 and

E{h(Y,X,Z)Th(Y,X,Z)} <∞ (e.g., Tsiatis, 2006, Chapter 2). The advantage of consider-

ing estimating functions as elements of H is that geometric principles may be used to derive

the form of all estimating functions and to assess the relative efficiencies of the estimators

corresponding to them. The derivation makes use of the critical result that, under suitable

regularity conditions, all estimating functions for estimators of finite-dimensional parameters

of interest in semiparametric models are orthogonal to the so-called nuisance tangent space,

a certain linear subspace of H (see Tsiatis, 2006, Chapter 4, for general discussion). Thus,

the argument involves characterizing the nuisance tangent space and its orthogonal comple-

ment, in which estimating functions for a particular problem lie. In our case, then, the key to

deriving semiparametric estimators for the parameter θ in our framework is to describe the

nuisance tangent space and find the form of elements in its orthogonal complement, which

will be of the form of estimating functions used to construct estimating equations for θ based

on (Y,X,Z).
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We remark in response to a query by a reviewer that the argument given in the rest of this

appendix is not simply a special case of a general theory. Rather, it results from applying

the semiparametric theory perspective above to this problem. The argument subsumes and

represents a significant advance beyond that given by Leon et al. (2003) and in Appendix

A.2 of Davidian, Tsiatis, and Leon (2005) for the particular case of estimating the difference

of k = 2 treatment means, β2, defined in (1) of the main paper.

We present the argument for the particular case scalar Y and infinite dimensional η;

similar developments are possible in the cases of multivariate Y and null η. Formally, the

nuisance tangent space we seek is defined as the mean-square closure of parametric submodel

nuisance tangent spaces. A parametric submodel is a finite-dimensional parametric model

that

(a) Is contained in the semiparametric model and

(b) Contains the truth; i.e., the distribution that generates the data.

The parametric submodel nuisance tangent space is the space spanned by the nuisance score

vector of the parametric submodel. Here, we denote such a parametric submodel as

pY,X|Z(y, x|z; θ, ξη, ξψ),

satisfying conditions analogous to (A.1) and (A.2), i.e.,

(i)

∫
pY,X|Z(y, x|z; θ, ξη, ξψ)dx = pY |Z(y|z; θ, ξη) (B.1)

(ii)

∫
pY,X|Z(y, x|z; θ, ξη, ξψ)dy = pX(x; θ, ξη, ξψ), (B.2)

where pY,X|Z(y, x|z; θ0, ξη0 , ξψ0)) = p0Y,X|Z(y, x|z), the true density of Y,X given Z (i.e., that

generating the data); ξη is a finite-dimensional parameter defined so that pY |Z(y|z; θ, ξη) is

a parametric submodel for the semiparametric model pY |Z(y|z; θ, η); and ξψ is an additional
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finite dimensional parameter describing the joint distribution of Y and X given Z such that

(i) and (ii) in (B.1) and (B.2) are satisfied.

The parametric submodel nuisance tangent space is the space spanned by the nuisance

score vector {STξη(Y,X,Z), STξψ(Y,X,Z)}T , where

Sξη(y, x, z) =
∂

∂ξη
log{pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)},

and similarly for Sξψ(Y,X,Z). Thus, the parametric submodel nuisance tangent space is

made up of elements {B1Sξη(Y,X,Z) +B2Sξψ(Y,X,Z)}, where B1 and B2 are conformable

matrices.

Denote the nuisance tangent space for the semiparametric model pY |Z(y|z; θ, η) by Λη. By

definition, any element spanned by the parametric-submodel nuisance score vector S∗
ξη

(Y, Z),

where S∗
ξη

(y, z) =
∂

∂ξη
log{pY |Z(y|z; θ0, ξη0}, is an element of Λη.

From (B.1), we get

log

{∫
pY,X|Z(y, x|z; θ, ξη, ξψ)dx

}
= log

{
pY |Z(y|z; θ, ξη)

}
(B.3)

so that

∂

∂ξη
log

{∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx

}
=

∂

∂ξη
log
{
pY |Z(y|z; θ0, ξη0)

}

and thus

B1
∂

∂ξη
log

{∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx

}
= B1

∂

∂ξη
log
{
pY |Z(y|z; θ0, ξη0)

}
= B1S

∗
ξη

(y, z).
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Under regularity conditions, the left-hand side of the above equation is equal to

B1

∫
∂

∂ξη
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx
∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx

= B1

∫
∂

∂ξη
log{pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)}pY,X|Z(y, x|z; θ0, ξη0 , ξψ0
)dx

∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx

= B1E{Sξη(Y,X,Z)|Y = y, Z = z}.

Thus, B1E{Sξη(Y,X,Z)|Y, Z} = B1S
∗
ξη

(Y, Z) ∈ Λη.

Similarly, taking the derivative of both sides of (B.3) with respect to ξψ and evaluating

them at the truth, we get
∂

∂ξψ
log

{∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dx

}
= 0, which leads to

B2E{Sξψ(Y,X,Z)|Y, Z} = 0.

Combining the arguments above, it follows that any element in the submodel nuisance

tangent space, h(Y,X,Z) = B1Sξη(Y,X,Z) +B2Sξψ(Y,X,Z), must satisfy the condition

E{h(Y,X,Z)|Y, Z} ∈ Λη.

From (B.2), we get

log

{∫
pY,X|Z(y, x|z; θ, ξη, ξψ)dy

}
= log {pX(x; θ, ξη, ξψ)} (B.4)

∂

∂ξη
log

{∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dy

}
=

∂

∂ξη
log {pX(x; θ0, ξη0 , ξψ0

)}

∫
∂

∂ξη
log{pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)}pY,X|Z(y, x|z; θ0, ξη0 , ξψ0
)dy

∫
pY,X|Z(y, x|z; θ0, ξη0 , ξψ0

)dy
=

∂

∂ξη
log {pX(x; θ0, ξη0 , ξψ0

)} ,

and E{Sξη(Y,X,Z)|X,Z} = S∗
ξη

(X), where S∗
ξη

(x) =
∂

∂ξη
log {pX(x; θ0, ξη0 , ξψ0

)}. S∗
ξη

(X)

has expectation 0 by the following argument. We have
∫
pX(x; θ, ξη, ξψ)dx = 1, which implies
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that
∂

∂ξη

∫
pX(x; θ0, ξη0 , ξψ0

)dx =

∫
∂

∂ξη
pX(x; θ0, ξη0 , ξψ0

)dx = 0,

so that ∫
∂

∂ξη
log{pX(x; θ0, ξη0 , ξψ0

)}pX(x; θ0, ξη0 , ξψ0
)dx = 0,

which implies that E{S∗
ξη

(X)} = 0, as required.

Similarly, taking the derivative of both sides of (B.4) with respect to ξψ and evaluating

them at the truth, we get E{Sξψ(Y,X,Z)|X,Z} = S∗
ξψ

(X), where

S∗
ξψ

(x) =
∂

∂ξψ
log {pX(x; θ0, ξη0 , ξψ0

)} ,

and E{S∗
ξψ

(X)} = 0.

Therefore, if we define Λx as the space of all mean zero functions of X, i.e., Λx = {h(X) :

E{h(X)} = 0}, then any element in the submodel nuisance tangent space, h(Y,X,Z) =

B1Sξη(Y,X,Z) +B2Sξψ(Y,X,Z), must also satisfy the condition:

E{h(Y,X,Z)|X,Z} ∈ Λx.

To summarize, we have demonstrated that any element h(Y,X,Z) that is spanned by

the score vector {STξη(Y,X,Z), STξψ(Y,X,Z)}T must satisfy

(a). E{h(Y,X,Z)|Y, Z} ∈ Λη, (B.5)

(b). E{h(Y,X,Z)|X,Z} ∈ Λx. (B.6)

With these relationships in mind, we conjecture that the nuisance tangent space consists

of all functions h(Y,X,Z) satisfying conditions (a) and (b) given in (B.5) and (B.6). We

denote such as a space by Λ(conj). We can easily show that the space of functions satisfying

(B.5) is given by Λη + Λ1, where

Λ1 = {h1(Y,X,Z) : E{h1(Y,X,Z|Y, Z)} = 0}, (B.7)
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and the space of functions satisfying (B.6) is given by Λx + Λ2, where

Λ2 = {h2(Y,X,Z) : E{h2(Y,X,Z|X,Z)} = 0}. (B.8)

Consequently, the conjectured nuisance tangent space is Λ(conj) = (Λη +Λ1)∩ (Λx+Λ2). We

have already proven that any element in a parametric submodel nuisance tangent space must

belong to Λ(conj); in addition, it can be shown that the space Λ(conj) is closed. Therefore, the

nuisance tangent space Λ ⊂ Λ(conj).

To prove that Λ(conj) is truly the nuisance tangent space, we need to show that any

element in Λ(conj) can be represented as some element or a limit of elements from some

parametric submodel nuisance tangent spaces. Consider some arbitrary bounded element

h(Y,X,Z) ∈ Λ(conj); namely,

h(Y,X,Z) = hη(Y, Z) + h1(Y,X,Z) = hx(X) + h2(Y,X,Z) (B.9)

for some hη(Y, Z) ∈ Λη, h1(Y,X,Z) ∈ Λ1, hx(X) ∈ Λx, and h2(Y,X,Z) ∈ Λ2. We will

construct the parametric submodels in three steps.

Step 1. Because hη(Y, Z) ∈ Λη, hη(Y, Z) is either the corresponding score vector of some

parametric submodel pY |Z(y, |z; θ0, ξη) or the limiting score vector of a sequence of parametric

submodels pY |Z(y, |z; θ0, ξηj). For simplicity, we first assume the former case; that is,

∂

∂ξη
log{pY |Z(y|z; θ0, ξη0)} = hη(y, z).

Without loss of generality, we can assume that this submodel contains the truth when ξη =

ξη0 = 0. From here on θ is taken to equal θ0 (the truth) and hence will be suppressed in the

notation.

We begin by considering an approximation to the parametric-submodel given by

p∗Y,X|Z(y, x|z, ξη) = p0Y,X|Z(y, x|z)[1 + ξTη {hη(y, z) + h1(y, x, z)}]. (B.10)
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This is a proper density function as long as ξη is chosen sufficiently close to 0, and it contains

the truth if ξη is chosen to be 0. By construction, the score vector is given by {hη(Y, Z) +

h1(Y,X,Z)}. We may show that the submodel given by (B.10) satisfies condition (ii) as

follows:

∫
p∗Y,X|Z(y, x|z, ξη)dy =

∫
p0Y,X|Z(y, x|z)[1 + ξTη {hη(y, z) + h1(y, x, z)}]dy

=

∫
p0Y,X|Z(y, x|z)[1 + ξTη {hx(x) + h2(y, x, z)}]dy

= p0X(x) + ξTη hx(x)p0X(x) + ξTη p0X(x)

∫
h2(y, x, z)p0Y |X,Z(y|x, z)dy

= p0X(x){1 + ξTη hX(x)},

where the last equality follows because, by definition, the conditional expectation of h2(Y,X,Z)

given (X,Z) is 0. This argument shows that X and Z are independent by this submodel.

Therefore, this submodel satisfies condition (ii).

However, this submodel does not satisfy condition (i), because

∫
p∗Y,X|Z(y, x|z, ξη)dx =

∫
p0Y,X|Z(y, x|z)[1 + ξTη {hη(y, z) + h1(y, x, z)}]dx

= p0Y |Z(y|z) + p0Y |Zξ
T
η [hη(y, z) + E{h1(Y,X,Z)|Y = y, Z = z}]

= p0Y |Z(y|z){1 + ξTη hη(y, z)} 6= pY |Z(y|z, ξη).

Step 2. In order to derive a model that satisfies conditions (i) and (ii) while still leading

to the same score vector, we consider the following construction. Take the random vector

(V,X,Z) which has density p∗Y,X|Z(v, x|z, ξη) as defined by (B.10). The idea is to perturb the

random variable V slightly to ensure that the transformed random variable Y has conditional

density pY |Z(y|z, ξη) while not affecting the independence of X and Z or the score vector.

Toward that end, define

(Y,X,Z) = {G(V, Z, ξη), X, Z}, (B.11)
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whereG{V, Z, ξη} = F−1
2 {F1(V |Z, ξη)|Z, ξη}; F1(y|Z, ξη) is the cdf for p0Y |Z(y|z){1+ξTη hη(y, z)};

and F2(y|Z, ξη) is the cdf for pY |Z(y|z, ξη). By construction, the conditional distribution of

Y given Z is pY |Z(y|z, ξη), and the conditional density of X given Z does not change, i.e.,

X⊥⊥Z. Therefore, by construction, this submodel satisfies conditions (i) and (ii). In addi-

tion, when ξη = 0, G{V, Z, ξη = 0} = V , and pY,X|Z(y, x|z, ξη = 0) = p0Y,X|Z(y, x|z); i.e.,

contains the truth.

Next, we derive the density of (Y,X|Z), i.e., pY,X|Z(y, x|z, ξη), and show that the score vec-

tor of this density is still {hη(Y, Z)+h1(Y,X,Z)} as required. As Y = F−1
2 {F1(V |Z, ξη)|Z, ξη},

we obtain V = F−1
1 {F2(Y |Z, ξη)|Z, ξη}. Consequently,

dV

dY
=

pY |Z(y|z, ξη)

p0Y |Z(v|z){1 + ξTη hη(v, z)}
.

Using the change of variable formula, the density of (Y,X|Z) is

pY,X|Z(y, x|z, ξη) = p0Y,X|Z(v, x|z)[1 + ξTη {hη(v, z) + h1(v, x, z)}]
dV

dY

= p0Y |Z(v|z)p0X|Y,Z(x|v, z)[1 + ξTη {hη(v, z) + h1(v, x, z)}
pY |Z(y|z, ξη)

p0Y |Z(v|z){1 + ξTη hη(v, z)}

= p0X|Y,Z(x|v, z)pY |Z(y|z, ξη)
1 + ξTη {hη(v, z) + h1(v, x, z)}

{1 + ξTη hη(v, z)}
, (B.12)

where v = F−1
1 {F2(y|z, ξη)|z, ξη}.

Now, we will derive the score vector of pY,X|Z(y, x|z, ξη).

∂

∂ξη
log{pY,X|Z(y, x|z, ξη0)} =

∂

∂v
{p0X|Y,Z(x|v, z)} ·

∂v

∂ξη
|ξη=0

p0X|Y,Z(x|y, z)
+

∂

∂ξη
log{pY |Z(y|z, ξη0)}

+

hη(v, z) + h1(v, x, z) + ξTη
∂

∂ξη
{hη(v, z) + h1(v, x, z)}

1 + ξTη {hη(v, z) + h1(v, x, z)}
|ξη=0 −

hη(v, z) + ξTη
∂hη(v, z)

∂ξη
1 + ξTη hη(v, z)

|ξη=0
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=

∂

∂v
{p0X|Y,Z(x|v, z)} ·

∂v

∂ξη
|ξη=0

p0X|Y,Z(x|y, z)
+ hη(y, z) + hη(y, z) + h1(y, x, z) − hη(y, z)

= hη(y, z) + h1(y, x, z) +

∂

∂v
{p0X|Y,Z(x|v, z)} ·

∂v

∂ξη
|ξη=0

p0X|Y,Z(x|y, z)
.

In the above argument, we have used the facts that when ξη = 0, v = y, and that
∂

∂ξη
log{pY |Z(y|z, ξη0)} = hη(y, z). Note that if

∂v

∂ξη
|ξη=0 = 0, then the score vector is

hη(y, z) + h1(y, x, z) as needed. So in the following we will show that
∂v

∂ξη
|ξη=0 = 0.

First note, under suitable regularity conditions,

∂F2(y|z, ξη)

∂ξη
|ξη=0 =

∂

∂ξη

∫ y

−∞

pY |Z(u|z, ξη)du|ξη=0 =

∫ y

−∞

∂

∂ξη
pY |Z(u|z, ξη)|ξη=0 du

=

∫ y

−∞

p0Y |Z(u|z)
∂

∂ξη
log{pY |Z(u|z, ξη)}|ξη=0du =

∫ y

−∞

p0Y |Z(u|z)hη(u, z)du.

Similarly,

∂F1(y|z, ξη)

∂ξη
|ξη=0 =

∫ y

−∞

∂

∂ξη
p0Y |Z(u|z){1 + ξTη hη(u|z)}|ξη=0 du =

∫ y

−∞

p0Y |Z(u|z)hη(u, z) du.

Consequently,
∂F1(y|z, ξη)

∂ξη
|ξη=0 =

∂F2(y|z, ξη)

∂ξη
|ξη=0.

By construction, y = F−1
2 {F1(v|z, ξη)|z, ξη}. Thus F2(y|z, ξη) = F1(v|z, ξη), and it follows

that

∂F2(y|z, ξη)

∂ξη
|ξη=0 =

∂F1(v|z, ξη)

∂v
·
∂v

∂ξη
|ξη=0 +

∂F1(v|z, ξη)

∂ξη
|ξη=0.

Notice that, when ξη = 0, we have v = y, and
F2(y|z, ξη)

ξη
|ξη=0 =

F1(y|z, ξη)

ξη
|ξη=0, so that

∂F1(v|z, ξη)

∂v
·
∂v

∂ξη
|ξη=0 = 0,

and it follows that

p0Y |Z(y|z) ·
∂v

∂ξη
|ξη=0 = 0, which implies

∂v

∂ξη
|ξη=0 = 0.
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Therefore, we have constructed a submodel given by (B.12) that satisfies conditions (i)

and (ii). In addition, this submodel has a score vector equal to hη(Y, Z) + h1(Y,X,Z) =

hx(X) + h2(Y,X,Z), which is arbitrarily chosen from the conjecture space.

Step 3. Recall that in the above arguments, we have assumed that hη(Y, Z) is the score

vector of some parametric submodel pY |Z(y|z; θ0, ξη). Under this assumption, it has been

demonstrated that a bounded element h(Y,X,Z) can be represented as an element from

some parametric submodel nuisance tangent space. More generally, hη(Y, Z) may be the

limit of score vectors of a sequence of parametric submodels pjY |Z(y|z; θ0, ξηj); i.e.,

lim
j→∞

∂

∂ξη
log{pjY |Z(y|z; θ0, ξη0)} = hη(y, z).

In this situation, almost identical arguments to those used above can be used to construct

a sequence of submodels that satisfies condition (i) and (ii), and also the limit of the corre-

sponding score vectors is hη(Y, Z).

Combining the above arguments, we have shown that any bounded element in Λ(conj)

can be represented as some element or a limit of elements from some parametric submodel

nuisance tangent spaces. As any element in Λ(conj) is either bounded or limit of bounded

elements, it follows that the nuisance tangent space is

Λ = Λ(conj) = (Λη + Λ1) ∩ (Λx + Λ2). (B.13)

As we argued earlier, estimating functions used to derive estimating equations that lead

to semiparametric estimators for θ are orthogonal to the nuisance tangent space. Therefore,

we now derive the orthogonal complement to the nuisance tangent space. To do so, we use

result that that the orthogonal complement of the sum of two linear spaces is equal to the

intersection of the orthogonal complements. That is, if H1, H2 are closed linear subspaces
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contained in the Hilbert space H, then

(H1 +H2)
⊥ = H⊥

1 ∩H⊥
2 , (B.14)

We derived the nuisance tangent space Λ as given in (B.13). Therefore, using (B.14) we thus

have that the orthogonal complement of the nuisance tangent space is

Λ⊥ = (Λ⊥
η ∩ Λ⊥

1 ) + (Λ⊥
x ∩ Λ⊥

2 ). (B.15)

We examine the components making up the sum of spaces in (B.15) separately.

Complement of Λ1. This space is given by

Λ⊥
1 = {h(Y, Z), E{h(Y, Z)} = 0}. (B.16)

Proof: Suppose E{h(Y, Z)} = 0, and h1(Y,X,Z) ∈ Λ1, i.e., E{h1(Y,X,Z|Y, Z)} = 0. Then

E{hT1 (Y,X,Z)h(Y, Z)} = E[E{hT1 (Y,X,Z)h(Y, Z)|Y, Z}]

= E[hT (Y, Z)E{h1(Y,X,Z|Y, Z)}] = 0.

The last equality follows as E{h1(Y,X,Z|Y, Z)} = 0 by assumption. Therefore, any mean-

zero function of (Y, Z), h(Y, Z), is orthogonal to Λ1.

To finish the proof, we also must prove that any h ∈ H can be written as h1 + h2,

where h1 ∈ Λ1, and h2 ∈ {h(Y, Z), E{h(Y, Z)} = 0}. For any h(Y,X,Z), construct

h2(Y, Z) = E{h(Y,X,Z)|Y, Z}, and h1(Y,X,Z) = h(Y,X,Z) − h2(Y, Z). It is easy to

verify that the constructed h1 ∈ Λ1 and h2 ∈ {h(Y, Z), E{h(Y, Z)} = 0}.

Complement of (Λ⊥
η ∩ Λ⊥

1 ). Because Λ⊥
1 = {h(Y, Z), E{h(Y, Z)} = 0}, then the space

(Λ⊥
η ∩ Λ⊥

1 ) consists of all elements which belong to the Hilbert space HY,Z = {h(Y, Z) :

E{h(Y, Z)} = 0}, i.e., all mean zero functions of (Y, Z), that are orthogonal to the nuisance

13



tangent space Λη. This is precisely the orthogonal complement of the nuisance tangent space

for the parametric submodel pY |Z(y|z; θ, η). Consequently, the space (Λ⊥
η ∩ Λ⊥

1 ) is the space

from which estimating functions for θ are derived without the consideration of the auxiliary

covariates. Therefore, we call this space the space of estimating functions E = (Λ⊥
η ∩ Λ⊥

1 ).

Complement of (Λ⊥
x ∩Λ⊥

2 ). The same techniques used to find the space Λ⊥
1 may be used here

to prove that Λ⊥
2 = {h(X,Z) : E{h(X,Z)} = 0}]. Consequently, (Λ⊥

x ∩ Λ⊥
2 ) consists of all

mean-zero functions of X and Z that are orthogonal to functions of X. That is,

(Λ⊥
x ∩ Λ⊥

2 ) = {h(X,Z) : E{h(X,Z)|X} = 0}. (B.17)

Proof : if E{h(X,Z)|X} = 0, and hx(X) ∈ Λx, then

E{hT (X,Z)hx(X)} = E[E{hT (X,Z)|X}hx(X)] = 0.

That is, h(X,Z) is orthogonal to Λx. Moreover, any mean-zero functions of (X,Z) can be

written as h1+h2, where h1 ∈ Λx, and h2 ∈ {h(X,Z) : E{h(X,Z)|X} = 0}. For any h(X,Z)

which has mean zero, construct h1(X) = E{h(X,Z)|X}, and h2(X,Z) = h(X,Z) − h1(X).

Clearly E{h1(X)} = 0, and E{h2(X,Z)|X} = 0 as required.

We refer to this space as the Augmentation Space, denoted by A. Therefore, we have

shown that the space orthogonal to the nuisance tangent space is given by Λ⊥ = E + A.

Thus, the class of estimating functions for θ (and hence β) based on all the data (Y,X,Z)

lies in this space, so that an estimating function for θ may be written as the sum of an

estimating function m(Y, Z; θ) based on (Y, Z) alone (an element of E) and an element of A.

Accordingly, we characterize elements of A. All functions of X and Z may be written

as
∑k

g=1 I(Z = g)ag(X) for arbitrary functions ag(X), g = 1, . . . , k. Thus, we can write any
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function h(X,Z) satisfying E{h(X,Z)|X} = 0 as

h(X,Z) =
k∑

g=1

I(Z = g)ag(X) − E

{
k∑

g=1

I(Z = g)ag(X)

∣∣∣∣∣X
}

=
k∑

g=1

{I(Z = g) − πg}ag(X).

(B.18)

Thus the form of all estimating functions is

m(Y, Z; θ) +
k∑

g=1

{I(Z = g) − πg}ag(X),

which may be written equivalently in the form given in (12) of the main paper.

Web Appendix C: Derivation of Optimal Estimating Function (14)

The choice of functions ag(X), g = 1, . . . , k resulting in the optimal estimator, i.e., an

estimator solving (12) in the main paper such that its variance is as small as possible, may

be deduced from Theorem 4.5 of Tsiatis (2006). Alternatively, we derive such ag(X) directly.

By the principles in Chapter 3 of Tsiatis (2006), the element of E +A with smallest variance

for a given m(Y, Z; θ) ∈ E is the projection of m(Y, Z; θ) onto A. Thus, we wish to find

a∗g(X), g = 1, . . . , k, such that

E

([
m(Y, Z; θ) −

k∑

g=1

{I(Z = g) − πg}a
∗
g(X)

][
k∑

g=1

{I(Z = g) − πg}ag(X)

])
= 0

for all ag(X), g = 1, . . . , k. Taking ag(X) = 0 for g 6= j, we thus wish to find a∗g(X),

g = 1, . . . , k, such that

E

([
E{m(Y, Z; θ)|X,Z} −

k∑

g=1

{I(Z = g) − πg}a
∗
g(X)

]
{I(Z = j) − πj}

∣∣∣∣∣X
)

= 0 (C.1)

for each j = 1, . . . , k. It is straightforward to show that, writing E{m(Y, Z; θ)|X,Z} =
∑k

g=1 I(Z = g)E{m(Y, g; θ)|X,Z = g}, (C.1) implies that we must have

E{m(Y, j; θ)|X,Z = j} − a∗j(X) −
k∑

g=1

[
E{m(Y, g)|X,Z = g} − a∗g(X)

]
πg = 0 (C.2)
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for all j = 1, . . . , k. Expression (C.2) is satisfied when

a∗g(X) = E{m(Y, g; θ)|X,Z = g}, g = 1, . . . , k,

yielding the estimating function in (14) of the main paper.

Web Appendix D: Applications

Here, we give additional information and results for the two applications in Section 7 of the

main paper.

The covariates in the analysis of the PURSUIT clinical trial data given in Section 7.1

of the main paper, are as follows: Age (years), height (cm), weight (kg), body mass index

(kg/m2), heart rate (beats per min), pulse (beats per min), gender (0=female, 1 = male), race

(Caucasian, Black, Asian, Hispanic, Native American, Asiatic Indian, Other), geographic re-

gion (Eastern Europe, Western Europe, North America, Latin America), smoking status

(current, former, never), diastolic and systolic blood pressure (mmHg), creatinine clearance

(ml/min), rales (None, ≤ 1/3, ≥ 1/3), creatine kinase and creatine kinase-MB ratios, hours

from symptoms to treatment, indicators of disease history (myocardial infarction at enroll-

ment, prior myocardial infarction, ST depression, angina, diabetes, congestive heart failure,

hypercholesterolemia, hypertension, renal insufficiency, peripheral vascular disease, family

history of coronary artery disease) and treatment history indicators (percutaneous coronary

intervention within 72 hours of randomization, previous percutaneous coronary angioplasty,

calcium blockers, beta blockers, digoxin, nitroglycerin, coronary artery bypass graft).

For the ACTG 175 data in Section 7.2 of the main paper, we also carried out tests for

each pairwise comparison of regimens g = 2, 3, 4 against the control treatment, g = 1, ZDV

monotherapy. The three usual unadjusted Wald tests for these pairwise differences yield

Tn for each comparison of 56.85, 19.22, and 20.55 for comparing groups 2, 3, and 4 against
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group 1, respectively; the corresponding proposed statistics T̂ ∗
n are 98.27, 35.28, and 46.75.

Of course, all test statistics reflect very strong evidence in favor of real differences in each

case; however, notably, the augmented test statistics are much larger in each case.

The sample size in this trial was very large, so that all analyses are easily able to uncover

treatment differences. To demonstrate that such results are possible in cases where the

evidence is less clear-cut, we repeated these analyses on the data from a random subset of

n = 124 subjects. The three pairwise unadjusted Wald test statistics are 2.23, 1.45, and

2.18, with p-values 0.07, 0.11, 0.07; the corresponding adjusted statistics are 4.77, 4.87,

and 10.12, with p-values 0.01, 0.01, and < 0.001. Likewise, the three-degree-of-freedom

unadjusted Wald and Kruskal-Wallis statistics (p-values) are 3.36 (0.34) and 2.35 (0.50),

while the adjusted versions are 11.87 (0.01) and 4.59 (0.20). Although it is certainly not

guaranteed that smaller p-values will be obtained for any given realization of data, these

results demonstrate that the proposed adjustment methods are capable of effecting such

improvements.

The 12 auxiliary covariates used in all analyses of these data, also reported in Tsiatis

et al. (2007), are as follows: continuous variables: CD4 count (cells/mm3), CD8 count

(cells/mm3), age (years), weight (kg), Karnofsky score (scale of 0-100), and indicator vari-

ables for hemophilia, homosexual activity, history of intravenous drug use, race (0=white,

1=non-white), gender (0=female), antiretroviral history (0=naive, 1=experienced), and

symptomatic status (0=asymptomatic).
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