Supplemental Data

Cell Metabolism, Volume 8

Genome-wide Coactivation Analysis of PGC-1 α Identifies BAF60a as a

Regulator of Hepatic Lipid Metabolism

Siming Li, Chang Liu, Na Li, Tong Hao, Ting Han, David E. Hill, Marc Vidal, Jiandie D. Lin

Supplemental Tables

Category	hTF	TFORC	Coverage
b-ZIP	51	31	60.8%
HLH	103	47	45.6%
HMG-box	52	26	50.0%
Homeobox	207	72	34.8%
Nuclear receptor	48	30	62.5%
Zinc-finger	777	347	44.7%
Other DNA-binding	265	137	51.7%
Basal transcription	70	45	64.3%
Cofactor	211	117	55.5%
Others	601	294	48.9%
TOTAL	2385	1146	48.1%

Table S2. Transcription Factor and Cofactor Families inthe Human Genome and TFORC.

	Table S3. List of	genes used in	clustering	analysis
--	-------------------	---------------	------------	----------

Symbol	Pathway	Gene Name
G6Pase	Gluconeogenesis	glucose-6-phosphatase, catalytic
PEPCK	Gluconeogenesis	phosphoenolpyruvate carboxykinase 1, cytosolic
Hadha	Fatty acid β-oxidation	mitochondrial trifunctional protein, alpha subunit
Hadh	Fatty acid β-oxidation	hydroxyacyl-Coenzyme A dehydrogenase
Acadm	Fatty acid β-oxidation	acyl-Coenzyme A dehydrogenase, medium chain
Acadl	Fatty acid β-oxidation	acyl-Coenzyme A dehydrogenase, long chain
Acaa2	Fatty acid β-oxidation	mitochondrial 3-oxoacyl-Coenzyme A thiolase
Etfdh	Fatty acid β-oxidation	electron-transferring-flavoprotein dehydrogenase
Cpt1a	Fatty acid β-oxidation	carnitine palmitoyltransferase 1A (liver)
HMGCS2	Fatty acid β-oxidation	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial)
Slc25a20	Fatty acid β-oxidation	solute carrier family 25 (carnitine/acylcarnitine translocase), member 20
Ech1	Fatty acid β-oxidation	enoyl Coenzyme A hydratase 1, peroxisomal
Acox1	Fatty acid β-oxidation	acyl-Coenzyme A oxidase 1, palmitoyl
Alas1	Heme biosynthesis	aminolevulinic acid synthase 1
Pdk4	Glucose metabolism	pyruvate dehydrogenase kinase, isoenzyme 4
Sod2	ROS metabolism	superoxide dismutase 2, mitochondrial
Aco2	Mitochondrial OXPHOS	aconitase 2, mitochondrial
Ndufa2	Mitochondrial OXPHOS	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2
Cox7a1	Mitochondrial OXPHOS	cytochrome c oxidase, subunit VIIa 1
Cox7b	Mitochondrial OXPHOS	cytochrome c oxidase, subunit VIIb
Mrpl14	Mitochondrial OXPHOS	mitochondrial ribosomal protein L14
UCP2	ROS metabolism	uncoupling protein 2 (mitochondrial, proton carrier)
Essra	Transcriptional regulation	estrogen-related receptor alpha
Ppargc1a	Transcriptional regulation	peroxisome proliferative activated receptor, gamma, coactivator 1 alpha
Bmal1	Circadian clock	aryl hydrocarbon receptor nuclear translocator-like
NR1D1	Circadian clock	nuclear receptor subfamily 1, group D, member 1
NR1D2	Circadian clock	nuclear receptor subfamily 1, group D, member 2

Probeset ID	Gene ID	Fold Wy14643	Fold BAF60a	Gene Symbol
1416409_at	11430	1.6	2.4	Acox1
1416772_at	12896	2.3	2.5	Cpt2
1416946_a_at	113868 /// 235674	1.7	3.7	Acaa1a /// Acaa1b
1416947 s at	113868 /// 235674	1.7	3.1	Acaa1a /// Acaa1b
1417556 at	14080	4.2	0.9	Fabp1
	12683	2.4	6.8	Cidea
1418321 at	13177	2.3	1.0	Dci
1419365 at	18631	24	1.8	Pex11a
1419367 at	67460	2.5	2.6	Decr1
1419395 at	74156	2.1	1.0	Acot12
1422526 at	14081	5.8	2.2	Acsl1
1422780 at	59038	2.2	1.5	Pxmp4
1422996 at	171210	21.7	0.8	Acot2
1422997 s at	171210 /// 26897	35.2	5 4	Acot1 /// Acot2
1423108 at	57279	23	3 5	Slc25a20
1423109 s at	57279	2.6	37	SIc25a20
1423858 a at	15360	14 5	6.6	Hmacs2
1422000 <u>a</u> at	14081	4.0	2.4	Acel1
1423003_at	110446	4.0	2.4	Acat1
1424105_at	225674	27	1.2	Acaalb
1424451_dt	110460 /// 224530	1.0	4.7	
1425175_a_at	221086 /// 622021	2.4	2.4	Hadbb /// LOC623031
1420322_at	22045	2.4	2.2	Mall
14207052_s_dt	23945	3.0	3.3	Acach
1427052_dt 1429145_ot	F2F29	2.0	0.9	Acad
1420145_dt	52530	1.0	4.2	Acad2
1420140_5_dt	22030	1.4	0.0	Acad2
1431012_a_al	23900	2.9	3.4	
1431633_a_al	1000	3.1	2.0	Hinges1
1433443_a_at	208715	0.9	3.4	Hinges 1
1433446_al	208715	0.9	3.4	Angel 11
1433343_5_dt	221094	1.7	2.0	Hadbh
1437172_X_di 1420479_ot	171010	2.2	1.9	
1437470_at	22220	1 0	0.0	
1440100_at	7/1/7	1.0	7.3	Ebbadb
1440302_at	51709	2.2	7.5	Ech1
1//876/ a at	14080	3.5	2.1	Echn Fabri
1440704_a_at	11363	1 7	2.7	Acad
1440707_at	26897	99.6	<u>2</u> .7 1 /	Acot1
1449005_at	18631	2.0	1.4	Pov11a
1449457 at	74156	2.0	1.0	Acot12
1449749 s at	224481	53	1.0	Tfh1m
1449964 a at	56690	2.0	1.1	Mlycd
1450391 a at	23945	3.1	2.9	Mall
1450504 a at	28169	1.6	1.6	Agnat3
1450643 s at	14081	4.6	2.4	Acsl1
1450966 at	74114	2.2	2.1	Crot
1451084 at	66841	2.0	2.1	Ftfdh
1451271 a at	110446	2.0	2.1	Acat1
1452173 at	97212	2.2	2.1	Hadha
1452260 at	14311	2.1	1.5	Cidec
1453836 a at	23945	4.0	3.1	Mall
1454647 at	102632	1.6	2.1	Acad11
1455061 a at	52538	1.5	7.0	Acaa2
1455438 at	59038	2.0	1.5	Pxmp4
1455972 x at	15107	1.1	2.4	Hadhsc
1460184 at	15107	1.4	2.1	Hadhsc
	12894	2.6	2.8	Cpt1a

Table S4. Regulation of fatty acid oxidation genes by PPAR α and BAF60a.

	Gene	Forward primer	Reverse primer
qPCR	Acaa1b	ATGCTTCCATGCTGAGATTGT	TCCATCCTTGAAGGCAGGCTT
	Acaa2	GATCTCAAGCTGGAAGATAC	ACCTCTGCTGAGACTGCAAG
	Acox1	GCCTGCTGTGTGGGTATGTCATT	GTCATGGGCGGGTGCAT
	Ech1	AAGATAAGGACGCCATGCTGAA	TCCAGGTGGCCATGTAGTCA
	Ehhadh	CAGATGAAGCACTCAAGCTTG	ACCTTGGCAATGGCTTCTGCA
	Hadha	TGCTCCTCGACCACGCTAAC	GCCTTGGTCTTTTTCCTGCTT
	Etfdh	GGAAGGCGGGAAGAGGATAG	GCCGTGTGGGTACCTTTGAT
	Slc25a20	GTTCACCACAGGAATCATGAC	GTGAGCACAGTCCCTTTGTAG
	Cox7a1	GTCTCCCAGGCTCTGGTCCG	CTGTACAGGACGTTGTCCATTC
	BAF60a	TGGACCCAAATGACCAGAAAA	TCTTGTTGTCTAGAGTGGCGATCT
ChIP	Acaa1b	GCACTGATGAGGGCATCTC	CTAAGCTGGATGCTTGAGTAC
	Acox1	TCTAACGTCAGTCAAGTCGG	GAAAGCTGTTGATTTTACTGG
	Hadha	TCAATTAAATGCCAGGGGAG	GATACTAGTTACTTCCCAGAC

Table S5. List of qPCR and ChIP PCR primers.

Supplemental Figures

Figure S1. Effects of Individual Factors on the Expression of PGC-1a Target

Genes

qPCR analysis of mRNA expression in primary hepatocytes transduced with recombinant adenoviruses expressing GFP, PGC-1 α or individual PGC-1 α partners. The expression of PGC-1 α target genes involved in hepatic gluconeogenesis, fatty acid β -oxidation, mitochondrial OXPHOS and circadian clock function were normalized to the GFP control. Note that BAF60a (blue bars) and PGC-1 α induce the expression of a common set of genes (orange bars).

Figure S2. Metabolic characteristics of mice transduced with GFP or

BAF60a adenoviruses

Plasma insulin and total cholesterol concentrations, percent gonadal fat weight, and muscle TG content in mice transduced with adenoviruses expressing GFP (open circle) or BAF60a (filled circle). Data represent mean \pm SEM, n=5. No statistical difference was observed between two groups.

Figure S3. Interaction of BAF60a with nuclear receptors

(A) DR-1 luciferase reporter was transiently transfected into BOSC cells with PPARα/RXR in the presence or absence of BAF60a. Data represent mean ± stdev.
(B) Immunoblots of Flag-tagged ERRα, ERRγ and PPARα. GST and GST-BAF60a
fusion proteins were incubated with *in vitro* transcribed and translated Flag-ERRα, Flag-ERRγ or Flag-PPARα followed by immunoblotting analysis using Flag antibody.

Figure S4. Metabolic characteristics of mice transduced with control or

BAF60a RNAi adenoviruses

(A) Plasma insulin and total cholesterol concentrations, percent gonadal fat weight, and muscle TG content in mice transduced with control (filled) or BAF60a RNAi (open) adenoviruses.

(B) Increase in plasma TG following intravenous injection of tyloxapol (500 mg/kg) in mice transduced with control (filled) or BAF60a RNAi (open) adenoviruses. Data represent mean \pm SEM, n=5. No statistical difference was observed between two groups.