Supplementary Figure 1. Effects of H₂O₂ on mRNA translation and cell survival. A) MEF viability measured immediately after 1 hr H₂O₂ (0-100 \lceil M) exposure by trypan blue stain. B) Comparison of normoxia (N), hypoxia (Hyp) (0.5% O₂, 8 and 24 hr), H₂O₂ (R), (1 hr, 100 \lceil M), and thapsigargin (T), (0.8 \lceil M, 4 hr) effects on PERK protein mobility and elF2 \langle phosphorylation.

Supplementary Figure 2. Comparison of intracellular ROS levels in cells grown in moderate hypoxia versus H₂O₂. Flow cytometry was used to evaluate 2', 7'- dichlorofluorescein-diacetate (DCFH-DA) fluorescence in cells exposed to 0.5% O₂ and 25 μ M H₂O₂ (A) or 100 μ M H₂O₂ (B). As shown here, 100 μ M H₂O₂ treatment is closer to ROS levels achieved in cells grown at 0.5% O₂ than 25 μ M H₂O₂.

Supplementary Figure 3. **Catalase expression suppresses ROS-activated ISR.** Effects of H_2O_2 (20 [M,6 hr, replenished every 2 hrs) on the expression of ATF4 target genes GADD34, BiP, and CHOP (A) and PGK (B) in HEK293 cells transfected with catalase (CAT) or empty vector. **, P<0.01.

