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S1: Simulated networks. 8 

Features: 9 

The Neural Circuit SIMulator (Natschlager et al., 2002) was used to produce five 10 

artificial neural networks as described previously (Chao et al., 2005). Briefly, 1,000 11 

leaky-integrate-and-fire (LIF) model neurons with a total of 50,000 synapses were 12 

placed randomly in a 3mm by 3mm area (see figure 1(c)). All synapses were 13 

frequency-dependent (Markram et al., 1998; Izhikevich et al., 2004) to model 14 

synaptic depression. 70% of the neurons were excitatory, with spike-timing 15 

dependent plasticity (STDP) (Song et al., 2000). The other neurons were inhibitory 16 

(30%) (Marom and Shahaf, 2002). Neurons made many short synaptic connections 17 

but a few long ones as well (Segev and Ben-Jacob, 2000). The number of synaptic 18 

connections per neuron followed a Gaussian distribution and each neuron had 50 ± 19 

33 synapses onto other neurons (no multiple synapses from one neuron to another). 20 

The conduction delay was proportional to the distance between somata, and the 21 

conduction velocity was set to be 0.3 m/s (Kawaguchi and Fukunishi, 1998). 22 

Gaussian random noise was introduced into each neuron independently as 23 

fluctuations in membrane voltage: 30% of the neurons (“self-firing neurons”) had 24 

variance at a high enough level to initiate spikes (Latham et al., 2000), while the 25 
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 2 

rest exhibited only subthreshold fluctuations. An 8 by 8 grid of electrodes was 1 

included, 60 of these (except corner electrodes 11, 18, 81 and 88) were used for 2 

recording and stimulation as in a real MEA (figure 1(d)). A stimulation electrode 3 

stimulated 76 ± 12 (n= 5 simulated networks) of the closest model neurons. 4 

 5 

Setup of network initial states: 6 

All excitatory synaptic weights were initially set to 0.25 and could vary between 7 

zero and 0.5 due to STDP. At the maximal weight, each spike would have a 90% 8 

probability of evoking a spike in the post-synaptic neuron, due to its summation 9 

with intrinsic noise. The synaptic weights for the inhibitory connections were fixed 10 

at -0.25. The networks were run for 5 hours in simulated time until the synaptic 11 

weights reached a steady state. Most of the excitatory synaptic weights (92 ± 3%) 12 

in the 5 reference networks were less than 0.05 or greater than 0.45. This bimodal 13 

steady-state distribution of weights arose from the STDP rule, as previously 14 

observed by Song et al.(Song et al., 2000), and Izhikevich and Desai (Izhikevich 15 

and Desai, 2003). The set of synaptic weights after 5 hours of spontaneous activity 16 

stabilized, without external stimuli, and was used as the initial state for the 17 

corresponding reference network. 18 

 19 

 20 

21 
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S2: Calculations of the statistics for experiments in simulations and 1 

living cultures. 2 

The evoked responses within 100 msec (to include all evoked responses) after the 3 

stimuli of random probing sequences (RPSs) were used for calculations of the 4 

statistics. The dimensionalities of different statistics are shown in Table S1. For those 5 

statistics include temporal information (FRH, MI, SCCC, JPSTH, and CAT), 6 

responses within 100 msec were binned by a 5 msec moving time bin with 500 µsec 7 

time step. 500 µsec time step was used to obtain fine temporal resolution, since it was 8 

less than the occurrence of an action potential. 5 msec bin size was used to acquire 9 

action potentials on multiple electrodes within a single bin. Also, the same binning 10 

parameters were used for all statistics in simulations and in living cultures for fair 11 

comparison of their performance. 12 

 13 

1. Simulations: 14 

Firing Rate (FR) 15 

This most commonly used statistic quantifies the intensity of the evoked 16 

responses. During each simulation, stimuli at each electrode occurred multiple 17 

times (10.0 ± 3.1 trials) in one RPS. FR for evoked responses to each stimulation 18 

electrode was calculated by averaging the number of spikes counted at each 19 

recording electrode over trials, producing a 60-dimensional vector.  20 

 21 

Firing Rate Histogram (FRH) 22 

FRH expands on FR by including temporal information. FRH from recording 23 

electrode Ek to the probing stimulus at electrode Pi, i

k

P

E
FRH , was the average 24 

number of spikes counted in a 5 msec moving time window with 500 µsec time 25 
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 4 

step over trials, which resulted in a 1X191 vector. FRH for evoked responses to 1 

stimulation electrode Pi was defined by joining i

k

P

E
FRH  from 60 recording 2 

electrodes together, which formed an 11,460-dimensional (191X60) vector. 3 

 4 

Center of Activity Trajectory (CAT) 5 

The definition of CAT is described in Methods (Equation 1 and 2). The X and Y 6 

components are both 1X191 vectors. By appending two components together, 7 

CAT for evoked responses to each stimulation electrode was a 382-dimensional 8 

(191X2) vector. 9 

 10 

Mutual Information (MI) 11 

MI quantifies the statistical dependence, including higher order moments in 12 

addition to 2nd order, between responses at different locations (Moddemeijer, 13 

1989; Brunel and Nadal, 1998; Paninski, 2003). MI between two recording 14 

electrodes Ek and Ej for stimulation electrode Pi is defined as the mutual 15 

information between two distributions: i

k

P

E
FRH and i

j

P

E
FRH . Let i

k

P

E
FRH = 16 

191

1}{ =nn
A  and i

j

P

E
FRH = 191

1}{ =mm
B , where An and Bm represent elements in FRHs. 17 

Then the MI between i

k

P

E
FRH and i

j

P

E
FRH is defined as: 18 
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where PX and PY represent the marginal probabilities of i

k

P

E
FRH and i

j

P

E
FRH , and 20 

PX,Y represents the joint probability of i

k

P

E
FRH and i

j

P

E
FRH . MI was estimated by 21 

using the histogram-based mutual information methods described by 22 

Moddemeijer (Moddemeijer, 1989). In this study, the MATLAB codes from 23 
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Rudy Moddemeijer’s group were used1. MI provides a non-directional 1 

connectivity map, which represents the dependence between activities at 2 

different pairs of electrodes. By joining the MI from every pair of electrodes, MI 3 

for evoked responses to each stimulation electrode was a 1,770-dimensional 4 

(60X59/2) vector. 5 

 6 

Shift-predictor Corrected Cross-Correlogram (SCCC) 7 

The corrected cross-correlogram (Michalski et al., 1983; Eggermont, 1992; 8 

Brody, 1999; Franco et al., 2004; Ventura et al., 2005) removes the peak in the 9 

original cross-correlogram that is due to co-stimulation of the neurons, and 10 

measures the association between neurons. For each pair of recording electrodes, 11 

the “raw” cross-correlogram was constructed by averaging the 12 

cross-correlograms between two spike trains from the two electrodes over trials. 13 

The “shift predictor” was constructed by averaging the cross-correlograms 14 

between all possible pairs of spike trains from the two electrodes but from 15 

different trials. SCCC was then the raw cross-correlogram minus the shift 16 

predictor. In this study, the algorithm described by George Gerstein’s group was 17 

used2.  18 

 19 

With the same binning resolution used for FRH, SCCC between each pair of 20 

recording electrodes was a (191X2-1)-dimensional vector which represents the 21 

correlations sequence at different lags. Therefore, SCCC for evoked responses to 22 

each stimulation electrode was a 674,370-dimensional ((191X2-1)X60X59/2) 23 

vector. 24 

                                                 
1http://www.cs.rug.nl/~rudy/papers/abstracts/RM8902.html 
2 http://mulab.physiol.upenn.edu/crosscorrelation.html 
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 1 

Joint Peri-Stimulus Time Histogram (JPSTH) 2 

The JPSTH quantifies the causality between responses at different locations 3 

(Gerstein and Perkel, 1969; Aertsen et al., 1989; Ventura et al., 2005). JPSTH 4 

finds the fixed delay between sequences of spikes recorded at different pairs of 5 

neurons (electrodes) over multiple trials, which can depict causal relationships 6 

between them. Similar to SCCC, the shift-predictor was applied on the “raw” 7 

JPSTH to eliminate the time-locked stimulus-induced covariation due to 8 

co-stimulation. In this study, the algorithm and MATLAB codes from George 9 

Gerstein’s group were used3. The results can provide directional information 10 

about the connectivity. With the same binning resolution used for FRH, JPSTH 11 

between each pair of recording electrodes was 191X191-dimensional. Therefore, 12 

JPSTH for evoked responses to each stimulation electrode was a 13 

64,571,370-dimensional (191X191X60X59/2) vector. 14 

 15 

Center of Activity Trajectory with Electrode Locations Shuffled (CAT-ELS) 16 

The electrode locations, Ek, were randomly shuffled. Then CAT-ELS was 17 

calculated according to Equation 1 and 2 (in Methods) by using these shuffled 18 

electrode locations. For each network, the electrode locations were shuffled 10 19 

times and 10 different corresponding CAT-ELSs were generated.  20 

 21 
 22 
2. Experiments in living cultures: 23 

Firing Rate (FR) 24 

The number of spikes was counted at each recording electrode for each probe 25 

response and averaged every block. Thus, for each stimulation electrode, a 26 

                                                 
3 http://mulab.physiol.upenn.edu/jpst.html 
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60-dimensional FR vector was obtained for every 240 sec (“block”, see 1 

Methods).  2 

 3 

Firing Rate Histogram (FRH) 4 

For evoked responses to each stimulus, the FRH was calculated by using a 5 5 

msec moving time window with time step of 500 µsec. Thus, for each 6 

stimulation electrode, an 11,460-dimensional (191X60) FRH vector was obtained 7 

for every block. 8 

 9 

Center of Activity Trajectory (CAT) 10 

Let i

k

P

E
FRH be the average responses over each block, recorded at electrode Ei to 11 

stimulation electrode Pi. CAT for stimulation electrode Pi was then calculated 12 

from the i

k

P

E
FRH by using Equation 1 and 2 (in Methods). Thus, for each 13 

stimulation electrode, a 382-dimensional (191X2) CAT vector was obtained for 14 

every block. 15 

 16 

Shift-predictor Corrected Cross-Correlogram (SCCC) 17 

With the same binning resolution used for FRH, SCCC between each pair of 18 

recording electrodes was calculated for every block. Thus, for each stimulation 19 

electrode, a 674,370-dimensional ((191X2-1)X60X59/2) SCCC vector was 20 

obtained for every block. 21 

 22 

Center of Activity Trajectory with Electrode Locations Shuffled (CAT-ELS) 23 

CAT-ELS was calculated by the same shuffling procedure used in simulations. 24 

For each experiment, the electrode locations were shuffled 10 times and 10 25 
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different corresponding CAT-ELSs were generated. The dimensionality of 1 

CAT-ELS was the same as CAT. 2 

 3 

Table S1. The dimensionality of the statistics. 4 

Dimensionality1 
Statistics 

Simulations Experiments in living cultures 

FR 60 60 

FRH 11,460 11,460 

MI 1,770 - 

CAT 382 382 

CAT_ELS 382 382 

SCCC 674,370 674,370 

JPSTH 64,571,370 - 

1 The dimensionality is defined as the length of the statistic calculated from evoked 5 

responses to one stimulation electrode in one simulation or in one block (for 6 

experiments in living cultures). 7 

8 
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S3: Movie of CATs in a simulated network. 1 

Different patterns of CATs were obtained from evoked responses to stimuli at 2 

different electrodes in simulation (see Movie S3). A. The rasterplot of 1 second of 3 

network activity from 1000 LIF neurons. Evoked responses to stimuli at different 4 

electrodes are shown in different colors. B. 1000 neurons on 3mm by 3mm area. 5 

Neurons are shown as gray dots, and the active synapses are shown in cyan lines. The 6 

locations of stimulation electrodes are indicated by crosses with the corresponding 7 

colors shown in A. C. The corresponding CATs. The color of the trajectory represents 8 

the corresponding evoked response shown in A. Time is represented in the red bar at 9 

the bottom of A. 10 

11 
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S4: Performances of the 6 statistics after spike sorting in simulated 1 
networks. 2 

Sorting recorded action potentials and recalculating the activity statistics improved the 3 

performance of all except for CAT. However, the CAT still showed the highest 4 

performance. The calculation of the CAT remained the same as the sorted spikes are 5 

spatially summed according to recording electrode locations The six statistics were 6 

re-calculated based on the activity of about 250 spike sorted neurons instead of 60 7 

electrodes (see Results).JPSTH, SCCC, FRH, MI and FR improved 11.1, 17.6, 11.0, 8 

35.0 and 31.2 %, respectively. The same figure representation was used as in Figure 7. 9 

The sensitivities and specificities for these statistics (also see Discussion) are shown 10 

in the table. 11 

 12 

Statistic CAT JPSTH SCCC FRH MI FR 

Sensitivity (%) 88.7 85.4 82.8 60.2 65.0 51.2 

Specificity (%) 82.4 77.9 77.9 85.3 95.6 100 

Figure S4 
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S5: Movies of CATs in a MEA culture: before and after tetanization. 1 

Different patterns of CATs were obtained from evoked responses to different probe 2 

electrodes in MEA cultures. Also, CATs from the same probe electrode were found 3 

different before and after tetanization (shown Movie S5a and Movie S5b, 4 

respectively). A. The rasterplot of 10 seconds of network activity at 60 electrodes. 5 

Evoked responses to different probe electrodes are shown in different colors (the same 6 

color was used for the same probe electrode in 2 movies). B. Activity distribution in 7 

60-channel MEA. Activity intensity at different electrodes is shown by black filled 8 

circles with different sizes. The locations of probe electrodes are indicated by crosses 9 

with the corresponding colors shown in A. C. The corresponding CATs. The color of 10 

the trajectory represents the corresponding evoked response shown in A. The scales in 11 

the 2 movies are the same. Time is represented in the red bar at the bottom of A.  12 

 13 

 14 

 15 

16 
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S6: CATs in all experiments in MEA cultures: before and after 1 
tetanization. 2 

Different patterns of CATs were obtained before and after tetanization from 6 3 

experiments in MEAs (see figure). CATs obtained before tetanization (Pre) and after 4 

tetanization (Post) for each probe electrode are shown. The column-row numbers of 5 

corresponding probe electrodes are shown in the 8 by 8 MEA grids shown in the 6 

middle. The tetanization electrodes are depicted by thick black circles. For each probe, 7 

CATs calculated for each “block” (see Methods) are shown in black lines and overlaid. 8 

The averaged CATs are shown in colored circles (from blue to red).  9 

 10 
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S7: Calculation of center of weights (CW) for simulations. 1 

Plastic changes in the simulated networks’ functional architecture can be represented 2 

by the trajectory of the center of weights (CW). Let Wi(t) be the weight of synapse i at 3 

time t. Let Xi and Yi indicate the horizontal and vertical distances from the 4 

post-synaptic neuron of the synapse i to a reference point (the center of the dish was 5 

used). Then, CW of time t is a two dimensional vector: 6 
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where N is the total number of excitatory synapses. Note that while CAT describes the 8 

spatiotemporal patterns of signal propagation, CW shows the dynamics of connection 9 

strengths. 10 

 11 

 12 

 13 

 14 

15 
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