Table. Probes and primers used for reverse-capture checkerboard hybridization analysis

Таха	Sequence (5' – 3')	Base position (E. col
Actinomyces gerencseriae ^a	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	65
Actinomyces israelii ^a	TTTTTTTTTTTTTTTGGCACAGCCAGAACAC	179
Actinomyces odontolyticus ^a	TTTTTTTTTTTTTTTCAGTGCCGCCGTGC	998
Aggregatibacter aphrophilus Anaeroglobus geminatus	TTTTTTTTTTTTTTTTTTTCACCAAGCTCAAAGCA TTTTTTTTTT	837 1009
Atopobium rimae	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	837
Bacteroidetes clone X083	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	132
Bifidobacterium (All) ^a	TTTTTTTTTTTTTTTGGACGCGACCCCAT	228
Bulleidia extructa	TTTTTTTTTTTTTTTTTCCCACAATTTGACCATGAA	598
Campylobacter gracilis	TTTTTTTTTTTTTTTGGTAGCGAATTTCGCATTC	1439
Campylobacter rectus	TTTTTTTTTTTTTTTTTTTTTTTTTTTGCTTATGCTTAGAAGGAGTATAGA	160
Capnocytophaga gingivalis	TTTTTTTTTTTTTTTTTAAAGGGCTTCTCCCTC	64
Catonella morbid	TTTTTTTTTTTTTTTTTTTTTTTATCAAATCATGCGATTTAACCGA TTTTTTTTTT	184 1006
Corynebacterium matruchotii Cryptobacterium curtum	TTTTTTTTTTTTTTTTTTTTCGGCTGCGACATCTC	1013
Desulfovibrio clone BB161	TTTTTTTTTTTTTTTTTTCCTAAAACTTCATTCAGAGCG	182
Dialister invisus	TTTTTTTTTTTTTTTGCTCTTTCCGTCTTTCG	67
Dialister pneumosintes	TTTTTTTTTTTTTTTTCACCATGCGATGCTTAGAA	181
Dialister clone BS016	TTTTTTTTTTTTTTTTTTTCTCAGTTTCCATCCCATAAC	627
Dialister clone 9N-7	TTTTTTTTTTTTTTTTGCTTCTCTCTCTCCCCCCCG	67
Dialister clone 55A-29	TTTTTTTTTTTTTTTTTTTTTTTTTTTCGCAG	460
Eikenella corrodens	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	169
Enterococcus faecalis	TTTTTTTTTTTTTTTTTGTCAGGGGACGTTCAG	470
Eubacterium brachy	TTTTTTTTTTTTTTTTTTTTTTATAGGGCGAACAATGGT	622 1289
Eubacterium clone CK051 Eubacterium infirmum	TTTTTTTTTTTTTTTTTTTCCGAACCGAGATACAGT TTTTTTTTTT	1269
Eubacterium saphenum	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	999
Eubacterium sulci	TTTTTTTTTTTTTTTTTTTTTTTTTTTTGTGTATCTCTTGCGTTATGG	177
Filifactor alocis	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	994
Fusobacterium nucleatum	TTTTTTTTTTTTTTTTTCATAATTCTAGGATGCCCTATAATCAT	184
Gemella morbillorum	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	1269
Granulicatella adiacens	TTTTTTTTTTTTTTTTTTTTTCTTCAAGCCATGCGGC	184
Johnsonella ignava	TTTTTTTTTTTTTTTTTCACCGGTATCCCTTTTTG	206
Lachnospiraceae clone MCE7_60	TTTTTTTTTTTTTTGGGGAAAGCACATTACATG	1010
Lachnospiraceae clone 55A-34 Lactobacillus (All) ^b	TTTTTTTTTTTTTTTTTTTCTTCCTCCTGGGCACT TTTTTTTTTT	70 177
Leptotrichia (All)	TTTTTTTTTTTTTTTTTTTTCGGACACTCTCATGC	840
Megasphaera clone CS025	TTTTTTTTTTTTTTTTTTCAGCCAACCAGTTTCTC	636
Mogibacterium pumilum	TTTTTTTTTTTTTTTTTCCCGAAGTTCATGCACT	72
Olsenella genomospecies C1	TTTTTTTTTTTTTTTTGCACGGAAAGTAAAGCCTC	835
Olsenella uli	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	249
Parvimonas micra	TTTTTTTTTTTTTTTTTTTCCATTCCCGAAAGAATTTC	80
Peptostreptococcus anaerobius	TTTTTTTTTTTTTTTTTTTTTTGTTTCGGAGGCTAACTACG	624
Peptostreptococcus stomatis	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	69
Porphyromonas endodontalis	TTTTTTTTTTTTTTTTCAAACTCTCATCTGCCATCATCTAAA	997
Porphyromonas gingivalis Porphyromonas clone BB134	TTTTTTTTTTTTTTTTTTTTACTGTTAGCAACTACCGATGT TTTTTTTTTT	1115 187
Prevotella baroniae	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	138
Prevotella intermedia	TTTTTTTTTTTTTTTTTTTTTTTCAACATCTCTGTATCCTGC	1003
Prevotella loescheii	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	211
Prevotella multisaccharivorax	TTTTTTTTTTTTTTTTTTTCTTCAGATGGCCTCATAGG	186
Prevotella nigrescens	TTTTTTTTTTTTTTTTTTTTTACCGGAAAACCTTTGTTTCAT	202
Prevotella oralis	TTTTTTTTTTTTTTTTTGCCATCAAAAGTTGAAAACAAC	79
Prevotella tannerae	TTTTTTTTTTTTTTTTTCCGATGGCAAACGTAGAA	1117
Propionibacterium propionicum	TTTTTTTTTTTTTTTTTTTCTGTAAACCGACCAAAAAGG	1025
Pseudoramibacter alactolyticus	TTTTTTTTTTTTTTTTCCGGCACTGACTTATTCG	837
Selenomonas sputigena Slackia exiqua	TTTTTTTTTTTTTTTTTTTGAAGGGAGGAAGCTATCTCT TTTTTTTTTT	1012 96
Solobacterium moorei	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	588
SR1 oral clone X112	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	847
Streptococcus (All) ^a	TTTTTTTTTTTTTTTTTTAGCCGTCCCTTTCTGGT	491
Synergistes clone BA121	TTTTTTTTTTTTTTTTTGTGCTCAGCTTTATCTGGTA	1129
Synergistes clone BH007	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	82
Synergistes clones BH017/ D084	TTTTTTTTTTTTTTTTCGTCAATGTTTCCATCTCCTAC	1002
Synergistes clone W028	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	1010
Synergistes clone W090	TTTTTTTTTTTTTTTTGAAAGTACGTCGTCGCC	1015
Tannerella forsythia	TTTTTTTTTTTTTTTTTTTGACAGGTATTGCTACCATCG TTTTTTTTTT	73 192
Tannerella clone BU063 Treponema amylovorum	TTTTTTTTTTTTTTTTTTCACGCCTTTATTCCGTGA	192
Treponema denticola	TTTTTTTTTTTTTTTTTTTTTTTTTTCTGAAGCGGAGCCGTAG	207
Treponema lecithinolyticum	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	1001
Treponema maltophilum	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	83
Treponema medium	TTTTTTTTTTTTTTTCACCTTACGGTGTTGCTT	1256
Treponema parvum	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	473
Treponema pectinovorum	TTTTTTTTTTTTTTTTTTTTTCTCCAACTTATATGACCTTATCC	177
Treponema putidum	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	183
Treponema socranskii Franconema vincontii	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	182
Treponema vincentii Treponema I:G:T21 /I:W/:T040		181 181
Treponema I:G:T21 /I:W:T040 Treponema 6:G:G47	TTTTTTTTTTTTTTTTTTCAACATCTCTTGTGACATG TTTTTTTTTT	181 991
Treponema 6:G:G47 Treponema 6:H:D15A-4	TTTTTTTTTTTTTTTTTTCCTTGCGAATATGGTGAC	183
Treponema II:10:D12	TTTTTTTTTTTTTTTTTTTTCTCACAGGCATTCCCT	463
Veillonella (All) ^a	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	218
Jniversal 1089 ^a	TTTTTTTTTTTTTTTTTTCTCGTTGCGGGACTTAAC	1089
Jniversal 341 ^a	TTTTTTTTTTTTTTTTTTCTGCTGCCTCCCGTAGG	341
Jniversal forward PCR primer 8f	Digoxigenin-AGA GTT TGA TYM TGG C	8
Universal forward PCR primer 515f	Digoxigenin-GTG CCA GCA GCC GCG GTM A	515
Jniversal reverse PCR primer 519r	GTR TTA CCG CGG CTG CTG	519
Universal reverse PCR primer 1492r	GYT ACC TTG TTA CGA CTT	1492

^a probes described by Becker *et al.*(3); ^b probes described by Byun *et al.* (5).