Supplemental Figure S1. Distribution of days to flowering under natural-day conditions in BC₁F₂ population (n = 109) from the cross between the *ehd2* mutant and 'Guang Lu Ai 4'. The segregation ratio of normal to late-flowering phenotype was 81 : 28 (the expected ratio 3 : 1, $\chi^2 = 0.03^{ns}$). Days to flowering of the wild-type plants ('Tohoku IL9'), 'Guang Lu Ai 4' and the *ehd2* mutants were 80.7 \pm 2.5, 78.3 \pm 2.9 and 169.7 \pm 0.6, respectively (n = 10). The seeds were sown in the middle of June and the plants were grown in a paddy field in Tsukuba, Japan.

Days to flowering

Supplemental Figure S2. Alignment of deduced amino acid sequences of rice Ehd2 and maize ID1. This alignment was performed using CLUSTALW version 1.83 (http://clustalw.ddbj.nig.ac.jp/top-j.html). Underlines show the position of a putative zinc finger domain (ID domain). The C2H2-type and two C2HC-type zinc finger motifs were shown by red and green letters, respectively. The putative NLS sequences were shown by blue letters. The nearly identical C-terminal peptide regions were shown by grey letters.

Ehd2	MLLSDLSSD-QEATGSNSHGGGGGGDRMVVGSHGAAHVVLSNLFLPPAAAAAATMLLP	56
ID1	MQMMMLSDLSSDDHEATGSSSYGGDMASYALSPLFLAPAASATAPLPPP	49
Ehd2	AAPVMVRPAAMAAAQEPRAKKKRSLPGNPDPEAEVIALSPRALVATNRFVCEVCNKGFQR	116
ID1	PQPPAEELTNKQAAGGG <mark>KRKR</mark> SQPGNPDPGAEVIALSPRTLVATNRFVCEICNKGFQR	107
Ehd2	DQNLQLHRRGHNLPWKLRHRAAAVSAVTTAAPAPRKRVYVCPEP	160
ID1	DQNLQLHRRGHNLPWKLRQRSSLVVPSSSAAAGSGGRQQQQQGEAAPTPPRKRVYVCPEP	167
Ehd2	TCVHHDPARALGDLTGIKKHFSRKHGEKRWRCERCGKRYAVHSDWKAHVKNCGTREYRCD	220
ID1	TCVHHDPARALGDLTGIKKHFSRKHGEKRWCCERCGKRYAVQSDWKAHVKGCGTREYRCD	227
Ehd2 ID1	CGILFSRKDSLLTHRAFCDALAEESARLLAAANNSSSITTTTCNNSNISSNNNNNNINSI CGILFSRKDSLLTHRAFCDALAEESARLLAAAANNGSTITTTSSSNNNDLLNAS 	280 281
Ehd2	SNSNNLLITSSSSSPPLFLPFSTTPAENPNPNQLLFLQQHQAAHHQLLLPQFQQPPSSPP	340
ID1	NNITPLFLPFASSPPPVVVAAAQNPN-NTLFFLHQELSPFLQPRVTMQQQPSP-	333
Ehd2	AYFDHLAFGGGGGVITGSSCNDDNSSIAGDVMVAAGGDSVSFGLTSEGSVTMHAGDVGRR	400
ID1	-YLD-LHMHVDASIVTTTGGLADGTPVSFGLALDGSVATVGHR	374
Ehd2	RLTRDFLGVDHDAGEVDELELDELPADLSTTAAACQGCNFAAATTAACCATDFTTGSRQY	460
ID1	RLTRDFLGVDGGGRQVEELQLPLCATAAAAGASRTASCATDLTRQC	420

Ehd2 LG-RLPPVNETWSHNF 475

ID1 LGGRLPPVNETWSHNF 436

Supplemental Figure S3. Phylogenetic comparison of ID-domain amino acid sequences from rice, maize and *Arabidopsis thaliana*. Multiple sequence alignments were produced with CLUSTALW versiopn 1.83 (http://clustalw.ddbj.nig.ac.jp/top-j.html) using default settings. The phylogenetic tree was calculated using the neighbor-joining method and bootstrap analysis (1000 replicates) using PHYLIP via the same website and visualized with Treeview version 1.6.6 (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). Bootstrap values for nodes supported in > 50% were shown.

Supplemental Figure S4. Diurnal changes in levels of *Hd1* transcripts under SD (10 h light / 14 h dark) and LD (14.5 h light / 9.5 h dark) conditions. UBQ, ubiquitin. Open squares represent wild-type plants; filled triangles represent the *ehd2* mutants. Developing leaves were harvested every 2 h. Values are shown as mean \pm s.d. of three independent experiments. Data are representative of two independent biological replicates.

Supplemental Figure S5. Expression analyses of Os08g0200600 (NAM protein domain containing protein). (A) Putative gene structure of Os08g0200600. F and R are primers used for RT-PCR and real-time RT-PCR analyses. Expression of Os08g0200600 shown by RT-PCR (B) and real-time RT-PCR (C). Values are shown as means \pm s.d. of three independent experiments in (C). UBQ, ubiquitin. Young leaves of the *ehd2* mutants and its wild-type plants (Tohoku IL9) were collected at two hours after dawn from one-month-old plants grown under LD (14.5h light / 9.5 h dark) condition.

Supplemental Figure S6. Distribution of days to flowering under natural-day condition in the selfed-progeny (n = 48) of the *Tos17*-induced mutants heterozygous for *Ehd2*. The segregation ratio of homozygotes for 'Nipponbare' allele (open boxes), heterozygotes (slashed boxes) and homozygotes for *Tos17*-inserted allele (filled boxes) was 14 : 18 : 16 (the expected ratio 1 : 2 : 1, $\chi^2 = 3.17^{ns}$). Days to flowering of 'Nipponbare' was 116.9 \pm 1.2 (n = 10). The seeds were sown in the middle of April and the plants were grown in a paddy field in Tsukuba, Japan.

Supplemental Table S1	. Genetic markers used in	the delimitation of	candidate genom	ic region of Ehd2
------------------------------	---------------------------	---------------------	-----------------	-------------------

Primer name	Sequen	Remarks	
	Forward	Reverse	
Indel-1	CTAGTTTGTTGCAACTAAGCAAGTGG	GTTTCTTAATGTTGCCATGCATGC	-
CAPS-1	AAGCAGTGGGATTGGTTGAC	CCATGACAGCAGGAGAGACA	<i>Hin</i> dIII
SNP-1	TGAGTGGCAGAGGTTACAACA	GGTGGTGGTCCAAGAAAAGA	Direct sequencing
SSR-1	AGGATTTGCAGGTTTTCAA	TCTAATGCATACATGGTGCT	-
SNP-2	GGCCAGGAGACTCTTATTGG	GTCCCCATGACCATCTTCC	Direct sequencing
CAPS-2	ATTTCCAAGAACTCTACCACCC	CTTGTCTCTGCCACTCACG	BamHI

Supplemental Table S2. Summary of microarray data

Top three genes that showed the greatest fold-change and *Ehd2* were represented. Young leaves of the *ehd2* mutants and its wildtype plants (Tohoku IL9) were collected at two hours after dawn from one-month-old plants grown under LD (14.5h light / 9.5 h dark) condition. Total RNA was isolated using a Plant RNA Isolation plant Mini Kit (Agilent Technologies). The RNAs (400-ng aliquots) were labeled with a Low RNA Input Linear Amplification/Labeling Kit (Agilent Technologies) according to the manufacturer's instructions. Aliquots of Cy3- and Cy5-labeled cRNAs (1 mg each) of samples from the *ehd2* mutants or its wild-type plants were used for hybridization in an Agilent Rice Oligo Microarray (44K, custom-made; Agilent Technologies). After hybridization, microarray slides were scanned (scanner model G2505B and software G2565BA; Agilent), and data were analyzed using Feature Extraction software (version 9.1; Agilent Technologies) at the default settings. All microarray procedures and data analyses were performed according to the manufacturer's manual. Two independent biological repricates were performed with color-swap experiments. Down, down-regulation by the *ehd2* mutation.

Locus ID	Annotation	Fold-change P value (Ehd2/ehd2)		P value	Fold-change (<i>Ehd</i> 2/ehd2)		P value
1st experiment							
Os10g0463400	Early heading date 1 (Ehd1)	12.0	Down	3.48E-13	8.2	Down	2.20E-16
Os08g0200600	NO APICAL MERISTEM (NAM) protein domain containing protein	4.8	Down	6.94E-22	3.6	Down	4.99E-18
Os04g0640700	Alpha-L-arabinofuranosidase/beta-D-xylosidase isoenzyme (ARA-I)	4.4	Down	1.13E-09	2.9	Down	1.87E-08
Os10g0419200	Early heading date 2 (Ehd2)	3.4	-	5.41E-05	2.2	-	3.13E-03
2nd experiment							
Os10g0463400	Early heading date 1 (Ehd1)	12.8	Down	2.10E-04	50.2	Down	1.52E-21
Os08g0200600	NO APICAL MERISTEM (NAM) protein domain containing protein	4.8	Down	5.51E-14	5.7	Down	4.92E-16
Os04g0640700	Alpha-L-arabinofuranosidase/beta-D-xylosidase isoenzyme (ARA-I)	5.9	Down	1.19E-02	3.4	Down	9.93E-11
Os10g0419200	Early heading date 2 (Ehd2)	5.6	-	0.12	25.4	-	3.76E-18