Target	Origin of mutants	Distribution	Number of mutations in a mutant						X (mutations per reporter) ³	D (mutations per kb) ⁴	$(\mathbf{P}_{\text{mut}})^5$	$P(\chi^{2})^{6}$
			1	2	3	4	5	6	reporter)			
CANI	DSB-cen, UV $(20)^1$	Observed	17	6	2	0	0	0	-	-		-
		Expected $(1-3)^2$	16.3	6.5	1.7	-	-	-	0.8	0.45	0.55	0.9
		Expected (2,3)	-	5.7	1.8	-	-	-	0.95	0.53	0.61	0.8
	DSB-cen, UV (45)	Observed	21	7	4	0	0	0	-	-		-
		Expected (1-3)	12.2	10.3	5.9	-	-	-	0.85	0.48	0.57	0.6
		Expected (2,3)	-	6.5	3.0	-	-	-	1.4	0.79	0.75	0.6
subtel. LYS2	37°C (G2- arrest) UV (45)	Observed	7	16	5	4	1	1	-	-		-
		Expected (1-6)	9.6	10	7.4	4	1.7	0.6	2.2	0.49	0.88	0.4
		Expected (2-6)	-	15.3	7.7	2.9	0.9	0.2	1.5	0.34	0.78	0.7

Table S15. Calculated densities of UV-induced mutations

Footnotes to Table S15.

 1 UV doze, J/m² is shown in parentheses.

² Mutant alleles with the multiplicity shown in parentheses were included into calculations.

³ *X* - expected average number of mutations per target.

 ^{4}D - expected average number of mutations per kilobase in *CAN1* (1773 nt) or *LYS2* (4396 nt) regions.

⁵ P_{mut} - probability that the cell contains at least one mutation in a target, (1-P₀), where $P_0 = e^{-X}$;

 $^{6}P(\chi^{2})$ – probability of differences between observed and expected ratios based on χ^{2} distribution.