Notes to Table **S1a**:

On data collection:

Prokaryote data were compiled by searching the <u>www.pubmedcentral.nih.gov</u> full-text library for "bacterium" and "endogenous respiration" and subsequent analysis of the returned 570 documents (mostly papers in the Journal of Bacteriology and Journal of Applied and Environmental Microbiology, time period 1940-2006) and references therein.

On cell size and taxonomy:

Data on endogenous respiration rates (i.e. respiration rates of non-growing cells in nutrient-deprived media) in heterotrophic eukaryotes are presented. Studies of bacterial respiration **very rarely** report information on cell size, which had therefore to be retrieved from different sources. To do so, an attempt was made to assign the bacterial strains described in the metabolic sources to accepted species names, to futher estimate the cell size for these species in the relevant literature. This was done using strain designations and information in the offician bacterial culture collections, like ATCC (American Type Culture Collection), NCTC (National Type Culture Collection) and others.

Column "Species (Strain)" gives the strain designation as given by the authors of the respiration data paper. Column "Valid Name" gives the relevant valid species name for this strain, as determined from culture collections' information and/or other literature sources. Valid names follow Euzéby (1997). Cell size in the "Mpg" column correspond to species indicated in the "Valid Name" column. Note that this information is of approximate nature, because many respiration data come from quite old publications and it was sometimes difficult to find out the valid name of the strain used with great precision. "Class:Order" column contains the relevant taxonomic information for the species listed in the "Valid Name" column as given by Euzéby (1997) (http://www.bacterio.net).

For example, Hareland et al. (1975) reported respiration rate for *Pseudomonas acidovorans* (ATCC strain number 17455). ATCC web site (<u>www.atcc.org</u>) says that this strain is *Delftia acidovorans* originally deposited as *Pseudomonas acidovorans*. Cell size for *Pseudomonas acidovorans* was therefore determined from the species description of *Delftia acidovorans* given by Wen et al. (1999). "Class:Order" for these data was determined as given at <u>http://www.bacterio.net</u> for *Delftia acidovorans*.

Note that the taxonomic uncertainty exclusively relates to the cell size determination. Cell size information participates in the paper's results only as a crude mean for all the 173 species studied, which is unlikely biased in any significant way. Taxonomic uncertainties, if any, do not influence any of the conclusions regarding the range, mean and frequency distribution of the prokaryotic respiration rates analysed in the paper.

Abbreviations and universal conversions: DM – dry mass; WM – wet mass; N – nitrogen mass; C – carbon mass; Pr – protein mass; X/Y – X by Y mass ratio in the cell, e.g. DM/WM is the ratio of dry to wet cell mass; 1 W = 1 J s⁻¹; 1 mol O_2 = 32 g O_2 .

Original units are the units of endogenous respiration rate measurements as given in the original publication (**Source**); **qou** is the numeric value of endogenous respiration rate in the original units. E.g., if it is " μ I O₂ (5 mg DM)⁻¹ (2 hr)⁻¹" in the column "**Original units**" and "200" in the column "**qou**", this means that cells amounting to 5 mg dry mass consumed 200 microliters oxygen in two hours.

qWkg is the original endogenous respiration rate **qou** converted to W (kg WM)⁻¹ (Watts per kg wet mass) using the following conversion factors: C/DM = 0.5 (Kratz & Myers 1955; Bratbak & Dundas 1984; Nagata 1986), Pr/DM = 0.5 (Gronlund & Campbell 1961; Sobek et al. 1966; Smith & Hoare 1968 (see Table S1a); Zubkov et al. 1999), N/DM = 0.1 (SI Methods, Table S12b) if not indicated otherwise, and DM/WM = 0.3 as a crude mean for all taxa applied in the analysis (SI Methods, Table S12a). Energy conversion: 1 ml O₂ = 20 J. The respiratory quotent of unity was used (1 mol CO₂ released per 1 mol O₂ consumed).

TC is ambient temperature during measurements, degrees Celsius.

q25Wkg is endogenous respiration rate converted to 25 °C using $Q_{10} = 2$, **q25Wkg = qWkg** × $2^{(25 - TC)/10}$, dimension W (kg WM)⁻¹. For each species rows are arranged in the order of increasing **q25Wkg**.

Mpg: estimated cell mass, pg (1 pg = 10^{-12} g). In most cases it is estimated from linear dimensions (using geometric mean of the available linear size range) assuming spherical cell shape for cocci and cylindrical shape for rods. Square brackets around the **Mpg** value indicate that the cell size information was obtained from a different source than the source of endogenous respiration rate data. When converting cell volume to cell mass, cell density of 1 g ml⁻¹ was assumed.

Source: the first, unbracketed reference in this column is where the value of **qou** is taken from; references and data in square brackets refer to cell size determination. Cell size reference "BM" in brackets corresponds to Bergey's Manual of Systematic Bacteriology, 1st Edition (Holt, 1984, 1986, 1989); BM9 is Bergey's Manual of Determinative Bacteriology, 9th Edition (Holt et al. 1994). Word "genus" in brackets indicates that cell size is determined as mean for the genus. This was done for those genera where the range of minimum to maximum cell masses did not exceed a factor of ten. E.g. for an unknown Chromatium sp. (BM9 genus: rods $1-6 \times 1.5-15 \mu m$, which corresponds to cell mas range from 1.2 to 420 pg) cell mass was left undetermined (empty "**Mpg**" column).

Culture age: Information on culture age and the duration of respiration measurements, if available.

Comments: this column provides relevant information on culture conditions and cellular composition of the studied species, often including additional data on respiration rates that were obtained for the same strain (species) by the same group of authors.

Log₁₀-transformed values of **q25Wkg** (W (kg WM)⁻¹), minimum for each species, were used in the analyses shown in Figures 1-3 and Table 1 in the paper (a total of 173 values for n = 173 species). The corresponding rows are highlighted in blue.

References within Table S1a to Tables, Figures etc. refer to the corresponding items in the original literature indicated in the **Source** column.

Table 51a. Endogenous respiration rates in neterotrophic prokary
--

Species (strain)	Valid name	Class: Order	Original units	MIN	qou	qWkg	TC	q25Wkg	Mpg	Source	Culture age	Comments
Acetobacter aceti (Ch 31)	1.Acetobacter aceti	Clostridia: Clostridia- les	μ mol O ₂ (1.8 × 45 mg WM) ⁻¹ (5 hr) ⁻¹	MIN	2	0.6	30	0.42	[0.75]	De Ley & Schell 1959 [BM, ellip- soid or rod-shaped 0.6-0.8×1.0-4.0 μm]	Cells incubated for 4-5 days on gelatin slants at 20 C; respiration measured for 5 hr	Cells additionally incubated for 2-3 days at 30 C in a shaking apparatus "occa- sionally displayed higher endogenous respiration, 13.5 μ mol O ₂ (1.8 × 45 mg WM) ⁻¹ (2.5 hr) ⁻¹ = 8.3 W/kg; this respi- ration increased exponentially during incubation
Acholeplasma laid- lawii (NCTC 10116)	2.Acholeplasma laidlawii	Mollicutes: Achole- plasmatales	nmol O_2 (mg protein) ⁻¹ min ⁻¹	MIN	1.2	1.4	37	0.61	[0.04]	Abu-Amero et al. 1996 [Wieslander et al. 1987, sphere diam 0 3-0 6 µm]	Cells harvested after 24-72 hr incubation	
Hydrogenomonas ruhlandii	3.Achromobacter ruhlandii	Betaproteobacteria: Burkholderiales	$\begin{array}{c} \mu l \ O_2 \ (0.5 \ mg} \\ DM)^{-1} \ (2 \ hr)^{-1} \end{array}$	MIN	9	15	30	10.61	0.2	Packer & Vish- niac 1955 [rods 0.4-0.75×0.75-2.0 μm, mean 0.5×1.1 μm]	Bacteria harvested after 4-5 days' incuba- tion on agar plates; respiration of resting cells measured for 2 h	Hydrogen-oxidizing bacterium isolated from soil
Achromobacter sp.	4.Achromobacter sp.	Betaproteobacteria: Burkholderiales	$\begin{array}{c} \mu mol O_2 (100 \\ mg DM)^{-1} (2 \\ hr)^{-1} \end{array}$	MIN	45.1	8.4	30	5.94	[0.6]	Gronlund & Campbell 1961 [Chester & Coo- per 1979, 0.5- 0.8×1.5-2.5 µm]	cells harvested after 20 hr growth; respiration measured for 2 hr	Classification and size determination made for the Achromobacter genus as described at www.bacterio.cict.fr. There is no such species at www.bacterio.cict.fr
Achromobacter sp. (B8)	5.Achromobacter sp.	Betaproteobacteria: Burkholderiales	$ \begin{array}{l} \mu l \ \ O_2 \ \ (5 \ \ mg} \\ DM)^{-1} \ (2 \ hr)^{-1} \end{array} $		200	35	30	24.75	[0.6]	Tomlinson & Campbell 1963 [Chester & Coo- per 1979, 0.5- 0.8×1.5-2.5 μm]	cells harvested after 20 hr growth; respiration measured for 2 hr	No drop of respiration during the first two hours Classification and size determination made for the Achromobacter genus as described at www.bacterio.cict.fr. There is no such species at www.bacterio.cict fr
Achromobacter viscosus (ATCC 12448)	6.Achromobacter viscosus	Betaproteobacteria: Burkholderiales	$\mu l O_2 (5 mg DM)^{-1} (2 hr)^{-1}$	MIN	200	35	30	24.75	[0.6]	Tomlinson & Campbell 1963 [Chester & Coo- per 1979, 0.5- 0.8×1.5-2.5 μm]	cells harvested after 20 hr growth; respiration measured for 2 hr	No drop of respiration during the first two hours Classification and size determination made for the Achromobacter genus as described at www.bacterio.cict.fr. There is no such species at www.bacterio.cict fr
Achromobacter xerosis (ATCC 14780)	7.Achromobacter xerosis	Betaproteobacteria: Burkholderiales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	14	23	30	16.26	[0.5]	Jurtshuk & McQuitty 1976 [Groupé et al. 1954, 0.5×2-3 um]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	Classification and size determination made for the Achromobacter genus as described at www.bacterio.cict.fr. There is no such species at www.bacterio.cict fr
Hydrogenomonas facilis	8.Acidovorax facilis	Betaproteobacteria: Burkholderiales	$\begin{array}{c} \mu l & O_2 \\ DM)^{-1} \ hr^{-1} \end{array} (mg$	MIN	4-11	7	30	4.95	0.3	Schatz & Bovell 1952 [rods, 0.4×2.5 µm in	Heterotrophic cultures: cells grown for 48, 21, 72, and 48 hr on lac-	Synonym Pseudomonas facilis

										heterotrophic cultures, 0.3×2.0 in autotrophic cultures]	tate, succinate, glucose and tryptose, respec- tively.	
Acinetobacter cal- coaceticus (ATCC 19606)	9.Acinetobacter baumannii	Gammaproteobacteria: Pseudomonadales	$\begin{array}{l} \mu l & O_2 & (mg \\ DM)^{-l} \ hr^{-l} \end{array}$	MIN	4	12	30	8.49	[2]	Jurtshuk & McQuitty 1976 [BM, genus, rods 0.9-1.6× 1.5-2.5]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth expendent	
Acinetobacter calcoaceticus (208)	10.Acinetobacter calcoaceticus	Gammaproteobacteria: Pseudomonadales		MIN	7	6.7	30	4.74	[2]	Jurtshuk & McQuitty 1976 [BM, genus, rods 0.9-1.6× 1.5-2.5]	cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Acinetobacter johnsonii (210A)	11.Acinetobacter johnsonii	Gammaproteobacteria: Pseudomonadales	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	41	46	30	32.53	[2]	van Veen et al. 1993 [BM, genus, rods 0.9-1.6× 1.5- 2.5]	Cells harvested at the logarithmic phase	When starved for 12 hours, respiration decreases to "very low rates" but when glucose is added, returns back to the higher level indicating no loss of viabil- ity. This suggests that 41 W/kg is an overestimate.
Acinetobacter cal- coaceticus (ATCC 31012)	12.Acinetobacter sp.	Gammaproteobacteria: Pseudomonadales	$\begin{array}{c} \mu l & O_2 \\ DM \end{array} (mg$	MIN	2.0	3.3	25	3.30	[2]	Bruheim et al. 1999 [BM, genus, rods 0.9-1.6× 1.5- 2.5]	Cells grown to the early stationary phase on oil	
Acinetobacter sp.	13.Acinetobacter sp.	Gammaproteobacteria: Pseudomonadales	$\mu l O_2 (4 mg DM)^{-1} min^{-1}$	MIN	0.25	6	30	4.24	[2]	Sparnins et al. 1974 [BM, genus, rods 0.9-1.6× 1.5- 2.5]	Bacteria grown over- night to the stationary phase (Dagley & Gib- son 1975)	Gram-negative, oxidase-negative coc- cobacillus that cannot utilize glucose was isolated from agricultural soil in St. Paul, Minnesota, USA and tentatively identified as Acinetobacter sp.
Acinetobacter sp. (4-CB1)	14.Acinetobacter sp.	Gammaproteobacteria: Pseudomonadales	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	7	8	30	5.66	[2]	Adriaens et al. 1989 [BM, genus, rods 0.9-1.6× 1.5- 2.5]	Cells grown to the late exponential phase Adriaens & Focht 1991: the same strain grown on various substrates displayed endogenous respira- tion from 9.4 to 68.4 nmol O_2 (mg pro- tein) ⁻¹ min ⁻¹ = 11-77 W/kg at 30 C	Bacterium isolated from soil contami- nated with polychlorobiphenyl
Aeromonas hydro- phila (ATCC 4715)	15.Aeromonas hy- drophila	Gammaproteobacteria: Aeromonadales	$\begin{array}{l} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	23	38	30	26.87		Jurtshuk & McQuitty 1976	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Aeromonas hydro- phila (ATCC 9071)	16.Aeromonas veronii	Gammaproteobacteria: Aeromonadales	$\begin{array}{c} \mu l & O_2 \\ DM \end{pmatrix}^{-1} hr^{-1} \end{array} (mg$	MIN	12	20	30	14.14		Jurtshuk & McQuitty 1976	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal	
Agrobacterium	17.Agrobacterium	Alphaproteobacteria:	µl O ₂ (mg	MIN	12	20	30	14.14	[1.5]	Jurtshuk &	Cells harvested at the	

tumefaciens (ATCC 15955)	tumefaciens	Rhizobiales	DM) ⁻¹ hr ⁻¹							McQuitty 1976 [BM9, genus, rods 0.6-1.0×1.5-3.0 um]	late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Hydrogenomonas eutropha (ATCC 17697)	18.Alcaligenes eutrophus	Betaproteobacteria: Burkholderiales	$\begin{array}{l} \mu mol O_2 (3.6 \\ mg \ DM)^{-1} \ hr^{-1} \end{array}$	MIN	8	83	33	47.67	[0.8]	Bongers 1970 [BM, rods, 0.7×1.8-2.6 μm]	Respiration of cells withdrawn from tur- bidistat (steady-state growth)	Hydrogen-oxidizing bacterium, max. respiration (in the presence of H_2) is ten times the endogenous rate
Alcaligenes faecalis (ATCC 8750)	19.Alcaligenes faecalis	Betaproteobacteria: Burkholderiales	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	16	27	30	19.09		Jurtshuk & McQuitty 1976	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Alcaligenes sp. (strain 5)	20.Alcaligenes sp.	Betaproteobacteria: Burkholderiales	μ mol O ₂ (14 mg DM) ⁻¹ (5 hr) ⁻¹	MIN	4	2.1	30	1.48		Subba-Rao & Alexander 1985	Bacteria grown for 2 days; washed; incu- bated in buffer for 6 to 12 hr on a rotary shaker at 30 C to re- duce endogenous respiration; washed again and added to respirometer flasks (Subba-Rao & Alex- ander 1977)	Bacteria isolated from enrichments with benzhydrol as the sole carbon source.
Unnamed methylo- troph (CC495)	21.Aminobacter lissarensis	Alphaproteobacteria: Rhizobiales	$\begin{array}{c} nmol O_2 (mg \\ WM)^{-1} \ min^{-1} \end{array}$	MIN	0.22	1.6	25	1.60	[0.6]	Coulter et al. 1999 [BM9, genus, rods, 0.6-1.0×1.0- 3.0 µm]	Cells harvested in the late exponential phase	Bacterium isolated from the top 5 cm of soil in a beech wood in Northern Ireland
Amoebobacter purpureus (ML1)	22.Amoebobacter purpureus	Gammaproteobacteria: Chromatiales	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	9.8	11	30	7.78	[36]	Overmann & Pfennig 1992 [Eichler & Pfen- nig 1988, 3.3- 3.8×3.5-4.5 µm]	Respiration of cells without microscopi- cally visible sulfure globules at oxygen concentrations of 11- 67 μ M; respiration rates of phototrophi- cally (anaerobically) and chemotrophically (microaerobically) grown cells do not differ; the species dsiplays poor if any growth in the dark	Purple sulfur bacteria isolated from the chemocline of meromictic Mahoney Lake (British Columbia, Canada) Endogenous respiration of cells with visible sulfur globules is lower, 5.7 nmol O ₂ (mg protein) ⁻¹ min ⁻¹
Amoebobacter roseus (6611)	23.Amoebobacter roseus	Gammaproteobacteria: Chromatiales	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	4.8	5.4	30	3.82	[5]	Overmann & Pfennig 1992 [BM9, genus, spherical cells 1.5-3 µm diam]	Respiration of cells without microscopi- cally visible sulfure globules at oxygen concentrations of 11- 67 μ M; respiration rates of phototrophi- cally (anaerobically) and chemotrophically	Purple sulfur bacteria Endogenous respiration of cells with visible sulfur globules is higher, up to 22 nmol O_2 (mg protein) ⁻¹ min ⁻¹

												(microaerobically) grown cells do not differ; the species is capable of chemotro- phic growth in the dark.	
Amoebobaete pendens (5813	r 3)	24.Amoebobaeter pendens	Gammaproteobacteria Chromatiales	a: nmol O ₂ (m protein) ⁻¹ min ⁻¹	g MIN	7.6	8.5	30	6.01	[5]	Overmann & Pfennig 1992[BM9, genus, spherical cells 1.5-3 µm diam]	Respiration of cells without microscopi- cally visible sulfure globules at oxygen concentrations of 11- 67 μ M; respiration rates of phototrophi- cally (anaerobically) and chemotrophically (microaerobically) grown cells do not differ.	Purple sulfur bacteria Endogenous respiration of cells with visible sulfur globules is higher, up to 35 nmol O ₂ (mg protein) ⁻¹ min ⁻¹
Spirillum (Ad rillum) it (ATCC 12639	quaspi- cersonii ?)	25.Aquaspirillum itersonii	Betaproteobacteria: Neisseriales	$\mu l O_2 (m DM)^{-1} hr^{-1}$	g MIN	6	10	30	7.07	[0.9]	Jurtshuk & McQuitty 1976 [Krieg 1976, helical shape, Fig. 1E, Table 3, diam 0.3-0.4 µm, full length ~10 µm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Arthrobacter tallopoietes	crys-	26. Arthrobacter crystallopoietes	Actinobacteria: Act nomycetales	i- µl O ₂ (m DM) ⁻¹ hr ⁻¹	g MIN	0.1	0.2	30	0.14	1.7	Ensign 1970	Cells harvested during the exponential phase of growth (48 hr for spherical cells, 4-8 hr for rods); stable en- dogenous respiration during 24 days of starvation at 100% viability	cell mass estimated from the dry mass data for spherical cells (0.5 mg dry mass per 10^9 cells) Endogenous respiration at harvest was about 8-9 µl O ₂ (mg DM) ⁻¹ hr ⁻¹ and decreased 80-fold during the first two days of starvation Growing spherical cells contain about 40% (dry mass) of a glycogen-like polysaccharide; rods — 10% (Boylen & Ensign 1970) Boylen 1973: Bacteria of this species survived 6 months of extreme desicca-
Arthrobacter formis (8010)	globi- ATCC	27.Arthrobacter globiformis	Actinobacteria: Act nomycetales	ⁱ⁻ μl O ₂ (m DM) ⁻¹ hr ⁻¹	g MIN	5	8.3	30	5.87	[0.5]	Jurtshuk & McQuitty 1976 [Conn & Dim- mick 1947, rods	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal	tion at 50% viability converting 0.0005% of their carbon per hour to carbon dioxide ($\approx 10^{-2}$ W/kg)
Arthrobacter formis	globi- (NCIB	28.Arthrobacter sp.	Actinobacteria: Act nomycetales	$i - \mu l O_2 (m DM)^{-1} hr^{-1}$	g MIN	0.45	0.75	25	0.75	0.2	0.6-0.8×1-1.5 μm] Luscombe & Gray 1974	growth concentration) Cells harvested from continuous cultures	Cocci survive better than rods; initial endogenous respiration was 1.74 and

10683)											and starved for more than 2 days, steady- state viability ap- proximately 80%.	7.33 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ for cocci and rods, respectively, but "after 2 days these had both fallen to a relatively stable level of 0.45", which was moni- tored for 7 days. Cell volume corresponds to the mini- mum dilution rate (0.01 h ⁻¹); it grows up to 0.96 um ³ at 0.3 h ⁻¹ .
Arthrobacter sp.	29.Arthrobacter sp.	Actinobacteria: Actinomycetales	$\begin{array}{ll} \mu I & O_2 & (15 \ \ mg \\ DM)^{-1} & (20 \ \ min)^{-1} \end{array}$	MIN	3.6	1.2	30	0.85	[1.5]	Devi et al. 1975 [BM9, genus, rods 0.8-1.2×1-8 µm; Devi et al. 1975 indicate their strain is 2 µm in	Bacteria grown for 48 hr; endogenous respi- ration of resting cells measured for 80 min; data taken for the last 20 min	Data from Fig. 4a (induced cells), last 20 min of endogenous respiration; bac- teria living in soil of Citrus plantations; rods 2 µm in length Respiration decreases with time (mean
Arthrobacter sp	30 Arthrobacter sp	Actinobacteria: Acti-	ul O ₂ (50 mg	MIN	0.9	6	30	4 24		length] Donnelly et al	Cells harvested during	2.3 W/kg) Isolated from soil
(TMP)	Soll Hundbucker sp.	nomycetales	$WM)^{-1} min^{-1}$		0.9	Ŭ	50	1.21		1981	exponential growth	Isolated Holli Soli
Arthrobacter sp. (CA1)	31.Arthrobacter sp.	Actinobacteria: Actinomycetales	$\begin{array}{l} \mu mol O_2 (5.3 \\ mg \ DM)^{-1} \ hr^{-1} \end{array}$	MIN	2	14	30	9.90		Ougham & Trudgill 1982	Bacteria harvested at late logarithmic phase; respiration measured for 2 hr	Bacteria isolated from field soil con- taminated by aviation fuel, UK
Azotobacter agile	32.Azomonas agi- lis?	Gammaproteobacteria: Pseudomonadales	$ \begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	12.6	21	26	19.59	13	Gunter & Kohn 1956	Cells harvested from 16 to 18-hr yeast agar plates	Cell mass estimated from dry mass data, Table 1, 3.8 pg DM/cell
Azorhizobium caulinodans (ORS571)	33.Azorhizobium caulinodans	Alphaproteobacteria: Rhizobiales	nmol O_2 (mg protein) ⁻¹ min ⁻¹	MIN	34	38	30	26.87	[0.5]	Allen et al. 1991 [BM9, rods 0.5- 0.6×1.5-2.5 μm]	Endogenous respira- tion of cells taken from continuous cul- ture; measured for 10 min	
Azospirillum bra- siliense (ATCC 29145)	34.Azospirillum brasiliense	Alphaproteobacteria: Rhodospirillales	μ mol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	0.02 4	27	37	11.75	[1]	Loh et al. 1984 [BM, species image]	cells harvested during mid log-phase, starved for 4 hr at 4 C; con- stant respiration rate throughout the ex- periment (~4 hr)	
Azospirillum lipo- ferum (ATCC 29707)	35.Azospirillum lipoferum	Alphaproteobacteria: Rhodospirillales	$\begin{array}{ll} \mu mol & O_2 & (mg \\ protein)^{-1} \min^{-1} \end{array}$	MIN	0.03 5	39	37	16.98	[4]	Loh et al. 1984 [BM, species image]	cells harvested during mid log-phase, washed and starved for 4 hr at	Synonim Spirillum lipoferum (BM)
Azotobacter chroo- coccum (NCIB 8003)	36.Azotobacter chroococcum	Gammaproteobacteria: Pseudomonadales	$\mu l O_2$ (mg DM) ⁻¹ hr ⁻¹	MIN	15	25	30	17.68	[14]	Bishop et al. 1962 [Bisset & Hale 1958, Figs. 1-3, 7, 13, diam approx. 3 µm]	Respiration measured immediately after harvesting the cells (aerobic culture) at the end of the logarithmic growth phase	Max. resp. (in the presence of glucose) was 130 $\mu l~O_2~(mg~DM)^{-1}~hr^{-1}$
Azotobacter vine- landii (O)	37.Azotobacter vinelandii	Gammaproteobacteria: Pseudomonadales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-l} \; hr^{-l} \end{array}$	MIN	0.9	1.5	30	1.06	[0.5]	Sobek et al. 1966 [Tsai et al. 1979, Fig. 3, diam 1 µm, ATCC 12837, ≈0.06 pgDM/cell, Fig. 1]	Respiration of glu- cose-grown cells har- vested at 20 hr and starved for 48 hr (Ta- ble 1); viability >95% (Fig. 2)	During starvation respiration diminishes from 4.6-5.8 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ (depending on growth substrate) during the first four hours and to 0.9-1.4 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ between 48th and 52th hours

										Johnson et al. 1958 report that "well- washed cells of this organism possess no significant endogenous respiration"	Viability and respiration depend on the remaining store of PHB (poly- β - hydroxybutyric acid). 16-hr grown cultures were deprived of significant PHB stores and rapidly lost viability during starvation
Azotobacter vine- landii (O, ATCC 12518) Bacillus cereus (C5- 25)	38.Azotobacter vinelandii 39.Bacillus cereus	Gammaproteobacteria: Pseudomonadales "Bacilli": Bacillales	$\mu l O_2 (mg DM)^{-1} hr^{-1}$ $\mu l O_2 (mg MIN DM)^{-1} hr^{-1}$	19 N 8.5	30 14	30 37	21.21 6.09	[0.5]	Jurtshuk & McQuitty 1976 [Tsai et al. 1979, Fig. 3, diam 1 μ m, ATCC 12837, ≈ 0.06 pgDM/cell, Fig. 1] Nickerson & Sherman 1952 [BM, species]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration) Normal (not filamen- tous) cells grown for 18 hr; respiration measured for about 1.5 hr; data of Table 3	Protein/DM (cell protein to DM ratio) in 16-hr cultures at the beginning of star- vation is 0.58-0.71 depending on growth substrate (0.52-0.54 in 24-hr cultures). At the end of starvation (72 hr) it is 0.39-0.59 in 16-hr cultures and 0.44- 0.52 in 24-hr cultures Jurtshuk et al. 1975: Strain O cells grown to the late logarithmic phase, washed and "allowed to sit overnight af 4 C to reduce the intracellular endoge- nous reserve by starvation"; respiration at 30 C was 9-12 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ = 15-20 W/kg N/DM=0.100-0.141 Q ₁₀ for this species in Ingram 1940
Bacillus cereus (USDA)	40.Bacillus cereus	"Bacilli": Bacillales	$\mu l \ O_2 \ (mg \ N)^{-1} \ hr^{-1}$	188	31	30	21.92	[3.7]	Dietrich & Burris 1967 [BM, spe- cies]	Church & Halvorson 1957 report 5 μ l O ₂ (mg N) ⁻¹ hr ⁻¹ = 0.8 W/kg at 30 C; heat- shocked spores stored for 4-48 months at -20 C Cells cultured for 2 weeks; respiration measured for 1 hr after 10 min equilibration	
Bacillus cereus	41.Bacillus cereus	"Bacilli": Bacillales	$\begin{array}{l} \mu l & O_2 \\ DM)^{-1} \ hr^{-1} \end{array} (mg$	56	97	30	68.59	[3.7]	Jurtshuk & McQuitty 1976 [BM, species]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal	
Bacillus firmus (ATCC 14575)	42.Bacillus firmus	"Bacilli": Bacillales	$\mu l = O_2 $ (mg MI) DM) ⁻¹ hr ⁻¹	N 8	13	30	9.19	[0.9]	Jurtshuk & McQuitty 1976 [Kanso et al. 2002, rods 0.6-	growth concentration) Cells harvested at the late-logarithmic growth phase (two thirds of the maximal	
Bacillus megaterium	43.Bacillus megate-	"Bacilli": Bacillales	µl O ₂ (mg MIN	N 2	3.3	30	2.33	[7]	0.9×1.2-4 μm] Jurtshuk &	growth concentration) Cells harvested at the	

	rium		DM) ⁻¹ hr ⁻¹						[[1.96]]	McQuitty 1976 [Bisset 1953, Fig. 17, rods 1.4×4.3 µm] [[Kubitschek 1969, Coulter counter]]	late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Bacillus megaterium	44.Bacillus megate-	"Bacilli": Bacillales	μ l O ₂ (mg		7.7	13	30	9.19	[7]	Frederick et al.	Flasks with washed	Obligately aerobic asporogenous strain
((()))	num		DM) III							1953, Fig. 17, rods 1.4×4.3 μm]	Warburg bath for a total of 30 min; respi- ration measured for at least 60 min; respira- tion of cells starved for 2 hr (by shaking in phosphate buffer)	Respiration of unstarved cells was 11 μl $O_2~(mg~DM)^{-1}~hr^{-1}$
Bacillus megaterium (ATCC 19213)	45.Bacillus megate- rium	"Bacilli": Bacillales	natoms O (mg protein) ⁻¹ min ⁻¹		<40	25	30	17.68	[7]	Decker & Lang 1977 [Bisset 1953, Fig. 17, rods 1.4×4.3 µm]	Log-phase harvested cells (strain ATCC 19213) respired at a rate of less than 10% of 400 natoms O (mg protein) ⁻¹ min ⁻¹ = 25 W/kg; respiration measured for 1 min	
Bacillus megaterium (NCTC 9848)	46.Bacillus megate- rium	"Bacilli": Bacillales	$\begin{array}{l} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		28	47	37	20.46	[7]	Bishop et al. 1962 [Bisset 1953, Fig. 17, rods 1.4×4.3 um]	Cells harvested at the end of the logarithmic growth phase	
Bacillus megaterium (KM)	47.Bacillus megate- rium	"Bacilli": Bacillales	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		35	58	25	58.00	[7]	Marquis 1965 [Bisset 1953, Fig. 17, rods 1.4×4.3 μm]	Cells harvested in the phase of declining growth rate; respira- tion measured for 90 min	
Bacillus popilliae (NRRL B-2309-P)	48.Bacillus popilliae	"Bacilli": Bacillales	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	0.5	0.8	30	0.57	[0.8]	Pepper & Costi- low 1964 [Mi- truka et al. 1967, Fig. 1, rods 0.6×2- 4 μm]	Cells harvested in the stationary phase after 24 hr incubation	Bacterium causing "milky disease" of the Japanese beetle (Popilla japonica) larvae Similar respiration rates were measured for B. lentimorbus
Bacillus pumilus (ATCC 70)	49.Bacillus pumilus	"Bacilli": Bacillales	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	3	5	30	3.54	[0.7]	Jurtshuk & McQuitty 1976 [Hayase et al. 2004, rods 0.5- 0.7×2.0-3.0 μm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Bacillus stearothermophilus (PH24)	50.Bacillus stearothermophilus	"Bacilli": Bacillales	μ l O ₂ (14.2 mg DM) ⁻¹ (30 min) ⁻¹	MIN	35	8.2	50	1.45	[0.7]	Buswell 1975 [Montesinos et al. 1983, Coulter counter]	Cells harvested in late exponential phase (14- 16 hr of growth on phenol) at 55 C and either used immedi- ately or stored at -20 C; respiration meas- ured for 30 min	The organism, obligate thermophile, was isolated from industrial sediment at Ravenscraig Steel Works near Mother- well, Scotland.
Bacillus subtilis (W-	51.Bacillus subtilis	"Bacilli": Bacillales	$\mu l = O_2$ (mg	MIN	2	3.3	30	2.33	[1.4]	Jurtshuk &	Cells harvested at the	Crook 1952 reports 4-5 μ l O ₂ (mg

23)			DM) ⁻¹ hr ⁻¹						McQuitty 1976 [Kubitschek 1969, Coulter counter]	late-logarithmic growth phase (two thirds of the maximal	DM) ⁻¹ hr ⁻¹ for spores after heat shock and 0.3 for untreated spores at 25 °C;
										growth concentration); respiration was 2 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ for B.	Nitrogen content B. subtilis N/DM=0.111; B. cereus N:DM=0.128
										subtilis W-23 and B. (vulgatus) subtilis	Bohin et al. 19/6: sporulating bacteria: 90 μ l O ₂ (0.9 mg DM) ⁻¹ (40 min) ⁻¹ = 250 W/kg at 37 C
Bacillus subtilis (Marburg strain C4)	52.Bacillus subtilis	"Bacilli": Bacillales	µl O ₂ (5 mg DM) ⁻¹ (700 min) ⁻¹	225	6.5	37	2.83	[1.4]	Gary & Bard 1952 [Kubitschek 1969, Coulter counter]	"Resting cell suspen- sions were prepared by harvesting cells from flask cultures after 6 to 8 hr incubation at 37 C, the periods of maximum respiratory and fermentative ac- tivity." Respiration of cells grown on "com- plex medium" (Fig. 7) (C-cells) was 225 µl O ₂ (5 mg DM) ⁻¹ (700 min) ⁻¹ = 6.5 W/kg; cells grown on "simple medium" (S-cells) respired at 600 µl O ₂ (5 mg DM) ⁻¹ (700 min) ⁻¹ = 17 W/kg	
Bacillus subtilis (ATCC 6633)	53.Bacillus subtilis	"Bacilli": Bacillales	μ mol O ₂ (100 mg DM) ⁻¹ (2 hr) ⁻¹	29.8	5.6	30	3.96	[1.4]	Gronlund & Campbell 1961 [Kubitschek 1969, Coulter counter]	Cells harvested after 20 hr growth; respira- tion measured for 2 hr	
Bacillus subtilis (D76)	54.Bacillus subtilis	"Bacilli": Bacillales	µl O ₂ (5.7 mg DM) ⁻¹ (10 min) ⁻¹	20	32	30	22.63	[1.4]	Clifton & Cherry 1966 [Kubitschek 1969, Coulter counter]	Cells harvested after 16 hr growth at 30 C respired initially at a rate of 60 μ l O ₂ (5.7 mg DM) ⁻¹ (10 min) ⁻¹ = 105 W/kg; this rate decreased approxi- mately threefold by the end of 160 min' measurements (Fig. 1)	
Bacillus subtilis (NCTC 9848)	55.Bacillus subtilis	"Bacilli": Bacillales	$\mu l ~~O_2 ~~(mg~~DM)^{-1}~hr^{-1}$	24	75	37	32.65	[1.4]	Bishop et al. 1962 [Kubitschek 1969, Coulter counter]	Respiration measured immediately after harvesting the cells at the end of the loga- rithmic growth phase; respiration of spores was below detection limit.	
Bdellovibrio bacte-	56.Bdellovibrio	Deltaproteobacteria:	µl O ₂ (mg MIN	14.8-	25	30	17.68	0.3	Hespell et al.	Cells incubated for 18-	Bacterium-predator attacking E. coli

riovorus (109J)	bacteriovorus	Bdellovibrionales	$DM)^{-1} hr^{-1}$		17.3					1973 [DM=10 ⁻¹³ pg/cell]	24 hr in a medium containing E. coli cells that were all lyzed by the time of harvest:	Rittenberg & Shilo 1970 report 0.42 mg protein per 10 ¹⁰ cells of strain 109
Pseudomonas na-											respiration measured for 2-4 hr	Straley et al. (1979) characterize this respiration rate as "unusually high"; Friedberg & Friedberg (1976) as "ex-
											Rittenberg & Shilo 1970: 13-27 nmol O ₂ $(0.42 \text{ mg protein})^{-1}$ min ⁻¹ = 35-72 W/kg at 30 C	tremely high"
Pseudomonas na- triegens	57.Beneckea na- triegens	Gammaproteobacteria: "Vibrionales"	μ l O ₂ (1.07 mg DM) ⁻¹ (30 min) ⁻¹	MIN	85	265	30	187.38	[1.5]	Cho & Eagon 1967 [Baumann et al. 1971, Figs. 12, 16, rods 0.6- 1.2×1.9-3.6 µm depending on culture condi-	Cells harvested at the end of the logarithmic phase; respiration of resting cells measured for 45 min	Oxygen uptake with all substrates is characterized as "low" (the lowest with glucose, 268 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ = 450 W/kg is within the upper range of maximum specific metabolic rates in bacteria
										tions?]		Marine bacterium with shortest known generation time (9.8 min) (Eagon 1962)
												Synonym Vibrio natriegens
Bradyrhizobium japonicum (I-110)	58.Bradyrhizobium japonicum	Alphaproteobacteria: Rhizobiales	nmol O_2 (mg protein) ⁻¹ hr ⁻¹	MIN	53	1.0	29	0.76	[0.7]	Frustaci et al. 1991 [BM]	Respiration of late-log phase cells	
Neisseria catarrhalis	59.Branhamella catarrhalis	Gammaproteobacteria: Pseudomonadales	$\mu l O_2$ (mg DM) ⁻¹ hr ⁻¹	MIN	1	1.7	37	0.74	[1.3]	Bishop et al. 1962 [Baumann et al. 1968, diam 1.0- 1.7 μm, coccoid]	Respiration measured immediately after harvesting the cells at the end of the loga- rithmic growth phase	Max. resp. (in the presence of glucose) was $10 \ \mu l \ O_2 \ (mg \ DM)^{-1} \ hr^{-1}$
Branhamella catar- rhalis (Gp4)	60.Branhamella catarrhalis	Gammaproteobacteria: Pseudomonadales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		14	23	30	16.26	[1.3]	Jurtshuk & McQuitty 1976 [Baumann et al. 1968, diam 1.0- 1.7 um coccoid]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	Respiration of Branhamella (Neisseria) catarrhalis (ATCC 25238) and Branhamella catarrhalis (NC31) was 16 and 17 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ , respectively (27-28 W/kg)
Brucella abortus (19)	61.Brucella meliten- sis	Alphaproteobacteria: Rhizobiales	$\begin{array}{l} \mu l \ O_2 \ (mg \ N)^{-1} \\ hr^{-1} \end{array}$	MIN	40- 82	6.5	34	3.48	[0.3]	Gerhard et al. 1950 [BM9, genus, cocci or short rods 0.5- 0.7×0.6-1.5 µm]	Cells grown for 24 hr; respiration varies among equally pre- pared suspensions	(2) 20 (1) (2)
Burkholderia sp. (JT 1500)	62.Burkholderia sp.	Betaproteobacteria: Burkholderiales	$\begin{array}{c} nmol O_2 (mg \\ DM)^{-1} \ min^{-1} \end{array}$	MIN	19	21	30	14.85	0.7	Morawski et al. 1997 [rods 0.5- 0.8×1.5-3.0]	Cells grown for 15-18 hr	Bacterium isolated from Miami soil
Cellvibrio gilvus	63.Cellvibrio gilvus	Gammaproteobacteria: Pseudomonadales	μ l O ₂ (3 mg wet packed cells) ⁻¹ (30 min) ⁻¹	MIN	10	37	30	26.16	2	Hulcher & King 1958a [Hulcher & King 1958b, rods 0.75-1.5×1.5-3.75 μm]	Cells grown on cello- biose for 18 hr at room temperature	Cells in young cultures are very large $(3\times10 \ \mu\text{m})$, 24-hr cells grown on cellulose were $0.3-0.5\times0.8-1.5 \ \mu\text{m}$ (Hulcher & King 1958b)

There is no such species at <u>http://www.bacterio.cict.fr;</u> higher taxon as for Cellvibrio genus.

Chromatium sp. (Miami PBS1071)	64.Chromatium sp.	Gammaproteobacteria: Chromatiales	nmol O ₂ (mg DM) ⁻¹ min ⁻¹	MIN	4.8	11	25	11.00		Kumazawa et al. 1983 [BM9 ge- nus: rods 1-6×1.5- 15 μm]	2-3 days' old cultures grown anaerobically in the light; respiration increased severalfold upon addition of H ₂ and fell to the endoge- nous level after H ₂ was exhausted	Marine purple sulfur bacterium
Chromatium vino- sum (2811)	65.Chromatium vinosum	Gammaproteobacteria: Chromatiales	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	2.0	2.2	30	1.56	[1.5] [[1.21]]	Overmann & Pfennig 1992 [Montesinos et al. 1983, Coulter counter] [[Mas et al. 1985]]	Respiration of cells without microscopi- cally visible sulfure globules at oxygen concentrations of 11- 67 μ M; respiration rates of phototrophi- cally (anaerobically) and chemotrophically (microaerobically) grown cells do not differ; the species is capable of chemotro- phic growth in the dark.	 Purple sulfur bacteria Respiration rate increases with oxygen concentration reaching a plateau at approx. 6 μM. Endogenous respiration of cells with visible sulfur globules is higher, up to 24 nmol O₂ (mg protein)⁻¹ min⁻¹
Corynebacterium diphtheriae (ATCC 11913)	66.Corynebacterium diphtheriae	Actinobacteria: Actinomycetales	$\begin{array}{l} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	4	6.7	30	4.74		Jurtshuk & McQuitty 1976 [Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Corynebacterium sp.	67.Corynebacterium sp.	Actinobacteria: Actinomycetales	$\begin{array}{ll} \mu l & O_2 & (100 \ \mbox{mg} \\ WM)^{-1} & (120 \ \mbox{min})^{-1} \end{array}$	MIN	180	10	30	7.07		Levine & Kram- pitz 1952	Cells harvested after 2-4 days growth; res- piration measured for 2 hr	A soil-isolated bacterium sometimes capable of acetone degradation
Pseudomonas aci- dovorans (ATCC 17455=NCIB 10013)	68.Delftia acido- vorans	Betaproteobacteria: Burkholderiales	$\mu l O_2 (4 mg DM)^{-1} min^{-1}$	MIN	0.5	13	30	9.19	[0.8]	Hareland et al. 1975 [Wen et al. 1999, rods, 0.4- 0.8×2.5-4.1 μm]	Bacteria grown for 20 hr (end of logarithmic growth); respiration measured for about 10 min	Bacteria originally isolated from poultry house deep-litter
Pseudomonas sp. B2aba	69.Delftia acido- vorans	Betaproteobacteria: Burkholderiales	$\mu l ~O_2~(mg~DM)^{-1}~hr^{-1}$		8	13	30	9.19	[0.8]	Kornberg & Gotto 1961 [Wen et al. 1999, rods, 0.4- 0.8×2.5-4.1 µm]	Cells grown on gly- collate harvested dur- ing the logarithmic phase; for succinate- grown cells 10 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ (17 W/kg). Cooper & Kornberg 1964: cells grown on itaconate harvested during the logarithmic phase, 39 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ = 65 W/kg; for succinate-grown	

Pseudomonas des- molytica (S449B1)	70.Delftia acido- vorans	Betaproteobacteria: Burkholderiales	$\begin{array}{c} \mu l \ O_2 \ (0.6 \ mg \\ DM)^{-1} \ (160 \\ min)^{-1} \end{array}$		14	15	30	10.61	[0.8]	Jigami et al. 1979 [Wen et al. 1999, rods, 0.4-0.8×2.5-	cells 40 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ Cells harvested after 3 days of growth	
Pseudomonas aci- dovorans (ATCC 15688)	71.Delftia acido- vorans	Betaproteobacteria: Burkholderiales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		18	30	30	21.21	[0.8]	4.1 μm] Jurtshuk & McQuitty 1976 [Wen et al. 1999, rods, 0.4-0.8×2.5-	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Desulfovibrio salexigens (Mast1)	72.Desulfovibrio salexigens	Deltaproteobacteria: Desulfovibrionales	nmol O_2 (mg protein) ⁻¹ min ⁻¹	MIN	12	13	30	9.19	[1.5]	van Niel & Gott- schal 1998 [BM]	Cells harvested at the end of the exponential growth phase	Organism isolated from the oxic-anoxic (top) layer of a marine microbial mat, Greece
Enterobacter aer- ogenes	73.Enterobacter aerogenes	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	6	10	30	7.07	[0.3]	Jurtshuk & McQuitty 1976 [Fu et al. 2003, rods 0.6×1.2 μm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Enterobacter cloacae (17/97)	74.Enterobacter cloacae	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{cc} nmol & O_2 & (mg \\ DM)^{-1} & min^{-1} \end{array}$	MIN	13.9	31	30	21.92	[0.9]	Majtán & Ma- jtánová 1999 [BM9, genus, rods 0.6-1.0×1.2-3.0 um]	Cells harvested from the exponential phase; respiration measured for 10 min	Bacterium isolated from a patient suf- fering from nosocomial infection.
Enterococcus ceco- rum (DSM 20682 ^T)	75.Enterococcus cecorum	"Bacilli": "Lactoba- cillales"	nmol O ₂ (mg DM) ⁻¹ min ⁻¹	MIN	1.7	3.8	30	2.69	[0.4]	Bauer et al. 2000 [BM]	Respiration of cells from aerobically glu- cose-grown cultures; respiration of anaero- bically grown cells <1 nmol O_2 (mg DM) ⁻¹ min ⁻¹	
Streptococcus fae- calis (NCDO 581)	76.Enterococcus faecalis	"Bacilli": "Lactoba- cillales"	$\mu l O_2$ (mg DM) ⁻¹ hr ⁻¹	MIN	0.16	0.3	30	0.21	[0.2]	Bryan-Jones & Whittenbury 1969 [BM]	respiration of resting suspensions of cells grown aerobically with glucose	
Streptococcus fae- calis (ATCC 8043)	77.Enterococcus hirae	"Bacilli": "Lactoba- cillales"	μ mol O ₂ (100 mg DM) ⁻¹ (2 hr) ⁻¹	MIN	8.0	1.5	30	1.06		Gronlund & Campbell 1961	Cells harvested after 17 hr growth; respira- tion measured for 2 hr	
Enterococcus hirae (ATCC 8043, ATCC 9790)	78.Enterococcus hirae	"Bacilli": "Lactoba- cillales"	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		1	1.7	30	1.20		Jurtshuk & McQuitty 1976	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Enterococcus sp. (RfL6)	79.Enterococcus sp.	"Bacilli": "Lactoba- cillales"	nmol O_2 (mg DM) ⁻¹ min ⁻¹	MIN	15.1	33	30	23.33	0.8	Bauer et al. 2000 [rods, 0.6-1×1.1-3 μm]	Respiration of cells from aerobically glu- cose-grown cultures; respiration of anaero- bically grown cells	

Escherichia coli (EMG-2 K12 Ymel)	80.Escherichia coli	Gammaproteobacteria: "Enterobacteriales"	ngatom O (mg MIN protein) ⁻¹ min ⁻¹	58- 86	32	37	14	[0.7]	Lawford & Had- dock 1973 [Ku- bitschek 1969, Coulter counter, 0.33-1.46 µm ³ depending on growth rate]	15.1 nmol O_2 (mg DM) ⁻¹ min ⁻¹ Cells were grown to the early exponential phase and starved for 2 hr by vigorous shaking at 37 C; respiration varied (depending on carbon source for growth	
Escherichia coli (W- 1485)	81.Escherichia coli	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	2.7	4.5	26	4.20	[0.7]	Gunter & Kohn 1956 [Kubitschek 1969, Coulter counter, 0.33-1.46 µm ³ depending on growth rate]	Cells harvested from 16 to 18-hr yeast agar plates	
Escherichia coli (O11a ₁)	82.Escherichia coli	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	4	6.7	30	4.74	[0.7]	Jurtshuk & McQuitty 1976 [Kubitschek 1969, Coulter counter, 0.33-1.46 µm ³ depending on growth rate]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	Respiration was 13, 7, 9, 10, 6, 8, 7, 6, and 5 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ for strains B, B/r, C, Crookes, K12, K12S UTH 2593, K12S UTH 3672, and F, respec- tively (8.3-22 W/kg).
Escherichia coli	83.Escherichia coli	Gammaproteobacteria: "Enterobacteriales"	$\mu l O_2 (mg \ DM)^{-1} \ hr^{-1}$	7	12	37	5.22	[0.7]	Dawes & Ribbons 1965 [Kubitschek 1969, Coulter counter, 0.33-1.46 µm ³ depending on growth rate]	Stable respiration of aerobically grown cells harvested during the exponential phase and starved aerobi- cally for 150-180 min; no loss of viability during 12 hr of starva- tion	"Stationary-phase cells respire endoge- nously at higher rates and contain larger reserves of glycogen, which is the initial substrate oxidized [than exponential- phase cells]. Carbohydrate content of exponential-phase cells drops rapidly together with endogenous respiration during the first 100 min of starvation
Escherichia coli (B)	84.Escherichia coli	Gammaproteobacteria: "Enterobacteriales"	$\mu l O_2 (10 mg DM)^{-1} (2 hr)^{-1}$	180	15	35	7.50	[0.7]	Sobek & Talburt 1968 [Kubitschek 1969, Coulter counter, 0.33-1.46 µm ³ depending on growth rate]	Cells grown for 20 hr at 35 C; respiration measured for 2 hr	
Escherichia coli (ATCC 4157)	85.Escherichia coli	Gammaproteobacteria: "Enterobacteriales"	$\mu l = O_2$ (mg DM) ⁻¹ hr ⁻¹	12	20	37	8.71	[0.7]	Davis & Bateman 1960 [Kubitschek 1969, Coulter counter, 0.33-1.46 µm ³ depending on growth rate]	Cells harvested after 16.5 hr growth at 37 C; respiration meas- ured for 2 hr	
Escherichia coli (ATCC 6894)	86.Escherichia coli	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{c} \mu mol O_2 (100 \\ mg DM)^{-1} (2 \\ hr)^{-1} \end{array}$	79	15	30	10.61	[0.7]	Gronlund & Campbell 1961 [Kubitschek 1969, Coulter counter, 0.33-1.46 µm ³ depending on	Cells harvested after 20 hr growth; respira- tion measured for 2 hr	

Fachariahia aali		Commente de stario	LO ()n-l		105	175	20	10.27	[0 7]	growth rate]	Calle subtrand for 2	Destania "had a lanar and annual face
(Gratia)	87.Escherichia con	"Enterobacteriales"	μ I O ₂ (mg N) · hr ⁻¹		105	17.5	30	12.37	[0.7]	1967 [Kubitschek 1969, Coulter counter, 0.33-1.46 μm ³ depending on growth rate]	weeks; respiration measured for 1 hr after 10 min equilibration	piration] if harvested during expo- nential growth than after reaching the stationary phase"
Escherichia coli	88.Escherichia coli	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{c} \mu l O_2 (mg \\ DM)^{-l} \ hr^{-l} \end{array}$		37	62	37	26.99	[0.7]	Bishop et al. 1962 [Kubitschek 1969, Coulter counter, 0.33-1.46 µm ³ depending on growth rate]	Respiration measured immediately after harvesting the cells (aerobic culture) at the end of the logarithmic growth phase	Anaerobically grown culture respired at 2 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ = 3.3 W/kg
Flavobacterium capsulatum (ATCC 14666)	89.Flavobacterium capsulatum	Flavobacteria: Flavo- bacteriales	$\mu l O_2 (mg DM)^{-1} hr^{-1}$	MIN	38	63	30	44.55	[0.3]	Jurtshuk & McQuitty 1976 [BM9, genus, rods 0.5×1.0-3.0 µm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	Listed in ATCC as Novosphingobium capsulatum
Pasteurella tularen- sis (SCHU S4, 38 A)	90.Francisella tula- rensis	Gammaproteobacteria: Thiotrichales	$\begin{array}{l} \mu l \ O_2 \ (mg \ N)^{-l} \\ hr^{-l} \end{array}$	MIN	22	3.7	37	1.61	[0.01]	Weinstein et al. 1962 [BM9, rods 0.2×0.2-0.7 μm]	Cells grown for 16 to 18 hr; respiration of strains 503, CHUR, JAP, LVS, and MAX was 60, 38, 53, 105, and 94 μ l O ₂ (mg N) ⁻¹ hr ⁻¹ , respectively (6.3- 17.5 W/kg)	
Frankia sp. (EAN1 _{pec})	91.Frankia sp.	Actinobacteria: Actinomycetales	$\begin{array}{c} nmol O_2 (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	242	9	25	9.00		Tisa & Ensign 1987 [BM, genus, hyphae 0.5-2.0 um diam]	Bacteria grown for 21 days	Members of the genus <i>Frankia</i> are filamentous actinomycetes that infect roots and induce nodule formation in a variety of woody dicotyledonous plants.
Haemophilus influ- enzae (641b)	92.Haemophilus influenzae	Gammaproteobacteria: Pasteurellales	$\begin{array}{l} \mu l ~O_2 ~(mg~N)^{-l} \\ hr^{-l} \end{array}$	MIN	3	0.5	37	0.22	[0.14]	Biberstein & Spencer 1962 [BM, coccobacilli or small regular rods 0.3-0.5 - 0.5- 3.0 um]	Bacteria grown for 18- 24 hr at 37 C; respira- tion of washed cells measured for 60 min	Respiration of strains b, c, d, 525, and K 75 was 14, 6, 7, 32, and 9 μ l O ₂ (mg N) ⁻¹ hr ⁻¹ , respectively (1-5.3 W/kg).
Haemophilus parahaemolyticus (9796)	93.Haemophilus parahaemolyticus	Gammaproteobacteria: Pasteurellales	$\begin{array}{l} \mu l \ O_2 \ (mg \ N)^{-l} \\ hr^{-l} \end{array}$	MIN	21	3.5	37	1.52		Biberstein & Spencer 1962	Bacteria grown for 18- 24 hr at 37 C; respira- tion of washed cells measured for 60 min	Respiration of strain 7901 was 24 $\mu l ~O_2$ (mg $N)^{-1}~hr^{-1}$ (4 W/kg).
Haemophilus para- influenzae (K 98)	94.Haemophilus parainfluenzae	Gammaproteobacteria: Pasteurellales	$\begin{array}{l} \mu l \ O_2 \ (mg \ N)^{-l} \\ hr^{-l} \end{array}$	MIN	21	3.5	37	1.52	[0.4]	Biberstein & Spencer 1962 [Kahn 1981, Fig. 1, 0.6×1.3-1.7 μm; Kowalski et al. 1991, diam 0.75-1.25 μm]	Bacteria grown for 18- 24 hr at 37 C; respira- tion of washed cells measured for 60 min	Respiration of strains K 8, K 17, and K 45 was 24, 32, and 41 μ l O ₂ (mg N) ⁻¹ hr ⁻¹ , respectively (4-6.8 W/kg). White 1962: Stationary-phase cells (>15 hr old) have an insignificant endogenous respiration. Log-phase cells have a
Halobacterium salinarium (1)	95.Halobacterium salinarum	Archaea: Halobacteria: Halobacteriales	$\begin{array}{c} \mu l & O_2 \\ DM)^{-1} \ hr^{-1} \end{array} (mg$	MIN	10	17	30	12.02	[3.9]	Stevenson 1966 [Mescher & Strominger 1976,	Cells grown for about 70 hr to the end of the exponential phase	small endogenous respiratory rate. An extremely halophilic bacterium

Micrococcus halo- denitrificans	96.Halomonas halo- denitrificans	Gammaproteobacteria: Oceanospirillales	$\mu l O_2 (2 mg DM)^{-1} (30 min)^{-1}$	MIN	40	67	25	67.00	[0.4]	rods 0.5×5 μm] Sierra & Gibbons 1962 [Ventosa et al. 1998, rods, 0.5-0.9×0.9-1.2 μm]	Cells harvested to- wards the end of the logarithmic phase (about 40 hr)	Endogenous respiration and viability of starved cells remained constant at around 40 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ and 100%, respectively, for 3 hr, while the amount of intracellular polyester rapidly declined. After 3 hr both endogenous respiration and viability started to decline rapidly. In polyester-poor cells this process was initiated immediately after the beginning of starvation.
Aerobacter aeroge- nes	97.Klebsiella pheu- moniae? Entero- bacter aerogenes?	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{l} \mu l ~O_2 ~(mg~N)^{-l} \\ hr^{-l} \end{array}$		67	11	30	7.78		Dietrich & Burris 1967	Bacteria cultured for 2 weeks in an extract from wheat plants; respiration measured for 1 hr after 10 min equilibration	Cells of this organism contain more nitrogen than other bacteria Bacteria "had a lower endogenous [res- piration] if harvested during expo- nential growth than after reaching the stationary phase"
Aerobacter aerogenes	98.Klebsiella pheu- moniae? Entero- bacter aerogenes?	Gammaproteobacteria: "Enterobacteriales"	$\mu mol O_2 (100 mg DM)^{-1} (2$		69.3	13	30	9.19		Gronlund & Campbell 1961	Cells harvested after 20 hr growth	
Klebsiella pneumo- niae (M5a1)	99.Klebsiella pneu- moniae	Gammaproteobacteria: "Enterobacteriales"	$\mu l O_2 (mg DM)^{-1} hr^{-1}$	MIN	2	3.3	30	2.33	[0.4]	Jurtshuk & McQuitty 1976 [BM]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal	
Klebsiella pneumo- niae (ATCC 13882)	100.Klebsiella pneumoniae	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{c} \mu l & O_2 \\ DM \end{pmatrix}^{-1} hr^{-1} \end{array} (mg$		4	6.7	30	4.74	[0.4]	Jurtshuk & McQuitty 1976 [BM]	growth concentration) Cells harvested at the late-logarithmic growth phase (two thirds of the maximal	
Aerobacter aerogenes (NCTC 418)	101.Klebsiella pneumoniae	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{c} \mu l & O_2 \\ DM \end{pmatrix}^{-1} hr^{-1} \end{array} (mg$		12	20	37	8.71	[0.4]	Bishop et al. 1962 [BM]	growth concentration) Respiration measured immediately after harvesting the cells at the end of the loga-	
Lactobacillus brevis (12)	102.Lactobacillus brevis	"Bacilli": "Lactoba- cillales"	$\mu l O_2 (12 mg DM)^{-1} (2 hr)^{-1}$	MIN	2.9	0.2	30	0.14	[1.6]	Walker 1959 [BM, rods 0.7- 1.0×2-4]	rithmic growth phase Cells (strain 1.2) were grown for 48 hr; en- dogenous respiration measured for 3 hr (Fig. 3); mean respiration rate for the second and third hour was taken; during the first hour, respiration was 4 times higher	Bacterium originally isolated from New Zealand cheddar cheese Respiration decreases with starvation time
Lactobacillus casei sbsp. rhamnosus (ATCC 7469)	103.Lactobacillus casei	"Bacilli": "Lactoba- cillales"		MIN	1	1.7	30	1.20		Jurtshuk & McQuitty 1976	Cells harvested at the late-logarithmic growth phase (two	

Streptococcus lactis (strains 8, 9, 32)	104.Lactococcus lactis	"Bacilli": "Lactoba- cillales"	μ l O ₂ (115 mg DM) ⁻¹ (4 hr) ⁻¹	MIN	170	0.6	30	0.42	[0.2]	Spendlove et al. 1957 [BM]	thirds of the maximal growth concentration) Cells grown for 11 hr; for 7- and 9-hr grown cells respiration was around 400 μ l O ₂ (115 mg DM) ⁻¹ (4 hr) ⁻¹	In 11-hr cells respiration decreases in the first 30 min of the 4-hr' measure- ment, then remains relatively constant; in 7-hr and 9-hr cells respiration first decreases, then starts to increase again after 2-3 hr.
Lactococcus lactis ssp. lactis (DSM 20481 ^T)	105.Lactococcus lactis	"Bacilli": "Lactoba- cillales"	$\begin{array}{c} nmol O_2 (mg \\ DM)^{-1} \ min^{-1} \end{array}$		<1	2.3	30	1.63	[0.2]	Bauer et al. 2000 [BM]	Respiration of cells from aerobically and anaerobically glucose- grown cultures	
Lactococcus sp. (TmLO5)	106.Lactococcus sp.	"Bacilli": "Lactoba- cillales"	$\begin{array}{c} nmol O_2 (mg \\ DM)^{-1} \ min^{-1} \end{array}$	MIN	<1	2.3	30	1.63	0.8	Bauer et al. 2000 [rods, 0.6-1×1.1-3 μm]	Respiration of cells from aerobically and anaerobically glucose- grown cultures	
Legionella pneumo- phila (Knoxville-1, serotype 1)	107.Legionella pneumophila	Gammaproteobacteria: Legionellales	μl O ₂ (mg DM) ⁻¹ min ⁻¹	MIN	0.2	20	37	8.71	[0.3]	Tesh et al. 1983 [Faulkner & Gar- duño 2002, rods 0.3-0.5×1.5-3.0 µm, prereplicative phase; Kowalski et al. 1999, 0.3- 0.9×2 µm]	Bacteria harvested at mid- to late exponen- tial growth phase (15- 18 hr growth time) when the mass- specific oxygen con- sumption is highest (~70 W/kg); washed; "held at 37 C until used"; calibrated for 3 min; respiration meas- ured when "a steady rate of endogenous respiration was estab- lisbed"	
Legionella pneumo- phila (serogroup 1)	108.Legionella pneumophila	Gammaproteobacteria: Legionellales	μ l O ₂ (400 μ g protein) ⁻¹ (40 min) ⁻¹		25	77	37	33.52	[0.3]	Bonach & Snyder 1983 [Faulkner & Garduño 2002, rods 0.3-0.5×1.5- 3.0 µm, prerepli- cative phase; Kowalski et al. 1999, 0.3-0.9×2 µm]]	Cells harvested at mid- log phase, shaken for 30 min, respiration measured for 40 min	
Pseudomonas AM1 (NCIB 9133)	109.Methylobacte- rium extorquens	Alphaproteobacteria: Rhizobiales	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	5	6	30	4.24	[1]	Keevil & Anthony 1979 [Peel & Quayle 1961, rods 0.8×2.0 µm]	Cells harvested at the end of logarithmic phase; depending on growth conditions, respiration ranged from 5 to 16 orig. units; the same result obtained by O'Keeffe & Anthony 1978	
Methylomicrobium sp. (AMO 1)	110.Methylomicro- bium sp.	Gammaproteobacteria: Methylococcales	nmol O_2 (mg protein) ⁻¹ min ⁻¹	MIN	10	11	30	7.78	3	Sorokin et al. 2000 and personal communication	Cells grown with methane at pH 10 Endogenous respira-	

										with Dr. D.Yu. Sorokin (15 Nov 2006) (ovoid rods, 1-1.5×2-3 μm)	tion is usually below 10 nmol O_2 (mg pro- tein) ⁻¹ min ⁻¹ , except in cells grown on acetate and at high pH (10.8- 11.5), when it can be 20-50 nmol O_2 (mg protein) ⁻¹ min ⁻¹	
Methylophilus methylotrophus (NCIB 10515)	111.Methylophilus methylotrophus	Betaproteobacteria: Methylophiliales	ng-atoms O (mg DM) ⁻¹ min ⁻¹	MIN	1.4	1.6	40	0.57	[0.15]	Dawson & Jones 1981 [Jenkins et al. 1987, rods 0.3- 0.6×0.8-1.5 µm]	Cells harvested from continuous culture and used within 3 hr	Obligate methylotroph using methanol as the sole source of carbon and energy
Methylosinus trichosporium OB3b	112.Methylosinus trichosporium	Alphaproteobacteria: Rhizobiales	nmol O_2 (mg protein) ⁻¹ min ⁻¹	MIN	38	42	30	29.70	[1]	Lontoh et al. 1999 [Reed & Dugan	Cells harvested in the exponential phase	Cell mass estimated from cell linear dimensions as shown in Fig. 1 of Reed
Sarcina lutea	113.Micrococcus luteus	Actinobacteria: Actinomycetales	$\mu l ~O_2 ~(mg~DM)^{-1}~hr^{-1}$	MIN	0.7	1.2	37	0.52	[1.1]	Burleigh & Dawes 1967 [BM]	Cells were harvested after 24 hr growth on peptone; starved for 29 hr; viability 96%; respiration fell to "barely measurable" $(0.3 \ \mu l O_2 \ (mg DM)^{-1}$ hr ⁻¹) when starvation was prolonged to 72 hr with viability falling to 25% Bishop et al. 1962: respiration measured immediately after harvesting the cells at the end of the loga- rithmic growth phase was below detection limit (0 orig. units) (148 \ \mu l O_2 \ (mg DM)^{-1} hr ⁻¹ in the presence of lactate)	Endogenous respiration decreased dur- ing starvation most rapidly in the first 5 hr of starvation (from 21.1 to 0.7 orig. units) Initial endogenous respiration depended on the time of harvesting: mid- exponential (21 hr) — 30 orig. units; onset of the stationary phase (34 hr) — 15.9; 60 hr — 6.3 orig. units; the decline of respiration is correlated with the decline of intracellular contents of free amino acids, carbohydrate etc. Mathews & Sistrom 1959: endogenous respiration is reduced by 75% by shak- ing for 3 hr at 34 C (cells harvested in the exponential phase after 10-12 hr incubation at 34 C)
Sarcina lutea	114.Micrococcus luteus	Actinobacteria: Actinomycetales	$\begin{array}{l} \mu l O_2 (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		3.5	6	35	3.00	[1.1]	Dawes & Holms 1958 [BM]	Cells harvested after 24 hr growth at 35 C and aerated for 5 hr; respiration 3.5 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ = 6 W/kg	
Micrococcus lyso- deikticus	115.Micrococcus luteus	Actinobacteria: Actinomycetales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		11	18	37	7.83	[1.1]	Davis & Bateman 1960 [BM]	Cells harvested after 16.5 hr growth at 37 C; respiration meas- ured for 2 hr	
Sarcina flava	116.Micrococcus luteus	Actinobacteria: Actinomycetales			9	15	30	10.61	[1.1]	Jurtshuk & McQuitty 1976 [BM]	Cells harvested at the late-logarithmic growth phase (two	

											thirds of the maximal growth concentration); respiration was 16, 9 and 30 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ for Micro-coccus (Sarcina) luteus, M. (S. flava) luteus and M. (lyso-deikticus) luteus ATCC 4698, respectively (27, 15 and 50 W/kg)	
Micrococcus sp. (S9)	117.Micrococcus sp.	Actinobacteria: Ac nomycetales	ti- $\mu l O_2 (4 m_g DM)^{-1} min^{-1}$	g MIN	0.40	10	30	7.07		Sparnins & Chapman 1976 [BM, genus, spherical cells, diam 0.5-2.0 um]		
Micrococcus sp.	118.Micrococcus sp.	Actinobacteria: Ac nomycetales	ti- $\mu l O_2$ (mg DM) ⁻¹ hr ⁻¹	g MIN	10	17	30	12.02		Cooper et al. 1965 [BM, genus, spherical cells, diam 0.5-2.0 µm]	Cells harvested during the exponential phase	The organism was isolated from soil. Size and classification as for genus Micrococcus Cohn 1872
Moraxella osloensis	119.Moraxella oslo- ensis	Gammaproteobacteri Pseudomonadales	a: μl O ₂ (mg DM) ⁻¹ hr ⁻¹	g MIN	8	13	30	9.19	[2.3]	Jurtshuk & McQuitty 1976 [Baumann et al. 1968, rods 0.9- 1.7×1.6-2.7 µm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Mycobacterium fortuitum	120.Mycobacterium fortuitum	Actinobacteria: Ac nomycetales	ti- μl O ₂ (mg DM) ⁻¹ hr ⁻¹	g MIN	10	17	30	12.02		Jurtshuk & McQuitty 1976	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Mycobacterium leprae	121.Mycobacterium leprae	Actinobacteria: Ac nomycetales	ti- $\mu l O_2$ (mg DM) ⁻¹ hr ⁻¹	g MIN	2	3.3	37	1.44		Mori et al. 1985	Cells isolated from mice	
Mycobacterium lepraemurium (Ha- waiian strain)	122.Mycobacterium lepraemurium	Actinobacteria: Ac nomycetales	ti- $\mu l O_2 (mg N)^-$ hr ⁻¹	¹ MIN	20- 70	3.3	37	1.44		Gray 1952	Culture isolated from infected rats; occa- sionally, some suspen- sions respired less than $5 \text{ ul } O_2 \text{ (mg N)}^{-1} \text{ hr}^{-1}$	
Mycobacterium phlei (72)	123.Mycobacterium phlei	Actinobacteria: Ac nomycetales	ti- μmol O ₂ (mş N) ⁻¹ hr ⁻¹	g MIN	4.8	14	37	6.09	[0.4]	Tepper 1968 [BM]	Glucose-grown cells (strain 72) harvested from 5-day culture; respiration calculated assuming N/DM ratio of 0.08 (Tepper 1968); respiration measured for a minimum of 90 min; glycerol-grown cells had 7.3 μ mol O ₂ (mg N) ⁻¹ hr ⁻¹ = 16 W/kg	N/DM=5.6-6.8% for glycerol-grown cells, 7.8-8.9% for glucose-grown cells

Mycobacterium phlei	124.Mycobacterium phlei	Actinobacteria: nomycetales	Acti-	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		16	27	30	19.09	[0.4]	Jurtshuk & McQuitty 1976 [BM]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal	
Mycobacterium smegmatis (607)	125.Mycobacterium smegmatis	Actinobacteria: nomycetales	Acti-	$\begin{array}{l} \mu l ~ O_2 ~ (mg ~ N)^{-l} \\ hr^{-l} \end{array}$	MIN	146	24	37	10.45		Forbes et al. 1962 [BM, genus, rods 0.2-0.6×3.0-3.5	Cells harvested after 22 hr incubation.	
Mycobacterium stercoris (NCTC 3820)	126.Mycobacterium smegmatis	Actinobacteria: nomycetales	Acti-	$\mu l O_2 (mg DM)^{-1} \ hr^{-1}$		11.9	20	30	14.14		Hunter 1953 [BM, genus, rods 0.2- 0.6×3.0-3.5 μm]	Cells grown for 5-6 days; respiration of M. (butyricum) smegma- tis (NCTC 337) and M. smegmatis (NCTC 523) was 13.4 and 15 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ , respectively	
Mycobacterium smegmatis	127.Mycobacterium smegmatis	Actinobacteria: nomycetales	Acti-	$\begin{array}{l} \mu l O_2 (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		13	22	30	15.56		Jurtshuk & McQuitty 1976 [BM, genus, rods 0.2-0.6×3.0-3.5 µm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration); respiration was 13 µl O_2 (mg DM) ⁻¹ hr ⁻¹ = 22 W/kg at 30 C	
Mycobacterium tuberculosis var. hominis	128.Mycobacterium tuberculosis	Actinobacteria: nomycetales	Acti-	$\begin{array}{l} \mu l & O_2 & (mg \\ DM)^{-1} \left(5 \ hr\right)^{-1} \end{array}$	MIN	6.5	2.2	37	0.96	[0.2]	Engelhard et al. 1957 [BM, rods 0.2-0.5×2-4 μm]	Bacteria grown for 25 to 28 hr in batches; magnetically mixed in buffer solution for 5 hr; stored at -5 C for no more than 12 hr before analysis; respi- ration measured for 5 hr	Human tuberculosis bacteria
Mycobacterium tuberculosis var. hominis (H37Rv,	129.Mycobacterium tuberculosis	Actinobacteria: nomycetales	Acti-	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		4.2- 5.8	7	37. 8	2.9	[0.2]	Segal & Bloch 1955 [BM, rods 0.2-0.5×2-4 μm]	Various growth con- ditions	
Mycobacterium tuberculosis var. avium	130.Mycobacterium tuberculosis	Actinobacteria: nomycetales	Acti-	μ l O ₂ (10 mg WM) ⁻¹ (90 min) ⁻¹		100	37	37	16.11	[0.2]	Minami 1957 [BM, rods 0.2- 0.5×2-4 um]	Cultures 3 days old	
Mycobacterium tuberculosis var. hominis (H37Rv)	131.Mycobacterium tuberculosis	Actinobacteria: nomycetales	Acti-	$\mu l O_2 (mg WM)^{-1} (hr)^{-1}$		0.46- 1.10	2.6-6	37	23.33	[0.2]	Youmans et al. 1960 [BM, rods 0.2-0.5×2-4 μm]	Various growth con- ditions. Similar results were obtained later by the same team (You- mans & Youmans 1962a b)	
Myxococcus xan- thus (FB)	132.Myxococcus xanthus	Deltaproteobacte Myxococcales	eria:	$\begin{array}{ll} \mu l & O_2 & (15 \ mg \\ DM)^{-1} & (75 \ min)^{-1} \end{array}$	MIN	7	4.6	30	3.25	[1]	Dworkin & Niederpruem 1964 [McVittie et al. 1962, rods,	Vegetative cells har- vested in the early stationary phase (30 hr); respiration meas-	No measurable respiration in microcysts

Neisseria elongata	133.Neisseria elon-	Betaproteobacteria:	μ l O ₂ (mg	MIN	5	8.3	30	5.87	[0.2]	0.5×3-8 μm] Jurtshuk &	ured for 75 min Cells harvested at the	
(ATCC 25295)	gata	Neisseriales	DM) ⁻¹ hr ⁻¹							McQuitty 1976 [BM, short rods 0.5 μm width]	growth phase (two thirds of the maximal growth concentration)	
Neisseria flava (ATCC 14221)	134.Neisseria flava	Betaproteobacteria: Neisseriales	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	7	12	30	8.49	[0.2]	Jurtshuk & McQuitty 1976 [BM, genus, cocci, diam 0.6- 1.0 µm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Neisseria gonor- rhoeae	135.Neisseria gon- orrhoeae	Betaproteobacteria: Neisseriales	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	0.5	0.6	37	0.26	[0.2]	Kenimer & Lapp 1978 [BM, genus, cocci, diam 0.6- 1.0 µm]	Cells harvested during early stationary phase after 18-20 hours of incubation; respiration measured for 2-3 min	Cell mass estimated from linear dimen- sions given in BM
Neisseria mucosa	136.Neisseria mu- cosa	Betaproteobacteria: Neisseriales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	9	15	30	10.61	[0.2]	Jurtshuk & McQuitty 1976 [BM, genus, cocci, diam 0.6- 1.0 µm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Neisseria sicca	137.Neisseria sicca	Betaproteobacteria: Neisseriales	$\mu l O_2$ (mg DM) ⁻¹ hr ⁻¹	MIN	8	13	30	9.19	[0.2]	Jurtshuk & McQuitty 1976 [BM, genus, cocci, diam 0.6- 1.0 µm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Nitrobacter agilis	138.Nitrobacter winogradskyi	Alphaproteobacteria: Rhizobiales		MIN	12	10	30	7.07	[0.24]	Smith & Hoare 1968 [Tappe et al. 1999, 0.17-0.3 μm ³]	Incubation time 20 hr	Facultative heterotroph otherwise growing on nitrite, =Nitrobacter wino- gradskyi (Pan 1971) Protein to dry mass ratios (Protein/DM) are 0.55, 0.47 and 0.44 for autotrophic, autotrophic plus 1mM acetate, and autotrophic plus 5mM acetate, grown
Nitrobacter agilis (ATCC 14123)	139.Nitrobacter winogradskyi	Alphaproteobacteria: Rhizobiales	ng-atoms O (mg protein) ⁻¹ min ⁻¹		20	11	25	11.00	[0.24]	Hollocher et al. 1982 [Tappe et al. 1999, 0.17-0.3 μm ³]	Cells grown at 30 C to the late exponential phase, stored for no more than 3 days at 0 C before measure- ments	1 mg WM ≈ 0.1 mg protein
Nitrosomonas eu- ropaea	140.Nitrosomonas europaea	Betaproteobacteria: Nitrosomonadales	ng-atoms O (mg protein) ⁻¹ min ⁻¹	MIN	20	11	25	11.00	[0.6]	Hollocher et al. 1982 [Tappe et al. 1999, 0.5-0.7 μm ³]	Bacteria grown at 30 C to the late exponen- tial phase, stored for no more than 3 days at 0 C	1 mg WM ≈ 0.1 mg protein
Nocardia corallina	141.Nocardia coral- lina	Actinobacteria: Actinomycetales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	1	1.7	30	1.20	2.1	Robertson & Batt 1973 (rods, 0.8- 1.2×2-4 μm)	Cells harvested at the end of growth phase; respiration measured after 45 hours of star- vation; viability more than 90%	Soil bacterium Dry mass data (Fig. 1): 4.3×10^9 cells (90% viable) make up 1.6 mg dry mass: 0.4×10^{-12} g dry mass cell ⁻¹

												Respiration rate fell from 10 to 1 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ during the first 45 hr of the total 450 hr' period of star- vation	Cell mass estimated from linear dimen- sions given by Robertson & Batt (1973) 2-4 μ m (length) × 0.8-1.2 μ m (diame- ter), is greater, 2.4× 10 ⁻¹² g cell ⁻¹
												Midwinter & Batt 1953 report 1-12 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ for cells grown on differ- ent substrates for 24- 96 hr at 30 C; respira- tion measured for about 3 hr	
Nocardia corallina (A-6)	142.Nocardia coral- lina	Actinobacteria: nomycetales	Acti-	$\begin{array}{c} \mu l \ O_2 \ (4.8 \ mg \\ DM)^{-1} \ (220 \\ min)^{-1} \end{array}$		40	4	30. 3	2.77	[2.1]	Raymond et al. 1967 [Robertson & Batt 1973, rods, 0.8-1.2×2-4 um]	Cells grown for 72 hr; respiration measured for 220 min.	
Nocardia asteroides (ATCC 3308)	143.Nocardia far- cinica	Actinobacteria: nomycetales	Acti-	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	5	8.3	30	5.87	[0.1]	Jurtshuk & McQuitty 1976 [Takeo & Uesaka 1975, Fig. 1, hyphae diam 0.6 µm mycellium; Kowalski et al. 1999, 1-1.25×3-5 µm airbornel	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Nocardia sp. (Z1)	144.Nocardia sp.	Actinobacteria: nomycetales	Acti-	$\begin{array}{ccc} \mu l & O_2 & (42 & mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	56	2.2	30	1.56		Watson & Cain 1975 [BM9, ge- nus, hyphae diam 0.5-1.2 µm]	Cells grown for 24 hr	Bacterium isolated from soil with by enrichment with pyridine
Nocardia erythropo- lis	145.Nocardia sp.	Actinobacteria: nomycetales	Acti-	µl O ₂ (7.5 mg DM) ⁻¹ (200 min) ⁻¹	MIN	40	3	30	2.12		Cartwright & Cain 1959 [BM9, genus, hyphae diam 0.5-1.2 µm]	Respiration measured for 200 min Cain et al. 1968: Cells harvested after 24-36 hr incubation (Smith et al. 1968); respiration measured for 90 min was 185 μ l O ₂ (14.3 mg DM) ⁻¹ hr ⁻¹ = 22 W/kg at 30 C	No change of respiration with time The organism was originally isolated from soil by enrichment with <i>p</i> - nitrobenzoate (Cain et al. 1958) Classification and size determination made for the Nocardia genus. There is no N. erythropolis at www.bacterio.cict.fr.
Nonomuraea sp. (ATCC 39727)	146.Nonomuraea sp.	Actinobacteria: nomycetales	Acti-	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	1	1	25	1.00		Palese et al. 2003	Respiration of cells in the lag phase (incu- bated for 15 hr) prior to exponential growth	Endogenous respiration increases from lag to exponential phase from 1 to 35 nmol O ₂ (mg protein) ⁻¹ min ⁻¹ , then starts to drop abruptly in the stationary phase (min. value measured after 160 hr incu- bation was 7 nmol O ₂ (mg protein) ⁻¹ min ⁻¹)

Micrococcus denitri- ficans	147.Paracoccus denitrificans	Alphaproteobacteria: Rhodobacterales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	5	8.3	30	5.87	[0.16]	Kornberg & Mor- ris 1965 [BM, spheres (0.5-0.9 μm in diam) or short rods (0.9-1.2 μm long)]	Cells harvested during the exponential phase	Endogenous reserves of cells were "de- pleted" by 4 hr aerobic shaking at 30 C in another experiment
Pasteurella pseudo- tuberculosis (NCTC 1101)	148.Pasteurella pseudotuberculosis	Gammaproteobacteria: Enterobacteriales	$\begin{array}{l} \mu l & O_2 & (mg \\ DM)^{-l} \ hr^{-l} \end{array}$	MIN	7	12	25	12.00		Bishop et al. 1962	Respiration measured immediately after harvesting the cells at the end of the loga- rithmic growth phase	Max. resp. (in the presence of glucose) was 331 $\mu l~O_2~(mg~DM)^{-1}~hr^{-1}$
Pediococcus cere- visiae (ATCC 8081)	149.Pediococcus acidilactici	"Bacilli": "Lactoba- cillales"	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-l} \ hr^{-l} \end{array}$	MIN	2	3.3	30	2.33	[2.2]	Jurtshuk & McQuitty 1976 [BM9, genus, spheres 1.0-2.0 um diam]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Phaeospirillum fulvum (5K, KM MGU 325)	150.Phaeospirillum fulvum	Alphaproteobacteria: Rhodospirillales	nmol O_2 (mg protein) ⁻¹ min ⁻¹	MIN	25.3	28	28	22.74	[2]	Berg et al. 2002 [BM]	Bacteria harvested from early exponential cultures grown photo- heterotrophically	Purple bacteria
Picrophilus oshimae	151.Picrophilus oshimae	Thermoplasmata (Ar- chaea): Thermoplas- matales	nmol O_2 (mg protein) ⁻¹ min ⁻¹	MIN	22.7	25	60	2.21	[1]	Van de Vossen- berg et al. 1998 [Schleper et al. 1995, cocci, diam 1-1.5 um]	Starvation for several hours	Thermoacidophilic archaeon
Proteus morganii [=Morganella mor- ganii]	152.Proteus mor- ganii	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{l} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	3	5	30	3.54	[0.4]	Jurtshuk & McQuitty 1976 [BM, rods, 0.6- 0.7×1-1.7 μm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Proteus vulgaris	153.Proteus vulgaris	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	3	5	37	2.18	[0.4]	Bishop et al. 1962 [BM9, genus, rods 0.4-0.8×1-3 μm]	Respiration measured immediately after harvesting the cells (aerobic culture) at the end of the logarithmic growth phase; en- dogenous respiration of anaerobic culture was below detection limit (0 orig. units)	Max. resp. (in the presence of glucose) was 87 orig. units
Proteus vulgaris	154.Proteus vulgaris	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		3	5	30	3.54	[0.4]	Jurtshuk & McQuitty 1976 [BM9, genus, rods 0.4-0.8×1-3 μm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Pseudomonas aeru- ginosa	155.Pseudomonas aeruginosa	Gammaproteobacteria: Pseudomonadales	μ l O ₂ (mg N) ⁻¹ (75 min) ⁻¹	MIN	50	6.7	30	4.74	[0.5]	Rogoff 1962 [Montesinos et al. 1983, Coulter counter; see also datra of Hou et al. 1966, 0.2-0.8 pg]	Cells isolated from soil and closely re- sembling P. aerugi- nosa were grown for 18 to 48 hr; respiration was measured for 75 min	

Pseudomonas aeru- ginosa (120Na)	156.Pseudomonas aeruginosa	Gammaproteobacteria: Pseudomonadales	$\begin{array}{ll} \mu mol & O_2 \ (100 \\ mg & DM)^{-1} \ (2 \\ hr)^{-1} \end{array}$	55.5	10	30	7.07	[0.5]	Gronlund & Campbell 1961 [Montesinos et al. 1983, Coulter counter; see also datra of Hou et al. 1966, 0.2-0.8 pg]	Cells (strain 120Na) harvested after 20 hr growth; respiration measured for 2 hr; for strain ATCC 9027 respiration was 80 orig. units	Hou et al. 1966: Cell size of P. aerugi- nosa: 4.5×10^8 viable cells = 29.6 ×10 ⁻⁶ g = 17.5×10^{-6} g protein, cells harvested after 8 hr growth: 1 cell = 0.06×10^{-12} g dry mass = 0.2×10^{-12} g wet mass
										Tomlinson & Camp- bell 1963: cells (strain 120Na) harvested after 20 hr growth at 30 C; respiration measured	For 24-hr phosphorus starved cells, they observed 4.18×10^8 viable cells = 44.4 $\times 10^{-6}$ g = 22.8 $\times 10^{-6}$ g protein: 1 cell = 0.35×10^{-12} g wet mass For refed cells at 30 hr: 7.68 $\times 10^8$ viable
										for 2 hr; 120 μ l O ₂ (5 mg DM) ⁻¹ (2 hr) ⁻¹ = 20 W/kg	cells = 182×10^{-6} g = 75.1×10^{-6} g protein: 1 cell = 0.8×10^{-12} g wet mass
										Gronlund & Campbell 1963: cells (strain ATCC 9027) har- vested after 20 hr growth at 30 C; respi- ration measured for 3 hr; hourly rates de- creased from 4.75 to 4.0 to 3.19 μ mol O ₂ (10 mg DM) ⁻¹ hr ⁻¹ , with no loss of viabil- ity (min. rate 12 W/kg) Gronlund & Campbell 1966: cells (strain ATCC 9027) har- vested after 20 hr growth at 30 C; respi- ration measured for 2 hr; 95 μ l O ₂ (5 mg DM) ⁻¹ (2 hr) ⁻¹ = 16 W/kg	Protein to DM (Protein/DM) ratio = 0.59, 0.51 and 0.41, respectively.
										Warren et al. 1960 report practically the same rate, 2500 μ l O ₂ (100 mg DM) ⁻¹ (2 hr) ⁻¹ = 20 W/kg; the same age of culture (20 hr), strain ATCC	
Pseudomonas aeru- ginosa (ATCC 15442)	157.Pseudomonas aeruginosa	Gammaproteobacteria: Pseudomonadales	$\begin{array}{c} \mu l & O_2 \\ DM)^{-1} \ hr^{-1} \end{array} (mg$	17	28	30	19.80	[0.5]	Jurtshuk & McQuitty 1976 [Montesinos et al.	9027 Cells harvested at the late-logarithmic growth phase (two	

Pseudomonas (pyo- ceanea) aeruginosa	158.Pseudomonas aeruginosa	Gammaproteobacteria: Pseudomonadales	$\mu l O_2 (mg \ DM)^{-1} \ hr^{-1}$	28	47	37	20.46	[0.5]	1983, Coulter counter; see also datra of Hou et al. 1966, 0.2-0.8 pg] Bishop et al. 1962 [Montesinos et al. 1983, Coulter counter; see also datra of Hou et al. 1966, 0.2-0.8 pg]	thirds of the maximal growth concentration) Respiration measured immediately after harvesting the cells (aerobic culture) at the end of the logarithmic growth phase; anaerobically grown culture respired at 15 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ = 25 W/kg	
Pseudomonas aeru- ginosa (9/93 and 72/92)	159.Pseudomonas aeruginosa	Gammaproteobacteria: Pseudomonadales	$\begin{array}{l} nmol O_2 (mg \\ DM)^{-1} \ min^{-1} \end{array}$	23.7	53	30	37.48	[0.5]	Majtán et al. 1995 [Montesinos et al. 1983, Coulter counter; see also datra of Hou et al. 1966, 0.2-0.8 pg]	Cells harvested at the exponential phase; respiration measured for 10 min	
Pseudomonas fluo- rescens (A.3.12)	160.Pseudomonas fluorescens	Gammaproteobacteria: Pseudomonadales	$\mu l ~O_2$ (3 mg $~MIN$ $DM)^{-1}~hr^{-1}$	8	4.4	28	3.57	[1]	Altekar & Rao 1963 [BM, 0.7 - 0.8×2.0 - $3.0 \mu m$; Gunter & Kohn 1956, 0.24 pg DM/cell = 0.8 pg/cell at 70% water content]	Cells washed after incubation for 24 hr in a growth medium on a shaker; respiration of "resting" cells meas- ured for 4 hr; value for the last hour taken (Fig. 4)	Respiration decreases with time (mean for the 4 hrs was ≈8 W/kg)
Pseudomonas fluo- rescens (A.3.12)	161.Pseudomonas fluorescens	Gammaproteobacteria: Pseudomonadales	$\mu l O_2 (mg \ DM)^{-1} \ hr^{-1}$	5.9	10	26	9.33	[1]	Gunter & Kohn 1956 [BM, 0.7- 0.8×2.0-3.0 μm; Gunter & Kohn 1956, 0.24 pg DM/cell = 0.8 pg/cell at 70% water content]	Respiration of washed cell suspensions har- vested from 16 to 18- hr yeast agar plates	
Pseudomonas fluo- rescens (KBI)	162.Pseudomonas fluorescens	Gammaproteobacteria: Pseudomonadales	μmol (10 mg DM) ⁻¹ hr ⁻¹	4	15	30	10.61	[1]	Hughes 1966 [BM, $0.7-0.8 \times 2.0-$ $3.0 \ \mu\text{m}$; Gunter & Kohn 1956, 0.24 pg DM/cell = 0.8 pg/cell at 70% water contentl	Cells grown for 22-24 hr at 25 C; respiration measured after equili- bration for 30 min at 30 C	
Pseudomonas fluo- rescens (A.3.12)	163.Pseudomonas fluorescens	Gammaproteobacteria: Pseudomonadales	μ mol O ₂ (100 mg DM) ⁻¹ (2 hr) ⁻¹	98	18	30	12.73	[1]	Gronlund & Campbell 1961 [BM, 0.7-0.8×2.0- 3.0 μm; Gunter & Kohn 1956, 0.24 pg DM/cell = 0.8	Cells harvested after 20 hr growth; respira- tion measured for 2 hr at 30 C Tomlinson & Camp-	

									pg/cell at 70% water content]	bell 1963: 190 μ l O ₂ (5 mg DM) ⁻¹ (2 hr) ⁻¹ = 32 W/kg for 20-hr cultures at 30 C	
Pseudomonas fluo- rescens (A.3.12)	164.Pseudomonas fluorescens	Gammaproteobacteria: Pseudomonadales	$\mu l O_2 (mg \ DM)^{-1} \ hr^{-1}$	20	33	30	23.33	[1]	Jacoby 1964 [BM, 0.7-0.8×2.0-3.0 μm; Gunter & Kohn 1956, 0.24 pg DM/cell = 0.8 pg/cell at 70% water content]		
Pseudomonas fluo- rescens (KBI)	165.Pseudomonas fluorescens	Gammaproteobacteria: Pseudomonadales	$\begin{array}{ll} \mu l & O_2 & (2 \ mg \\ DM)^{-1} & (160 \\ min)^{-1} \end{array}$	110	34	30	24.04	[1]	Kornberg 1958 [BM, 0.7-0.8×2.0- 3.0 μ m; Gunter & Kohn 1956, 0.24 pg DM/cell = 0.8 pg/cell at 70% water content]	Cells grown for 10-12 hr, harvested during logarithmic phase; respiration measured for 160 min	
Pseudomonas fluo- rescens (ATCC 13525)	166.Pseudomonas fluorescens	Gammaproteobacteria: Pseudomonadales	nmol O_2 (mg DM) ⁻¹ (min) ⁻¹	45.7	60	30	42.43	[1]	Eisenberg et al. 1973 [BM, 0.7- 0.8×2.0 -3.0 µm; Gunter & Kohn 1956, 0.24 pg DM/cell = 0.8 pg/cell at 70% water content]	Respiration of washed cells harvested at midlog or early sta- tionary phase	
Pseudomonas for- micans	167.Pseudomonas formicans	Gammaproteobacteria: Pseudomonadales	µl O ₂ (mg MIN DM) ⁻¹ (40 min) ⁻¹	4	10	30	7.07	[7]	Sabina & Pivnick 1956 [Crawford 1954, rods 1-2×4- 5 μm]	Bacteria grown for 5 days in a mixture of soluble oils; incubated for 24 hr in a nutrient broth; aerated vigor- ously in nutrient broth for 18 hr; harvested and washed; washed suspension "shaken for 2 to 8 hr at room tem- perature in an attempt to reduce the endoge- nous respiration"; respiration measured for 210 min (Fig. 2); value taken for the last 40 min	Bacteria isolated from used emulsifiers of industrial oil, Illinois, USA Endogenous respiration decreases with time during 2-4 hr of respiration (Figs. 2, 4)
Pseudomonas oleo- vorans	168.Pseudomonas oleovorans	Gammaproteobacteria: Pseudomonadales	$\mu l O_2 (mg MIN \\ DM)^{-l} \ hr^{-l}$	2	3.3	30	2.33	[0.16]	Sabina & Pivnick 1956 [Lee & Chandler 1941, almost coccoid, 0.5×0.8 µm]	Bacteria grown for 5 days in a mixture of soluble oils; incubated for 24 hr in a nutrient broth; aerated vigor- ously in nutrient broth for 18 hr; harvested and washed; washed	Bacteria isolated from used emulsifiers of industrial oil, England Endogenous respiration decreases with time during 2-4 hr of respiration (Figs. 2, 4)

Pseudomonas oleo- vorans	169.Pseudomonas oleovorans	Gammaproteobacteria: Pseudomonadales	nmol O_2 (mg DM) ⁻¹ min ⁻¹	16- 19	40	30	28.28	[0.16]	Peterson 1970 [Lee & Chandler 1941, almost	suspension "shaken for 2 to 8 hr at room tem- perature in an attempt to reduce the endoge- nous respiration"; respiration measured for 210 min (Fig. 3); value taken for the last hour Cells harvested in late- log-phase	
Pseudomonas putida (010C)	170.Pseudomonas putida	Gammaproteobacteria: Pseudomonadales	nmol O_2 (25 mg MIN DM) ⁻¹ min ⁻¹	11	1	30	0.71	[1.7]	coccoid, 0.5×0.8 μm] Chapman & Rib- bons 1976 [BM, 0.7-1.1×2.0-4.0	Succinate-grown cells harvested after 16-20 hr incubation in the late locarithmic phase.	The organism was isolated from orcinol enrichments
Pseudomonas putida (arvilla mt-2 (PaM1))	171.Pseudomonas putida	Gammaproteobacteria: Pseudomonadales	$\mu l~O_2~(20~mg~WM)^{-1}~hr^-$	10	2.8	30	1.98	[1.7]	μm] Kunz & Chapman 1981 [BM, 0.7- 1.1×2.0-4.0 μm]	respiration measured for 2 min; respiration of strains O1OC, ORC and O1 varied from 11 to 29 nmol O ₂ (25 mg DM) ⁻¹ min ⁻¹ (1-2.6 W/kg) depending on growth substrate. P. putida (arvilla) mt-2 cells grown for 24 hr on toluene or 48 hr on pseudocumene; respi- ration 10 μ l O ₂ (20 mg WM) ⁻¹ hr ⁻¹ = 2.8 W/kg	(Fig. 3) = 12 W/kg
Pseudomonas putida (biotype B)	172.Pseudomonas putida	Gammaproteobacteria: Pseudomonadales	$\begin{array}{c} \mu l O_2 (mg \\ DM)^{-l} \ min^{-l} \end{array}$	0.27/ 6.1	4.4	30	3.11	[1.7]	Sebek & Barker 1968 [BM, 0.7- 1.1×2.0-4.0 μm]	Cells harvested to- wards the end of the exponential phase, shaken for 18 hr "to reduce endogenous respiration"	
Pseudomonas putida (TM)	173.Pseudomonas putida	Gammaproteobacteria: Pseudomonadales	$\begin{array}{c} \mu l \ O_2 \ (10 \ mg \\ WM)^{-1} \ min^{-1} \end{array}$	0.25	8.3	30	5.87	[1.7]	Donnelly & Da- gley 1980 [BM, 0.7-1.1×2.0-4.0	Cells harvested during exponential growth	Strain isolated from rotting oak leaves
Pseudomonas fluo- rescens-putida	174.Pseudomonas putida	Gammaproteobacteria: Pseudomonadales	$\mu l O_2 (mg \ DM)^{-1} \ hr^{-1}$	11.2	19	37	8.27	[1.7]	μπ] Chakrabarty & Roy 1964 [BM, 0.7-1.1×2.0-4.0 μm]	Cells grown to the stationary phase (72 hr)	Respiration decreases from mid- exponential to late-exponential to sta- tionary phase ($20.3 \rightarrow 17.8 \rightarrow 11.2 \ \mu\text{I}$ $O_2 \ (\text{mg DM})^{-1} \ \text{hr}^{-1}$); in cells harvested at 20 hr (mid-exponential) and starved for 0-4 hr respiration decreases from 27 (0th) to 20 (2nd) to 16.5 (3rd) to 15.6

												$(4th hr) \mu l O_2 (mg DM)^{-1} hr^{-1}$
Pseudomonas putida (PRS1)	175.Pseudomonas putida	Gammaproteobacteria: Pseudomonadales	$\mu l O_2 (mg DM)^{-1} hr^{-1}$		10	17	30	12.02	[1.7]	Meagher et al. 1972 [BM, 0.7- 1.1×2.0-4.0 μm]	Cells harvested during exponential growth	
Pseudomonas putida	176.Pseudomonas putida	Gammaproteobacteria: Pseudomonadales	nmol O_2 (mg DM) ⁻¹ min ⁻¹		15	34	30	24.04	[1.7]	Peterson 1970 [BM, 0.7-1.1×2.0- 4.0 µm]	Cells harvested in late- log-phase	
Pseudomonas sac- charophila	177.Pseudomonas saccharophila	Gammaproteobacteria: Pseudomonadales		MIN	20- 28	33	30	23.33		Doudoroff et al. 1956	Cells harvested from early stationary phase cultures	
Pseudomonas sp. (B1)	178.Pseudomonas sp.	Gammaproteobacteria: Pseudomonadales	nmol O_2 (mg protein) ⁻¹ min ⁻¹	MIN	2	2.2	30	1.56		Van Ginkel et al. 1992 [BM, genus, rods 0.5-1.0×1.5- 5.0 µm]	Yeast-glucose plate inoculates were incu- bated in a stationary fashion at 30 C; washed; endogenous respiration measured for 5 min	Bacteria isolated from activated sludge taken from a domestic seweage plant, The Netherlands
Pseudomonas sp.	179.Pseudomonas sp.	Gammaproteobacteria: Pseudomonadales	$\begin{array}{l} \mu mol O_2 (50 \\ mg)^{-1} \left(4 \ hr \right)^{-1} \end{array}$	MIN	13	8	30	5.66		Shaw 1956 [BM, genus, rods 0.5- 1.0×1.5-5.0 μm]	Bacteria grown for 24 hr at 30 C; washed; respiration measured for 4 h	An airborne organism isolated in the laboratory; University of Otago; New Zealand; a fluorescent species of Pseu- domonas
Pseudomonas sp.	180.Pseudomonas sp.	Gammaproteobacteria: Pseudomonadales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-l} \ hr^{-l} \end{array}$		10	17	30	12.02		Sariaslani et al. 1982 [BM, genus, rods 0.5-1.0×1.5- 5.0 µm]	Bacteria harvested during log phase; respiration measured for about 1 h	Bacteria isolated from California soil, USA.
Pseudomonas sp. (OD1)	181.Pseudomonas sp.	Gammaproteobacteria: Pseudomonadales	$\mu l O_2$ (mg DM) ⁻¹ hr ⁻¹	MIN	2	3.3	25	3.30		Jayasuriya 1956 [BM, genus, rods 0.5-1.0×1.5-5.0 um]	Bacteria grown on oxalate for 40 hr at 25 C	
Pseudomonas sp. (PN-1)	182.Pseudomonas sp.	Gammaproteobacteria: Pseudomonadales	μ mol O ₂ (6.05 mg protein) ⁻¹ (145 min) ⁻¹	MIN	6.5	8.3	30	5.87		Taylor 1983 [BM, genus, rods 0.5- 1.0×1.5-5.0 µm]	Endogenous respira- tion of anaerobically grown cells	
Pseudomonas sp. P6 (NCIB 10431)	183.Pseudomonas sp.	Gammaproteobacteria: Pseudomonadales	μ mol O ₂ (mg DM) ⁻¹ hr ⁻¹	MIN	0.4	15	30	10.61		Jones & Turner 1973 [BM, genus, rods 0.5-1.0×1.5- 5.0 µm]	Respiration measured for not less than 90 min	Synonym Acrhomobacter sp. P6
Azotomonas insolita (ATCC 12412)	184.Pseudomonas sp.	Gammaproteobacteria: Pseudomonadales	$\begin{array}{l} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	11	18	30	12.73		Jurtshuk & McQuitty 1976 [BM, genus, rods 0.5-1.0×1.5-5.0]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	Size determination is made for Pseudomonas genus, since ATCC 12412 correponds to a Pseudomonas sp.
Pseudomonas sp. (B13)	185.Pseudomonas sp.	Gammaproteobacteria: Pseudomonadales	$\begin{array}{ll} \mu g & O_2 & (mg \\ DM)^{-1} & min^{-1} \end{array}$	MIN	0.5	35	20	49.50		Tros et al. 1996 [BM, genus, rods 0.5-1.0×1.5-5.0 μm]	Bacteria grown for about 210 hr in a recy- cling fermentor to reach the stationary phase; endogenous respiration measured for 5-10 min of a sample taken from the	Bacteria isolated from activated sludge taken from a domestic seweage plant, The Netherlands
Streptomyces nitri-	186.Pseudonocardia	Actinobacteria: Acti-	$\mu l = O_2$ (mg	MIN	1.5	2.5	30	1.77		Isenberg et al.	Mycellium grown for	5 mg DM= 25 mm ³ wet packed volume

ficans Rhizobium japoni- cum (61A76)	nitrificans 187.Rhizobium japonicum	nomycetes Alphaproteobacteria: Rhizobiales	$\begin{array}{l} {\rm DM})^{-1} \ {\rm hr}^{-1} \\ {\rm \mu mol} \ \ {\rm O}_2 \ \ (0.71 \\ {\rm mg} \ \ {\rm protein})^{-1} \\ {\rm (10 \ min)}^{-1} \end{array}$	MIN	0.1	16	23	18.38	[0.7]	1954 Peterson & LaRue 1982 [BM9, ge- nus, rods, 0.5- 0 9×1 2-3 0 um]	5-6 days Bacteria harvested at mid-log phase of growth	→ DM/WM=0.2 Free-living bacteria
Rhizobium legumi- nosarum (128 C 53)	188.Rhizobium leguminosarum	Alphaproteobacteria: Rhizobiales		MIN	57	9.5	30	6.72	[0.6]	Dietrich & Burris 1967 [BM]	Bacteria cultured for 2 weeks in an extract from wheat plants; respiration measured for 1 hr after 10 min	
Rhizobium meliloti (F-28)	189.Rhizobium meliloti	Alphaproteobacteria: Rhizobiales	$\begin{array}{l} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	7	12	30	8.49	[0.7]	Jurtshuk & McQuitty 1976 [BM9, genus, rods, 0.5-0.9×1.2- 3.0 µm]	cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration); respiration of strain 3DOal was 9 orig. units	
Rhodobacter sphaeroides (2R)	190.Rhodobacter sphaeroides	Alphaproteobacteria: Rhodobacterales	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	14.9	17	28	13.81	[0.8]	Berg et al. 2002 [Gunter & Kohn 1956 0.23 pg DM/cell = 0.8 pg/cell at 70% water content]	Bacteria (strain 2R) harvested from early exponential cultures grown photoheterotro- phically	Purple bacteria
Rhodopseudomonas spheroides	191.Rhodobacter sphaeroides	Alphaproteobacteria: Rhodobacterales	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		20.8	35	26	32.66	0.8	Gunter & Kohn 1956 [0.23 pg DM/cell = 0.8 pg/cell at 70% water content]	Cells harvested from 16 to 18-hr yeast agar plates	Cell mass estimated from dry mass data Table 1, 0.23 pg DM/cell
Corynebacterium (7E1C, ATCC 19067)	192.Rhodococcus rhodochrous	Actinobacteria: Actinomycetales	$\mu l O_2 (mg DM)^{-1} hr^{-1}$	MIN	10	17	30	12.02		Jurtshuk & McQuitty 1976	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Rhodococcus sp. (094)	193.Rhodococcus sp.	Actinobacteria: Actinomycetales	$\begin{array}{l} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	1.3	2.2	25	2.20		Bruheim et al. 1999	Cells grown to the early stationary phase on oil	The isolate was obtained from enrich- ment cultures by using inocula from Norwegian coastal waters
Nocardia opaca	194.Rhodococcus sp.	Actinobacteria: Actinomycetales	μ l O ₂ (14.8 mg DM) ⁻¹ (60 min) ⁻¹	MIN	60	7	30	4.95		Cartwright & Cain 1959	Respiration measured for 60 min	
Nocardia sp. (NCIB 11216)	195.Rhodococcus sp.	Actinobacteria: Actinomycetales	$\mu l O_2 (5 \text{ mg})$ DM) ⁻¹ min ⁻¹	MIN	0.37	7.4	25	7.40		Harper 1977	Bacteria grown at 25 C to early exponential phase	A microorganism capable of using ben- zonitrile as sole carbon, nitrogen and energy source was isolated by elective culture from mud obtained from the bed of the River Lagan in Belfast
Rhodospirillum rubrum (2R KM MGU 301)	196.Rhodospirillum rubrum	Alphaproteobacteria: Rhodospirillales	nmol O_2 (mg protein) ⁻¹ min ⁻¹	MIN	3.4	3.8	28	3.09	[9]	Berg et al. 2002 [BM]	Bacteria harvested from early exponential cultures grown photo- heterotrophically;	Purple bacteria Breznak et al. 1978 found half-life sur- vival time of 3-4 days in the dark for

Vibrio costicola (NRCC 37001)	197.Sallinivibrio costicola	Gammaproteobacteria: "Vibrionales"	μg O ₂ (mg DM) ⁻¹ min ⁻¹	MIN	0.10	7	25	7.00	[0.4]	Kushner et al. 1983 [Huang et al. 2000, rods, 0.5×1.5-3.2 μm]	respiration measured in the dark Cells harvested just before the stationary phase; respiration varied from 0.10 to $1.14 \ \mu g \ O_2 \ (mg \ DM)^{-1}$ min ⁻¹ (7-80 W/kg) depending on salt concentration in the	this species
Salmonella typhi- murium (LT2)	198.Salmonella typhimurium	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{ll} \mu l \ O_2 \ (1.36 \ mg \\ DM)^{-1} \ (10 \\ min)^{-1} \end{array}$	MIN	2	15	37	6.53	[0.66]	Hoffee & Engles- berg 1962 [Mon- tesinos et al. 1983, Coulter counter]	medium Cells harvested in the exponential phase; respiration measured for 10 min	
Salmonella typhi- murium (ATCC 6444)	199.Salmonella typhimurium	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		6	10	30	7.07	[0.66] [1.35]	Jurtshuk & McQuitty 1976 [Montesinos et al. 1983, Coulter counter] [Ku- bitschek 1969, Coulter counter]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Serratia marcescens (D1)	200.Serratia mar- cescens	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{l} \mu l \ O_2 \ (10 \ mg \\ DM)^{-1} \ (3.5 \ hr)^{-1} \end{array}$	MIN	75	4	37	1.74	[0.4]	Blizzard & Peter- son 1962 [BM, 0.5-0.8×0.9-2 μm]	Bacteria incubated at 37 C for 18-20 hr on a rotary shaker; respira- tion measured for 3.5	Respiration grows (!) with time
Chromobacter prodigiosum (NCTC 1377)	201.Serratia mar- cescens	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{c} \mu l & O_2 \\ DM)^{-1} \ hr^{-1} \end{array} (mg$		11	18	37	7.83	[0.4]	Bishop et al. 1962 [BM, 0.5-0.8×0.9- 2 μm]	Respiration measured immediately after harvesting the cells at the end of the loga-	Max. resp. (in the presence of glucose) was 200 $\mu l~O_2~(mg~DM)^{-1}~hr^{-1}$
Serratia marcescens	202.Serratia mar- cescens	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{c} \mu l & O_2 \\ DM)^{-1} \ hr^{-1} \end{array} (mg$		8	13	30	9.19	[0.4]	Jurtshuk & McQuitty 1976 [BM, 0.5-0.8×0.9- 2 μm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Serratia marcescens (8 UK)	203.Serratia mar- cescens	Gammaproteobacteria: "Enterobacteriales"	$\begin{array}{c} \mu l & O_2 \\ DM)^{-1} \ hr^{-1} \end{array} (mg$		21	35	30	24.75	[0.4]	Davis & BAteman 1960 [BM, 0.5- 0.8×0.9-2.um]	Cells harvested after 16 hr growth	
Shigella flexneri 3 (1013)	204.Shigella flex- neri	Gammaproteobacteria: "Enterobacteriales"		MIN	25	10	37	4.35		Erlandson & Ruhl 1956	Bacteria grown for 18 hr at 37 C; washed; stored in a refrigerator (can be stored for 5 days with no loss of activity); cells not older than 4 days were used in the analysis; respiration measured for 2 h	Human dysentery agent
Sphaerotilus natans (12)	205.Sphaerotilus natans	Betaproteobacteria: Burkholderiales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	27	45	28	36.55	6.5	Stokes 1954 [1.2- 1.8×3-5 μm;	Cells grown for 16 hr at 28 C on a shaker;	Originally isolated from contaminated flowing water

										sheathed filaments in young cultures, liberated flagel- lated cells in old cultures]	washed suspensions were aerated for 3-5 hr to reduce endogenous respiration, which is characterized as "rather high" perhaps "due to the large amount of fatty mate- rial stored in the cells"	Aeration for more than 5 hr "tended to destroy the oxidizing capacity of the cells"
Sporosarcina ureae	206.Sporosarcina ureae	"Bacilli": Bacillales	$\mu l O_2$ (mg DM) ⁻¹ hr ⁻¹	MIN	7	12	30	8.49	[3.8]	Jurtshuk & McQuitty 1976 [BM9, genus, rods, 1-2×2-3 µm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Staphylococcus aureus	207.Staphylococcus aureus	"Bacilli": Bacillales	7 $\mu l O_2$ (mg DM) ⁻¹ hr ⁻¹	MIN	9.3- 15.7	16	37	7	[0.04- 0.17] [[0.27]]	Ramsey 1962 [Watson et al. 1998, diam 0.41 µm for long- starved cells, 0.69 µm for exponen- tial phase cells] [[Montesinos et al. 1983, Coulter counter]]	Cells grown for 12, 24, 48 and 72 hr on agar respired at 14.8, 12.0, 10.0 and 0 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ , re- spectively, at 37 C; depending on the growth medium, en- dogenous respiration ranged from 9.3 to 15.7 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ = 16.26 W/kg	
Staphylococcus aureus (FDA 209P)	208.Staphylococcus aureus	"Bacilli": Bacillales	$\begin{array}{c} \mu l \ O_2 \ (14 \ mg \\ DM)^{-1} \ (4 \ hr)^{-1} \end{array}$		44	1.3	30	0.92	[0.04- 0.17] [[0.27]]	Huber&Schuhardt1970[Watson et al.1998, diam0.41μm for long-starved cells, 0.69μm for exponen-tial phase cells][[Montesinos etal.1983, Coultercounter1]	Cells grown for 18 hr at 37 C with shake aeration; respiration measured for 4 hr.	
Staphylococcus aureus	209.Staphylococcus aureus	"Bacilli": Bacillales	μ l O ₂ (0.1-0.15 mg N) hr ⁻¹		2	2.2	37	0.96	[0.04- 0.17] [[0.27]]	Yotis & Ekstedt 1959 [Watson et al. 1998, diam 0.41 µm for long- starved cells, 0.69 µm for exponen- tial phase cells] [[Montesinos et al. 1983, Coulter counter]]	Cells incubated for 16 hr at 37 C; respiration measured for 6 hr; it decreases with time Yotis 1963: respiration of washed cells meas- ured for 60 min at 37 C was 14 to 20 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ = 23 W/kg	Respiration decreases with starvation time from 21 μ l O ₂ (0.1-0.15 mg N) hr ⁻¹ in the first hour, 11.5 (second hour), 6.5 (third, fourth hour), 2 (fifth, sixht hour), min. rate = 2.2 W/kg
Staphylococcus	210.Staphylococcus	"Bacilli": Bacillales	$\mu l~O_2~(6.02~mg$		9.73	2.7	37	1.18	[0.04-	Bluhm & Ordal	Cells grown for 10 hr	

aureus (MF-31)	aureus		DM) ⁻¹ hr ⁻¹						0.17] [[0.27]]	1969 [Watson et al. 1998, diam 0.41 μm for long- starved cells, 0.69 μm for exponen- tial phase cells] [[Montesinos et al. 1983, Coulter	at 37 C; respiration of heat injured cells is three times lower	
Staphylococcus aureus (31-r)	211.Staphylococcus aureus	"Bacilli": Bacillales	$\begin{array}{l} \mu mol O_2 (mg \\ DM)^{-1} \ hr^{-1} \end{array}$		0.19	7	37	3.05	[0.04- 0.17] [[0.27]]	<pre>counterjj Krzemiński et al. 1972 [Watson et al. 1998, diam 0.41 μm for long- starved cells, 0.69 μm for exponen- tial phase cells] [[Montesinos et al. 1983, Coulter counter]]</pre>	Cells harvested after 20 hr growth at 37 C and starved for 3 hr; respiration decreases from 0.68 to 0.43 to 0.19 μ mol O ₂ (mg DM) ⁻¹ h ⁻¹ for the 1st, 2nd and 3rd hrs at 37 C, respectively.	Respiration decreases with starvatio time; it also depends on growth phase maximum at approx. 10 hr and the decreases towards the stationary phase
Staphylococcus (albus) aureus	212.Staphylococcus aureus	"Bacilli": Bacillales	$\mu l O_2 (mg DM)^{-1} \ hr^{-1}$		3	5	30	3.54	[0.04- 0.17] [[0.27]]	Jurtshuk & McQuitty 1976 [Watson et al. 1998, diam 0.41 µm for long- starved cells, 0.69 µm for exponen- tial phase cells] [[Montesinos et al. 1983, Coulter counter]]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration); respiration was 3, 4 and 5 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ for strains S. (albus) aureus, S. aureus (University of Houston) and S. aureus ATCC 6538, respectively (5-8.3 W/kg), at 30 C	
Staphylococcus epidermidis (AT2)	213.Staphylococcus epidermidis	"Bacilli": Bacillales	$ \begin{array}{c} \mu l & O_2 & (mg \\ DM)^{^{-1}} hr^{^{-1}} \end{array} $	MIN	16	27	30	19.09	[0.5]	Jacobs & Conti 1965 [BM]	Cells grown for 8 hr at 37 C harvested at the end of the log phase	Cell mass estimated from linear dimensions given in BM
Staphylococcus albus (Micrococcus pyogenes var. albus)	214.Staphylococcus simulans	"Bacilli": Bacillales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	6	10	37	4.35		Bishop et al. 1962	Respiration measured immediately after harvesting the cells (aerobic culture) at the end of the logarithmic growth phase; en- dogenous respiration of anaerobic culture was 4 orig, units	Max. resp. (in the presence of lactate was 111 orig. units
Gaffkya tetragena (ATCC 10875)	215.Staphylococcus sp.	"Bacilli": Bacillales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	10	17	30	12.02		Jurtshuk & McQuitty 1976	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration); strain ATCC 10875	

											respired at 14 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ = 23 W/kg	
Streptococcus mas- titidis (70b)	216.Streptococcus agalactiae	"Bacilli": "Lactoba- cillales"	μ l O ₂ (mg N) ⁻¹ (120 min) ⁻¹	MIN	10	1.7	37	0.74	[0.3]	Greisen & Gun- salus 1944 [BM]	Cells grown for 12 hr	N/DM≈0.1
Streptococcus aga- lactiae	217.Streptococcus agalactiae	"Bacilli": "Lactoba- cillales"	$\mu l O_2$ (mg DM) ⁻¹ hr ⁻¹		5	8.3	37	3.61	[0.3]	Mickelson 1961 [BM]	Cells harvested after 10-15 hr incubation; respiration measured for 5 hr	
Streptococcus pneumoniae (ATCC 6360)	218.Streptococcus pneumoniae	"Bacilli": "Lactoba- cillales"	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	1	1.7	30	1.20	[0.4]	Jurtshuk & McQuitty 1976 [Kowalski et al. 1999, diam 0.8-1	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Streptococcus py- ogenes (ATCC 10389)	219.Streptococcus pyogenes	"Bacilli": "Lactoba- cillales"	$\begin{array}{l} \mu l O_2 (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	2	3.3	30	2.33	[0.2]	Jurtshuk & McQuitty 1976 [Kowalski et al. 1999, diam 0.6-1	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Streptomyces coeli- color	220.Streptomyces coelicolor	Actinobacteria: Actinomycetales	$\mu l O_2 (mg DM)^{-1} hr^{-1}$	MIN	24	40	30	28.28		Miederpruem & Hackett 1961	Respiration of mycel- lium	
Streptomyces fra- diae (ATCC 11903)	221.Streptomyces fradiae	Actinobacteria: Acti- nomycetales	$\mu l O_2 (mg DM)^{-1} hr^{-1}$	MIN	13	22	30	15.56		Niederpruem & Hackett 1961	Respiration of mycel- lium	
Streptomyces griseus (3475 Waksman)	222.Streptomyces griseus	Actinobacteria: Actinomycetales	$\mu l O_2 (mg N)^{-1} hr^{-1}$	MIN	105	18	30	12.73		Gilmour et al. 1955	Cells grown for 24 hr	
Streptomyces griseus (ATCC 10137)	223.Streptomyces griseus	Actinobacteria: Actinomycetales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-l} \ hr^{-l} \end{array}$		12	20	30	14.14		Jurtshuk & McQuitty 1976	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
											Niederpruem & Hack- ett 1961: Respiration of mycellium was 21 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ = 35 W/kg at 30 C	
Actinomyces lon- gispororuber	224.Streptomyces longispororuber	Actinobacteria: Actinomycetales	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-1} \ hr^{-1} \end{array}$	MIN	2	3.3	30	2.33		Feofilova et al. 1966	Respiration of 24-hr- old mycelium	Endogenous respiration was minimal (around 2 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹) in the beginning of growth before the expo- nential phase (lag phase); at maximal growth rate it increased up to 14 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ (48 hr) and then started to decline gradually to 7-11 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ at 72 hr and 4-8 μ l O ₂ (mg DM) ⁻¹ hr ⁻¹ at 96 hr
Streptomyces oliva- ceus (NRRL B- 1125)	225.Streptomyces olivaceus	Actinobacteria: Actinomycetales		MIN	54	9	37	3.92		Maitra & Roy 1961	Cells harvested at the end of growth at 24 hr; respiration measured for 60 min; pH 5.5; at pH 7.2 endogenous	

Sulfolobus acidocal- cadareus	226.Sulfolobus acidocalcadareus	Archaea: Thermopro- tei (Crenarchaeota): Sulfolobales	nmol O_2 (mg protein) ⁻¹ min ⁻¹	MIN	13.5	15	60	1.33	[0.4]	Schäfer 1996 [Takayanagi et al. 1996, lobed cells, digm 0.8 1.0 um]	respiration was 201.1 orig. units Steady-state respira- tion on endogenous substrate	
Contagious equine metritis bacterium (E-CMO)	227.Taylorella equigenitalis	Betaproteobacteria: Burkholderiales	$\begin{array}{l} pmol O_2 (mg \\ protein)^{-1} \ min^{-1} \end{array}$	MIN	82	0.1	30	0.07	[0.4]	Lindmark et al. 1982 [BM9, ge- nus, 0.7×0.7-1.8	Cells (English E-CMO strain) harvested from late log phase after 24 hr	Contagious equine metritis bacterium
Ferrobacillus ferro- oxidans (Thiobacil- lus ferrooxidans)	228.Thiobacillus ferrooxidans	Betaproteobacteria: Hydrogenophilales	$\begin{array}{ccc} \mu mol & O_2 & (5.6) \\ mg & protein)^{-1} \\ hr^{-1} \end{array}$	MIN	0.12	0.5	25	0.50	[0.25]	Silver 1970 [Kelly & Wood 2000, rods 0.4×2.0 μm]	respiration of cells during 60 min of sub- strate deprivation	
Thiobacillus inter- medius	229.Thiobacillus intermedius	Betaproteobacteria: Hydrogenophilales	μ mol O ₂ (mg protein) ⁻¹ hr ⁻¹	MIN	0.6	11	30	7.78	[0.4]	London & Ritten- berg 1966 [BM9, genus, 0.5-1.0-4.0 µm]	Cells were grown in the presence of glu- cose to the stationary phase; respiration of cells grown without glucose was "nil"	Facultative autotroph oxidizing thiosul- fate
Thiobacillus thio- oxidans	230.Thiobacillus thiooxidans	Betaproteobacteria: Hydrogenophilales		MIN	4-10	1.5	28	1.22	[0.25]	Vogler 1942b [Kelly & Wood 2000, rods 0.4×2.0 μm]	young cultures (as cited by Newburgh 1954) <u>Vogler 1942a</u> : late cultures respire at 10- 40 μ l O ₂ (mg N) ⁻¹ hr ⁻¹	Autotroph growing on sulfur; in the presence of sulfur respiration increases by 20-100 times
Thiocapsa roseopersicina (M1)	231.Thiocapsa roseopersicina	Gammaproteobacteria: Chromatiales	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	5.0	5.6	30	3.96	[1]	Overmann & Pfennig 1992 nmol O ₂ [Mon- tesinos et al. 1983, Coulter counter]	Respiration of cells without microscopi- cally visible sulfure globules at oxygen concentrations of 11- 67 μ M; respiration rates of phototrophi- cally (anaerobically) and chemotrophically (microaerobically) grown cells do not differ; the species is capable of chemotro- phic growth in the dark.	Purple sulfur bacteria Endogenous respiration of cells with visible sulfur globules is higher, up to 15 nmol O_2 (mg protein) ⁻¹ min ⁻¹
Thiocystis violacea (2711)	232.Thiocystis violacea	Gammaproteobacteria: Chromatiales	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	2.2	2.5	30	1.77	[11]	Overmann & Pfennig 1992 [BM9, genus, spherical or ovoid, 2.5-3.0 µm diam]	Respiration of cells without microscopi- cally visible sulfure globules at oxygen concentrations of 11- 67 μ M; respiration rates of phototrophi- cally (anaerobically) and chemotrophically (microaerobically) grown cells do not	Purple sulfur bacteria Endogenous respiration of cells with visible sulfur globules is higher, up to 30 orig. units

											differ; the species is capable of chemotro- phic growth in the dark	
Thiorhodovibrio winogradskyi (SSP1)	233. Thiorhodovibrio winogradskyi	Gammaproteobacteria: Chromatiales	$\begin{array}{ll} nmol & O_2 & (mg \\ protein)^{-1} min^{-1} \end{array}$	MIN	5.9	6.6	30	4.67		Overmann & Pfennig 1992	Respiration of cells without microscopi- cally visible sulfure globules at oxygen	Purple sulfur bacteria isolated from the littoral sediment of meromictic Maho- ney Lake (British Columbia, Canada)
											concentrations of 11- 67 μ M; respiration rates of phototrophi- cally (anaerobically) and chemotrophically (microaerobically) grown cells do not differ; the species is capable of chemotro-	Maximum respiration in the presence of substrate (H ₂ S) is 264 orig. units
											phic growth in the dark	
Pseudomonas buta- novora (ATCC 43655)	234.Unidentified bacterium	Gammaproteobacteria: Pseudomonadales	nmol O ₂ (mg protein) ⁻¹ min ⁻¹	MIN	10- 25	11	30	7.78	[0.6]	Vangnai et al. 2002 and personal communication with Dr. Luis A. Sayavedra-Soto (7 Nov 2006) [BM, creation rede, 0.6	Bacteria grown to the stationary phase (35- 40 hr); kept at 25 C for at least 1 hr to lower endogenous respira- tion	Classification made for the Pseudomo- nas genus as described at www.bacterio.cict.fr. There is no such species at www.bacterio.cict.fr; strain ATCC 43655 is an "unidentified bacterium"
										species, roas, 0.6- 0.8×1.1-2.4 μm]	With a cell suspension kept at room tem- perature, the cells would show less endogenous respiration as time passes, down to 1-5 nmol O_2 (mg pro-	
Unknown sp. (A-50)	235.Unknown	Unknown	$\begin{array}{ll} \mu l & O_2 & (16 & mg \\ DM)^{-1} & (30 \\ min)^{-1} \end{array}$	MIN	32	6.7	30	4.74		Trudinger 1967	Cells grown for 16 hr at 28 C; respiration measured for 30 min	"Where necessary to reduce endogenous respiration, the bacteria were shaken at 30 C for 1 to 2 hr"
												The organism was isolated from perco- lation units containing garden soil and elemental sulfur.
Unknown sp. (C-3)	236.Unknown	Unknown	$\begin{array}{l} \mu l O_2 (3.1 mg \\ DM)^{-1} (30 \\ min)^{-1} \end{array}$	MIN	28	30	30	21.21		Trudinger 1967	cells grown for 16 hr at 28 C; respiration measured for 30 min	"Where necessary to reduce endogenous respiration, the bacteria were shaken at 30 C for 1 to 2 hr"
												The organism was isolated from perco- lation units containing garden soil and elemental sulfur.
Achromobacter hartlebii (NCIB 8129)	237.Unnamed rhizobiaceae	Alphaproteobacteria: Rhizobiales		MIN	25	42	25	42.00		Bishop et al. 1962	Respiration measured immediately after harvesting the cells at	Max. resp. (in the presence of lactate) was 220 $\mu l~O_2~(mg~DM)^{-1}~hr^{-1}$

Vibrio parahaemo- lyticus (biotype alginolyticus 156- 70) Vibrio fischeri	238.Vibrio algino- lyticus 239.Vibrio fischeri	Gammaproteobacteria: "Vibrionales" Gammaproteobacteria:	$\mu l O_2 (mg DM)^{-1} hr^{-1}$ $n \text{ atoms } O (mg DM)^{-1} mir^{-1}$	MIN	2 20	3.3 22	30 20	2.33 31.11	[0.6]	Jurtshuk & McQuitty 1976[BM9, genus, rods 0.5-08×1.4- 2.6 µm] Droniuk et al.	the end of the loga- rithmic growth phase Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration) Respiration at 100 mM	Marine bacterium
(MAC 401)		v ibrionales	DM) min							Baumann 1971, Fig. 16, 0.7×1.5 µm]	INA	
Vibrio (metschnik- ovii) cholerae bio- type proteus (ATCC 7708)	240.Vibrio metsch- nikovii	Gammaproteobacteria: "Vibrionales"	$\begin{array}{c} \mu l & O_2 & (mg \\ DM)^{-l} \ hr^{-l} \end{array}$	MIN	2	3.3	30	2.33	[0.6]	Jurtshuk & McQuitty 1976[BM9, genus, rods 0.5-08×1.4- 2.6 μm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration); respiration 1 orig. unit both studied strains, FC1011 and SAK3	
Vibrio parahaemo- lyticus (FC1011, SAK3)	241.Vibrio para- haemolyticus	Gammaproteobacteria: "Vibrionales"	$\mu l O_2$ (mg DM) ⁻¹ hr ⁻¹	MIN	1	1.7	30	1.20	[0.6]	Jurtshuk & McQuitty 1976 [BM9, genus, rods 0.5-08×1.4-2.6 µm]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration); respiration 1 orig. unit both studied strains, FC1011 and SAK3	
Vibrio sp. (Ant-300)	242.Vibrio sp.	Gammaproteobacteria: "Vibrionales"	% cellular car- bon hr ⁻¹	MIN	0.00 71	0.11	5	0.44	0.14	Novitsky & Mo- rita 1977 [Novit- sky & Morita 1976, Figs. 3b,c, cells starved for several weeks, cocci, diam 0.6- 0.7μ m; unstarved cells, rods, 1×2-4 μ m = 2 μ m ³]	Stable respiration of cells starved for sev- eral weaks; viability 50-100% judged by plate counts; during the first week of star- vation, respiration is reduced by over 99%	Cell size estimated from linear dimen- sions of starved cells as shown in Fig. 3b of Novitsky & Morita 1976 During starvation, cells first increase in numbers at the expense of internal ge- netic material (nuclear bodies); as testi- fied by Amy and Morita 1983 for 16 other marine bacterial isolates, this property of Ant-300 is not unique
Vitreoscilla sterco- raria (ATCC 15218)	243.Vitreoscilla stercoraria	Betaproteobacteria: Neisseriales	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-l} \ hr^{-l} \end{array}$	MIN	21	35	30	24.75		Jurtshuk & McQuitty 1976 [BM9, genus, filaments 1-3 µm diam]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Xanthomonas phaseoli (ATCC 9563)	244.Xanthomonas axonopodis	Gammaproteobacteria: Xanthomonadales	$\begin{array}{ll} \mu l & O_2 & (mg \\ DM)^{-l} \ hr^{-l} \end{array}$	MIN	22	37	30	26.16	[0.25]	Jurtshuk & McQuitty 1976 [BM9, genus, rods 0.4-0.7×0.7-1.8 um]	Cells harvested at the late-logarithmic growth phase (two thirds of the maximal growth concentration)	
Pasteurella pestis (virulent Alexander strain)	245.Yersinia pestis	Gammaproteobacteria: Enterobacteriales	$\begin{array}{l} \mu l \ O_2 \ (mg \ N)^{-l} \\ hr^{-l} \end{array}$	MIN	29	4.8	28	3.90	[0.55]	Wessman & Miller 1966 [Kowalski et al.	Cells (virulent Alex- ander strain) harvested after 24 to 30 hr	Respiration decreased by approx. 1.5- fold during the first 1-2 hr of starvation and then stabilized for 72 hr

1	999,	0.5-1×1-2	growth; stable respira-
u de la construcción de la constru	um]		tion after 1.5 hr of
	1		starvation

Notes on additional data not included into Table **S1a**:

1) Listeria monocytogenes (Friedman & Alm 1962) resting cells from cultures grown for 16 hr had no measurable endogenous respiration. The lowest reported values were 17.7 and 8.1 μ l O₂ (mg N)⁻¹ hr⁻¹ for growth in the presence of pyruvate. The same result was obtained by Welch et al. 1979.

2) Data needing verification (can be unrealistic): Gaudy et al. 1963, E.coli 500 mg DM/l consumed 10 mg O₂ in 7 hr (Fig. 3) = 0.003 W/kg at 25 C.

3) Goldshmidt & Wiss 1966: "Since the high endogenous respiration of 24-hr Azotobacter cultures can be reduced markedly by aerating in saline, washed vegetative cells were shaken for 4 hr before exposure to the EDTA-Tris system."

4) Neisseria meningitidis (Yu & deVoe 1980): washed whole cells were devoid of detectable endogenous respiration; Mallavia & Weiss 1970 obtained the same result (typical rates in the presence of substrates were about 5 μ mol O₂ (mg protein) hr⁻¹ = 93 W/kg)

5) Data needing verification (can be unrealistic): Mårdén et al. 1985 studied the decline of endogenous respiration of marine bacteria during several days' starvation and observed values of the order of 0.5×10^{-10} mg O₂ (μ m³)⁻¹ hr⁻¹ ~ 200 W/kg. Since this value is in the upper range of respiration values in the presences of substrates (!) (Makarieva et al. 2005), there should be some error in the reported respiration units. Moreover, in the inlet to Fig. 2 showing respiration rate per biosurface the units are again similar (μ m⁻³) instead of (μ m⁻²) again indicating an inconsistency. Finally, Morton et al. 1994 characterize these rates as "low but detectable", which could hardly be plausible if they were indeed in the vicinity of several hundred W/kg. In the related work by Kjelleberg et al. 1982 it is stated that after five days of starvation a marine *Vibrio* respired at a rate of not less than 9 ng atoms O₂ (10⁹ viable cells)⁻¹ min⁻¹ and cell volume was 0.4 μ m³. This gives a mass-specific rate of 90 W/kg. Even taking a conservative estimate of energy content of the living matter of 4×10⁶ J/kg, we conclude that the bacterium should have eaten itself about ten times in five days, had it possessed such a high respiration rate. The data of Mårdén et al. 1985 and Kjelleberg et al. 1982 were not included into the present analysis.

6) Acidophilic bacterium PW2 (Goulbourne et al. 1986) starved at pH 3 or 4 progressively lost both respiration and viability, with no stabilization. In the presence of Mg⁺ ions halflife of cells was 72 hr and respiration dropped from 84 nmol O₂ (mg protein)⁻¹ min⁻¹ = 94 W/kg to virtually zero.

7) Data needing verification (can be unrealistic): Azospirillum brasiliense Sp7 and Azospirillum lipoferum Sp59b respired endogeneously at 0.73 and 0.98 μ mol O₂ (mg protein)⁻¹ min⁻¹, respectively (820 and 1100 W/kg) (Martinez-Drets et al. 1984)

References to Table S1a:

- Abu-Amero K.K., Halablab M.A., Miles R.J. (1996) Nisin resistance distinguishes *Mycoplasma* spp. from *Acholeplasma* spp. and provides a basis for selective growth media. Applied and Environmental Microbiology 62: 3107-3111.
- Adriaens P., Focht D.D. (1991) Cometabolism of 3,4-dichlorobenzoate by *Acinetobacter* sp. strain 4-CB1. Applied and Environmental Microbiology 57: 173-179.
- Adriaens P., Kohler H.P., Kohler-Staub D., Focht D.D. (1989) Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4'dichlorobiphenyl. Applied and Environmental Microbiology 55: 887-892.
- Allen R.D., Baumann P. (1971) Structure and arrangement of flagella in species of the genus *Beneckea* and *Photobacterium fischeri*. Journal of Bacteriology 107: 295-302.

Altekar W.W., Rao M.R. (1963) Microbiological dissimilation of tricarballylate and trans-aconitate. Journal of Bacteriology 85: 604-613.

- Amy P.S., Morita R.Y. (1983) Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Applied and Environmental Microbiology 45: 1109-1115.
- Bauer S., Tholen A., Overmann J., Brune A. (2000) Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques. Archives of Microbiology 173: 126-137.

Baumann P., Baumann L., Mandel M. (1971) Taxonomy of marine bacteria: the genus Beneckea. Journal of Bacteriology 107: 268-294.

- Baumann P., Doudoroff M., Stanier R.Y. (1968) Study of the *Moraxella* Group. I. Genus *Moraxella* and the *Neisseria catarrhalis* group. Journal of Bacteriology 95: 58-73.
- Berg I.A., Filatova L.V., Ivanovsky R.N. (2002) Inhibition of acetate and propionate assimilation by itaconate via propionyl-CoA carboxylase in isocitrate lyase-negative purple bacterium Rhodospirillum rubrum. FEMS Microbiology Letters 216: 49-54.
- Biberstein E.L., Spencer P.D. (1962) Oxidative metabolism of *Haemophilus* species grown at different levels of hemin supplementation. Journal of Bacteriology 84: 916-920.
- Bishop D.H., Pandya K.P., King H.K. (1962) Ubiquinone and vitamin K in bacteria. Biochemical Journal 83: 606-614.
- Bisset K.A. (1953) Do bacteria have mitotic spindles, fusion tubes and mitochondria? Journal of General Microbiology 8: 50-57.
- Blizzard J.L., Peterson G.E. (1963) Selective inhibition of proline-induced pigmentation in washed cells of *Serratia marcescens*. Journal of Bacteriology 85: 1136-1140.
- Bluhm L., Ordal Z.J. (1969) Effect of sublethal heat on the metabolic activity of *Staphylococcus aureus*. Journal of Bacteriology 97: 140-150.
- Bohach G.A., Snyder I.S. (1983) Cyanobacterial stimulation of growth and oxygen uptake by *Legionella pneumophila*. Applied and Environmental Microbiology 46: 528-531.
- Bohin J.P., Rigomier D., Schaeffer P. (1976) Ethanol sensitivity of sporulation in *Bacillus subtilis*: a new tool for the analysis of the sporulation process. Journal of Bacteriology 127: 934-940.
- Bongers L. (1970) Energy generation and utilization in hydrogen bacteria. Journal of Bacteriology 104: 145-151.
- Boylen C.W. (1973) Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation. Journal of Bacteriology 113: 33-37.
- Boylen C.W., Ensign J.C. (1970) Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of *Ar-throbacter crystallopoietes*. Journal of Bacteriology 103: 578-587.
- Breznak J.A., Potrikus C.J., Pfennig N., Ensign J.C. (1978) Viability and endogenous substrates used during starvation survival of *Rhodospirillum rubrum*. Journal of Bacteriology 134: 381-388.
- Bruheim P., Bredholt H., Eimhjellen K. (1999) Effects of surfactant mixtures, including Corexit 9527, on bacterial oxidation of acetate and alkanes in crude oil. Applied and Environmental Microbiology 65: 1658-1661.
- Bryan-Jones D.G., Whittenbury R. (1969) Haematin-dependent oxidative phosphorylation in *Streptococcus faecalis*. Journal of General Microbiology 58: 247-260.
- Burleigh I.G., Dawes E.A. (1967) Studies on the endogenous metabolism and senescence of starved *Sarcina lutea*. Biochemical Journal 102: 236-250.
- Buswell J.A. (1975) Metabolism of phenol and cresols by Bacillus stearothermophilus. Journal of Bacteriology 124: 1077-1083.
- Cain R.B., Tranter E.K., Darrah J.A. (1968) The utilization of some halogenated aromatic acids by *Nocardia*. Oxidation and metabolism. Journal of Bacteriology 106: 211-227.
- Cartwright N.J., Cain R.B. Bacterial degradation of the nitrobenzoic acids. Biochemical Journal 71: 248-261.
- Chakrabarty A.M., Roy S.C. (1964) Nature of endogenous reserve material in a strain of *Pseudomonas fluorescens-putida* intermediate. Biochemical Journal 92: 105-112.

- Chapman P.J., Ribbons D.W. (1976) Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in *Pseudomonas putida*. Journal of Bacteriology 125: 985-998.
- Chester B., Cooper L.H. (1979) Achromobacter species (CDC group Vd): morphological and biochemical characterization. Journal of Clinical Microbiology 9: 425-436.
- Cho H.W., Eagon R.G. (1967) Factors affecting the pathways of glucose catabolism and the tricarboxylic acid cycle in *Pseudomonas natriegens*. Journal of Bacteriology 93: 866-873.
- Church B.D., Halvorson H. (1957) Intermediate metabolism of aerobic spores: I. Activation of glucose oxidation in spores of *Bacillus cereus* var *terminalis*. Journal of Bacteriology 73: 470-476.
- Clifton C.E., Cherry J. (1966) Influence of glutamic acid on the endogenous respiration of Bacillus subtilis. Journal of Bacteriology 91: 546-550.
- Conn H.J., Dimmick I.J. (1947) Soil bacteria similar in morphology to *Mycobacterium* and *Corynebacterium*. Journal of Bacteriology 54: 291-303.
- Luscombe B.M., Gray T.R.G. (1974) Characteristics of Arthrobacter grown in continuous culture. Journal of General Microbiology 82: 213-222.
- Cooper R.A., Itiaba K., Kornberg H.L. (1965) The utilization of aconate and itaconate by *Micrococcus* sp. Biochemical Journal 94: 25-31.
- Cooper R.A., Kornberg H.L. (1964) The utilization of itaconate by *Pseudomonas* sp. Biochemical Journal 91: 82-91.
- Coulter C., Hamilton J.T., McRoberts W.C., Kulakov L., Larkin M.J., Harper D.B. (1999) Halomethane:bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon source. Applied and Environmental Microbiology 65: 4301-4312.
- Crawford I.P. (1954) A new fermentative pseudomonad, *Pseudomonas formicans*, n. sp. Journal of Bacteriology 68: 734-738.
- Crook P.G. (1952) The effect of heat and glucose on endogenous endospore respiration utilizing a modified Scholander microrespirometer. Journal of Bacteriology 63: 193-198.
- Dagley S., Gibson D.T. (1965) The bacterial degradation of catechol. Biochemical Journal 95: 466-474.
- Davis M.S., Bateman J.B. (1960) Relative humidity and the killing of bacteria II. Selective changes in oxidative activity associated with death. Journal of Bacteriology 80: 580-584.
- Dawes E.A., Holms W.H. (1958) Metabolism of *Sarcina lutea* I. Carbohydrate oxidation and terminal respiration. Journal of Bacteriology 75: 390-399.
- Dawes E.A., Ribbons D.W. (1965) Studies on the endogenous metabolism of *Escherichia coli*. Biochemical Journal 95: 332-343.
- Dawson M.J., Jones C.W. (1981) Respiration-linked proton translocation in the obligate methylotroph *Methylophilus methylotrophus*. Journal of Biochemical Journal 194: 915-924.
- De Ley J., Schell J. (1959) Oxidation of several substrates by Acetobacter aceti. Journal of Bacteriology 77: 445-451.
- Decker S.J., Lang D.R. (1977) *Bacillus megaterium* mutant deficient in membrane-bound adenosine triphosphatase activity. Journal of Bacteriology 131: 98-104.
- Devi N.A., Kutty R.K., Vasantharajan V.N., Rao P.V.S. (1975) Microbial metabolism of phenolic amines: Degradation of *dl*-synephrine by an unidentified arthrobacter. Journal of Bacteriology 122: 866-873.
- Dietrich S.M., Burris R.H. (1967) Effect of exogenous substrates on the endogenous respiration of bacteria. Journal of Bacteriology 93: 1467-1470.

Donnelly M.I., Chapman P.J., Dagley S. (1981) Bacterial degradation of 3,4,5-trimethoxyphenylacetic and 3-ketoglutaric acids. Journal of Bacteriology 147: 477-481.

Donnelly M.I., Dagley S. (1980) Production of methanol from aromatic acids by *Pseudomonas putida*. Journal of Bacteriology 142: 916-924.

Doudoroff M., Palleroni N.J., MacGee J., Ohara M. (1956) Metabolism of carbohydrates by *Pseudomonas saccharophila* I. Oxidation of fructose by intact cells and crude cell-free preparations. Journal of Bacteriology 71: 196-201.

- Droniuk R., Wong P.T., Wisse G., MacLeod R.A. (1987) Variation in quantitative requirements for Na⁺ for transport of metabolizable compounds by the marine bacteria *Alteromonas haloplanktis* 214 and *Vibrio fischeri*. Applied and Environmental Microbiology 53: 1487-1495.
- Dworkin M., Niederpruem D.J. (1964) Electron transport system in vegetative cells and microcysts of *Myxococcus xanthus*. Journal of Bacteriology 87: 316-322.
- Eagon R.G. (1962) *Pseudomonas natriegens*, a marine bacterium with a generation time of less than 10 minutes. Journal of Bacteriology 83: 736-737.
- Eisenberg R.C., Butters S.J., Quay S.C., Friedman S.B. (1974) Glucose uptake and phosphorylation in *Pseudomonas fluorescens*. Journal of Bacteriology 120: 147-153.
- Engelhard W.E., Uyeno S., Pivnick H. (1957) Some modifications of mycobacteria effected with trypsin. Journal of Bacteriology 73: 206-210.
- Ensign J.C. (1970) Long-term starvation survival of rod and spherical cells of *Arthrobacter crystallopoietes*. Journal of Bacteriology 103: 569-577.
- Erlandson A.L. Jr., Ruhl R.F. (1956) Oxidative dissimilation of amino acids and related compounds by *Shigella flexneri*. Journal of Bacteriology 72: 708-712.
- Euzéby J.P. (1997) List of bacterial names with standing in nomenclature: a folder available on the Internet. International Journal of Systematic Bacteriology (List of prokaryotic names with standing in nomenclature. Last full update November 03, 2006. URL: http://www.bacterio.net).

Faulkner G., Garduño R.A. (2002) Ultrastructural analysis of differentiation in Legionella pneumophila. Journal of Bacteriology 184: 7025-7041.

Feofilova E.P., Lebedeva N.E., Taptykova S.D., Kirillova N.F. (1966) Study on respiration of pigmented and leuco-variants of *Actinomyces longispo*roruber. Mikrobiologija 35: 651-659.

Forbes M., Kuck N.A., Peets E.A. (1962) Mode of action of ethambutol. Journal of Bacteriology 84: 1099-1103.

- Frederick J.J., Corner T.R., Gerhardt P. (1974) Antimicrobial actions of hexachlorophene: inhibition of respiration in *Bacillus megaterium*. Antimicrobial Agents and Chemotherapy 6: 712-721.
- Friedberg D., Friedberg I. (1976) Membrane-associated, energy-linked reactions in *Bdellovibrio bacteriovorus*. Journal of Bacteriology 127: 1382-1388.
- Friedman M.E., Alm W.L. (1962) Effect of glucose concentration in the growth medium on some metabolic activities of *Listeria monocytogenes*. Journal of Bacteriology 84: 375-376.
- Frustaci J.M., Sangwan I., O'Brian M.R. (1991) Aerobic growth and respiration of a δ-aminolevulinic acid synthase (*hemA*) mutant of *Bradyrhizo-bium japonicum*. Journal of Bacteriology 173: 1145-1150.
- Fu Y., O'Kelly C., Sieracki M., Distel D.L. (2003) Protistan grazing analysis by flow cytometry using prey labeled by in vivo expression of fluorescent proteins. Applied and Environmental Microbiology 69: 6848-6855.

Gary N.D., Bard R.C. (1952) Effect of nutrition on the growth and metabolism of Bacillus subtilis. Journal of Bacteriology 64: 501-512.

- Gaudy A.F. Jr., Gaudy E.T., Komolrit K. (1963) Multicomponent substrate utilization by natural populations and a pure culture of *Escherichia coli*. Applied Microbiology 11: 157-162.
- Gerhardt P., Levine H.B., Wilson J.B. (1950) The oxidative dissimilation of amino acids and related compounds by Brucella abortus. Journal of Bacteriology 60: 459-467.
- Gilmour C.M., Butterworth E.M., Noble E.P., Wang C.H. (1955) Studies on the biochemistry of the streptomyces I. Terminal oxidative metabolism in *Streptomyces griseus*. Journal of Bacteriology 69: 719-724.
- Goldschmidt M.C., Wyss O. (1966) Chelation effects on Azotobacter cells and cysts. Journal of Bacteriology 91: 120-124.
- Goulbourne E. Jr., Matin M., Zychlinsky E., Matin A. (1986) Mechanism of ∆pH maintenance in active and inactive cells of an obligately acidophilic bacterium. Journal of Bacteriology 166: 59-65.
- Gray C.T. (1952) The respiratory metabolism of murine leprosy bacilli. Journal of Bacteriology 64: 305-313.
- Greisen E.C., Gunsalus I.C. (1944) An alcohol oxidation system in streptococci which functions without hydrogen peroxide accumulation. Journal of Bacteriology 48: 515-525.
- Gronlund A.F., Campbell J.J. (1961) Nitrogenous compounds as substrates for endogenous respiration in microorganisms. Journal of Bacteriology 81: 721-724.
- Gronlund A.F., Campbell J.J. (1963) Nitrogenous substrates of endogenous respiration in *Pseudomonas aeruginosa*. Journal of Bacteriology 86: 58-66.
- Gronlund A.F., Campbell J.J. (1966) Influence of exogenous substrates on the endogenous respiration of *Pseudomonas aeruginosa*. Journal of Bacteriology 91: 1577-1581.
- Groupé V., Pugh L.H., Levine A.S., Herrmann E.C. Jr. (1954) Suppression of certain viral lesions by a microbial product, xerosin, lacking in demonstrable antiviral properties and produced by *Achromobacter xerosis*, n. sp. Journal of Bacteriology 68: 10-18.
- Gunter S.E., Kohn H.I. (1956) Effect of X-rays on the survival of bacteria and yeast II. Relation of cell concentration and endogenous respiration to sensitivity. Journal of Bacteriology 72: 422-428.
- Gunter S.E., Kohn H.I. (1956) Effect of X-rays on the survival of bacteria and yeast II. Relation of cell concentration and endogenous respiration to sensitivity. Journal of Bacteriology 72: 422-428.
- Hareland W.A., Crawford R.L., Chapman P.J., Dagley S. (1975) Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from *Pseudomonas acidovorans*. Journal of Bacteriology 121: 272-285.
- Harper D.B. (1977) Microbial metabolism of aromatic nitriles. Enzymology of C-N cleavage by *Nocardia* sp. (*Rhodochrous* group) N.C.I.B. 11216. Biochemical Journal 165: 309-319.
- Hayase N., Yano H., Kudoh E., Tsutsumi C., Ushio K., Miyahara Y., Tanaka S., Katsuhiko N. (2004) Isolation and characterization of poly(butylene succinate-*co*-butylene adipate)-degrading microorganism. Journal of Bioscience and Bioengineering 97: 131-133.
- Hespell R.B., Rosson R.A., Thomashow M.F., Rittenberg S.C. (1973) Respiration of Bdellovibrio bacteriovorus strain 109J and its energy substrates for intraperiplasmic growth. Journal of Bacteriology 113: 1280-1288.
- Hoffee P., Englesberg E. (1962) Effect of metabolic activity of the glucose permease of bacterial cells. Proceedings of the National Academy of Sciences USA 48: 1759-1765.

Hollocher T.C., Kumar S., Nicholas D.J. (1982) Respiration-dependent proton translocation in *Nitrosomonas europaea* and its apparent absence in *Nitrobacter agilis* during inorganic oxidations. Journal of Bacteriology 149: 1013-1020.

Holt J.G. (ed.) (1984, 1986, 1989) Bergey's Manual of Systematic Bacteriology, Vols. 1-4. Williams & Wilkins, Baltimore.

- Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T., Williams S.T. (eds.) (1994) Bergey's Manual of Determinative Bacteriology, Ninth Edition. Williams & Wilkins, Baltimore.
- Hou C.I., Gronlund A.F., Campbell J.J. (1966) Influence of phosphate starvation on cultures of *Pseudomonas aeruginosa*. Journal of Bacteriology 92: 851-855.
- Huang C.-Y., Garcia J.-L., Patel B.K.C., Cayol J.-L., Baresi L., Mah R.A. (2000) Salinivibrio costicola subsp. vallismortis subsp. nov., a halotolerant facultative anaerobe from Death Valley, and emended description of Salinivibrio costicola. International Journal of Systematic and Evolutionary Microbiology 50: 615-622
- Huber T.W., Schuhardt V.T. (1970) Lysostaphin-induced, osmotically fragile Staphylococcus aureus cells. Journal of Bacteriology 103: 116-119.

Hughes D.E. (1965) The metabolism of halogen-substituted benzoic acids by Pseudomonas fluorescens. Biochemical Journal 96: 181-188.

Hulcher F.H., King K.W. (1958a) Metabolic basis for disaccharide preference in a Cellvibrio. Journal of Bacteriology 76: 571-577.

Hulcher F.H., King K.W. (1958b) Disaccharide preference of an aerobic cellulolytic bacterium, *Cellvibrio gilvus* n. sp. Journal of Bacteriology 76: 565-570.

Hunter G.J. (1953) The oxidation of glycerol by mycobacteria. Biochemical Journal 55: 320-328.

- Ingram M. (1940) The endogenous respiration of *Bacillus cereus*: III. The changes in the rate of respiration caused by sodium chloride, in relation to hydrogen-ion concentration. Journal of Bacteriology 40: 683-694.
- Isenberg H.D., Schatz A., Angrist A.A., Schatz V., Trelawny G.S. (1954) Microbial metabolism of carbamates II.Nitrification of urethan by *Strepto-myces nitrificans*. Journal of Bacteriology 68: 5-9.
- Jacobs N.J., Conti S.F. (1965) Effect of hemin on the formation of the cytochrome system of anaerobically grown *Staphylococcus epidermidis*. Journal of Bacteriology 89: 675-679.

Jacoby GA. (1964) The induction and repression of amino acid oxidation in *Pseudomonas fluorescens*. Biochemical Journal 92: 1-8.

- Jenkins O., Byrom D., Jones D. (1987) *Methylophilus*: a new genus of methanol-utilizing bacteria. International Journal of Systematic Bacteriology 37: 446-448.
- Jigami Y., Kawasaki Y., Omori T., Minoda Y. (1979) Coexistence of different pathways in the metabolism of *n*-propylbenzene by *Pseudomonas* sp. Applied and Environmental Microbiology 38: 783-788.
- Johnson E.J., Sobek J.M., Clifton C.E. (1958) Oxidative assimilation by Azotobacter agilis. Journal of Bacteriology 76: 658-661.
- Jones A., Turner J.M. (1979) Microbial metabolism of amino alcohols. 1-Aminopropan-2-ol and ethanolamine metabolism via propionaldehyde and acetaldehyde in a species of *Pseudomonas*. Biochemical Journal 134: 167-182.
- Jurtshuk P. Jr., Marcucci O.M., McQuitty D.N. (1975) Tetramethyl-p-phenylenediamine oxidase reaction in *Azotobacter vinelandii*. Applied Microbiology 30: 951-958.
- Jurtshuk P. Jr., McQuitty D.N. (1976) Use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria. Applied and Environmental Microbiology 31: 668-679.

- Kahn M.E., Gromkova R. (1981) Occurrence of pili on and adhesive properties of *Haemophilus parainfluenzae*. Journal of Bacteriology 145: 1075-1078.
- Kanso S., Greene A.C., Patel B.K.C. (2002) *Bacillus subterraneus* sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. International Journal of Systematic and Evolutionary Microbiology 52: 869-874.
- Keevil C.W., Anthony C. (1979) Effect of growth conditions on the involvement of cytochrome c in electron transport, proton translocation and ATP synthesis in the facultative methylotroph *Pseudomonas* AM1. Biochemical Journal 182: 71-79.
- Kelly D.P., Wood A.P. (2000) Reclassification of some species of *Thiobacillus* to the newly designated genera *Acidithiobacillus* gen. nov., *Halothiobacillus* gen. nov. and *Thermithiobacillus* gen. nov. International Journal of Systematic and Evolutionary Microbiology 50: 511-516.
- Kenimer E.A., Lapp D.F. (1978) Effects of elected inhibitors on electron transport in *Neisseria gonorrhoeae*. Journal of Bacteriology 134: 537-545.
 Kjelleberg S. Humphrey B.A. Marshall K.C. (1982) Effect of interfaces on small, starved marine bacteria. Applied and Environmental Microbiology 43: 1166-1172.
- Kornberg H.L. (1958) The metabolism of C₂ compounds in micro-organisms. 1. The incorporation of 2-¹⁴Cacetate by *Pseudomonas fluorescens*, and by a *Corynebacterium*, grown on ammonium acetate. Biochemical Journal 68: 535-542.
- Kornberg H.L., Gotto A.M. (1961) The metabolism of C₂ compounds in micro-organisms. 6. Synthesis of cell constituents from glycollate by *Pseudomonas* sp. Biochemical Journal 78: 69-82.
- Kornberg H.L., Morris J.G. (1965) The utilization of glycollate by *Micrococcus denitrificans*: the β-hydroxyaspartate pathway. Biochemical Journal 95: 577-586.
- Kowalski W., Bahnfleth W., Whittam T. (1999) Filtration of airborne microorganisms: modeling and prediction. ASHRAE Transactions 105: 4-17. Kratz W.A., Myers J. (1955) Photosynthesis and respiration of three blue-green algae. Plant Physiology 30: 275-280.
- Krieg R. (1976) Biology of the chemoheterotrophic spirilla. Bacteriological Reviews 40: 55-115.
- Krzemiński Z., Mikucki J., Szarapińska-Kwaszewska J. (1972) Endogenous metabolism of *Staphylococcus aureus*. Folia Microbiologica 17: 46-54. Kubitschek H.E. (1969) Growth during the bacterial cell cycle: analysis of cell size distribution. Biophysical Journal 9: 792-809.
- Kumazawa S., Izawa S., Mitsui A. (1983) Proton efflux coupled to dark H2 oxidation in whole cells of a marine sulfur photosynthetic bacterium (*Chromatium* sp. strain Miami PBS1071). Journal of Bacteriology 154: 185-191.
- Kunz D.A., Chapman P.J. (1981) Catabolism of pseudocumene and 3-ethyltoluene by *Pseudomonas putida* (*arvilla*) mt-2: evidence for new functions of the TOL (pWWO) plasmid. Journal of Bacteriology 146: 179-191.
- Kushner D.J., Hamaide F., MacLeod R.A. (1983) Development of salt-resistant active transport in a moderately halophilic bacterium. Journal of Bacteriology 153: 1163-1171.
- Lawford H.G., Haddock B.A. (1973) Respiration-driven proton translocation in *Escherichia coli*. Biochemical Journal 136: 217-220.
- Lee M., Chandler A.C. (1941) A study of the nature, growth and control of bacteria in cutting compounds. Journal of Bacteriology 41: 373-386.
- Levine S., Krampitz L.O. (1952) The oxidation of acetone by a soil diphtheroid. Journal of Bacteriology 64: 645-650.
- Lindmark D.G., Jarroll E.L., Timoney P.J., Shin S.J. (1982) Energy metabolism of the contagious equine metritis bacterium. Infection and Immunity 36: 531-534.
- Loh W.H.-T. (1984) Intermediary carbon metabolism of Azospirillum braziliense. Journal of Bacteriology 158: 264-268.

London J., Rittenberg S.C. (1966) Effects of organic matter on the growth of *Thiobacillus intermedius*. Journal of Bacteriology 91: 1062-1069.

Lontoh S., DiSpirito A.A., Semrau J.D. (1999) Dichloromethane and trichloroethylene inhibition of methane oxidation by the membrane-associated methane monooxygenase of *Methylosinus trichosporium* OB3b. Archives of Microbiology 171: 301-308.

Maitra P.K., Roy S.C. (1961) Tricarboxylic acid-cycle activity in *Streptomyces olivaceus*. Biochemical Journal 79: 446-456.

Majtán V., Majtánová Ľ. (1999) The effect of new disinfectant substances on the metabolism of *Enterobacter cloacae*. International Journal of Antimicrobial Agents 11: 59-64.

Majtán V., Majtánová Ľ., Hoštacká A., Hybenová D., Mlynarčik D. (1995) Effect of quaternary ammonium salts and amine oxides on *Pseudomonas* aeruginosa. Microbios 84: 41-51.

Makarieva A.M., Gorshkov V.G., Li B.-L. (2005) Energetics of the smallest: Do bacteria breathe at the same rate as whales? Proceedings of the Royal Society of London, Biological Series 272: 2219-2224.

Mallavia L.P., Weiss E. (1970) Catabolic activities of Neisseria meningitidis: Utilization of glutamate. Journal of Bacteriology 101: 127-132.

Mårdén P., Tunlid A., Malmcrona-Friberg K., Odham G., Kjelleberg S. (1985) Physiological and morphological changes during short term starvation of marine bacterial isolates. Archives of Microbiology 142: 326-332.

Marquis R.E. (1965) Nature of the bactericidal action of antimycin A for *Bacillus megaterium*. Journal of Bacteriology 89: 1453-1459.

- Martinez-Drets G., Del Gallo M., Burpee C., Burris R.H. (1984) Catabolism of carbohydrates and organic acids and expression of nitrogenase by Azospirilla. Journal of Bacteriology 159: 80-85.
- Mas J., Pedrós-Alió C., Guerrero R. (1985) Mathematical model for determining the effects of intracytoplasmic inclusions on volume and density of microorganisms. Journal of Bacteriology 164: 749-756.
- Mathews M.M., Sistrom W.R. (1959) Intracellular location of carotenoid pigments and some respiratory enzymes in Sarcina lutea. Journal of Bacteriology 78: 778-787.

McVittie A., Messik F., Zahler S.A. (1962) Developmental biology of *Myxococcus*. Journal of Bacteriology 84: 546-551.

- Meagher R.B., McCorkle G.M., Ornston M.K., Ornston L.N. (1972) Inducible uptake system for β-carboxy-*cis*, *cis*-muconate in a permeability mutant of *Pseudomonas putida*. Journal of Bacteriology 111: 465-473.
- Mescher M.F., Strominger J.L. (1976) Structural (shape-maintaining) role of the cell surface glycoprotein of *Halobacterium salinarium*. Proceedings of the National Academy of Sciences of the United States of America 73: 2687-2691.

Mickelson M.N. (1967) Aerobic metabolism of Streptococcus agalactiae. Journal of Bacteriology 94: 184-191.

Midwinter G.G., Batt R.D. (1960) Endogenous respiration and oxidative assimilation in Nocardia corallina. Journal of Bacteriology 79: 9-17.

Minami K. (1957) Bactericidal action of oleic acid for tubercle bacilli: I. Quantitative and analytical survey of the action. Journal of Bacteriology 73: 338-344.

Jayasuriya G.C.N. (1956) The oxidative properties of an oxalate-decomposing organism, *Pseudomonas* OD1, with particular reference to the synthesis of citrate from glycollate. Biochemical Journal 64: 469-477.

Mitruka B.M., Costilow R.N., Black S.H., Pepper R.E. (1967) Comparisons of cells, refractile bodies, and spores of *Bacillus popilliae*. Journal of Bacteriology 94: 759-765.

- Montesinos E., Esteve I., Guerrero R. (1983) Comparison between direct methods for determination of microbial cell volume: electron microscopy and electronic particle sizing. Applied and Environmental Microbiology 45: 1651-1658.
- Morawski B., Eaton R.W., Rossiter J.T., Guoping S., Griengl H., Ribbons D.W. (1997) 25: 2-Naphthoate catabolic pathway in *Burkholderia* strain JT 1500. Journal of Bacteriology 179: 115-121.
- Mori T., Miyata Y., Kohsaka K., Makino M. (1985) Respiration in *Mycobacterium leprae*. International Journal of Leprosy 53: 600-609.
- Morton D.S., Oliver J.D. (1994) Induction of carbon starvation-induced proteins in *Vibrio vulnificus*. Applied and Environmental Microbiology 60: 3653-3659.
- Nagata T. (1986) Carbon and nitrogen content of natural planktonic bacteria. Applied and Environmental Microbiology 52: 28-32.
- Nickerson W.J., Sherman F.G. (1952) Metabolic aspects of bacterial growth in the absence of cell division II. Respiration of normal and filamentous cells of *Bacillus cerrus*. Journal of Bacteriology 64: 667-678.
- Niederpruem D.J., Hackett D.P. (1961) Respiratory chain of Streptomyces. Journal of Bacteriology 81: 557-563.
- Novitsky J.A., Morita R.Y. (1976) Morphological characterization of small cells resulting from nutrient starvation of a pyschrophilic marine vibrio. Applied and Environmental Microbiology 32: 617-622.
- Novitsky J.A., Morita R.Y. (1977) Survival of a psychrophilic marine vibrio under long-term nutrient starvation. Applied and Environmental Microbiology 33: 635-641.
- O'Keeffe D.T., Anthony C. (1978) The microbial metabolism of C₁ compounds. The stoicheiometry of respiration-driven proton translocation in *Pseudomonas* AM1 and in a mutant lacking cytochrome *c*. Biochemical Journal 170: 561-567.
- Ougham H.J., Trudgill P.W. (1982) Metabolism of cyclohexaneacetic acid and cyclohexanebutyric acid by *Arthrobacter* sp. strain CA1. Journal of Bacteriology 150: 1172-1182.
- Overmann J., Pfennig N. (1992) Continuous chemotrophic growth and respiration of Chromatiaceae species at low oxygen concentrations. Archives of Microbiology 158: 59-67.
- Packer L., Vishniac W. (1955) Chemosynthetic fixation of carbon dioxide and characteristics of hydrogenase in resting cell suspensions of *Hydrogenomonas ruhlandii* nov. spec. Journal of Bacteriology 70: 216-223.
- Palese L.L., Gaballo A., Technikova-Dobrova Z., Labonia N., Abbrescia A., Scacco S., Micelli L., Papa S. (2003) Characterization of plasma membrane respiratory chain and ATPase in the actinomycete *Nonomuraea* sp. ATCC 39727. FEMS Microbiology Letters 228: 233-239.
 Yu E.K., DeVoe I.W. (1980) Terminal branching of the respiratory electron transport chain in *Neisseria meningitidis*. Journal of Bacteriology 142: 879-887.
- Pan P.H.C. (1971) Lack of distinction between Nitrobacter agilis and Nitrobacter winogradskyi. Journal of Bacteriology 108: 1416-1418.
- Peel D., Quayle J.R. (1961) Microbial growth on C1 compounds. 1. Isolation and characterization of *Pseudomonas* AM1. Biochemical Journal 81: 465-469.
- Pepper R.E., Costilow R.N. (1964) Glucose catabolism by Bacillus popilliae and Bacillus lentimorbus. Journal of Bacteriology 87: 303-310.
- Peterson J.A. (1970) Cytochrome content of two pseudomonads containing mixed-function oxidase systems. Journal of Bacteriology 103: 714-721.
- Peterson J.B., LaRue T.A. (1982) Soluble aldehyde dehydrogenase and metabolism of aldehydes by soybean bacteroids. Journal of Bacteriology 151: 1473-1484.

Ramsey H.H. (1962) Endogenous respiration of Staphylococcus aureus. Journal of Bacteriology 83: 507-514.

- Raymond R.L., Jamison V.W., Hudson J.O. (1967) Microbial hydrocarbon co-oxidation: I. Oxidation of mono- and dicyclic hydrocarbons by soil isolates of the genus *Nocardia*. Applied Microbiology 15: 857-865.
- Reed W.M., Dugan P.R. (1979) Study of developmental stages of *Methylosinus trichosporium* with the aid of fluorescent-antibody staining techniques. Applied and Environmental Microbiology 38: 1179-1183.

Rittenberg SC, Shilo M. (1970) Early host damage in the infection cycle of *Bdellovibrio bacteriovorus*. Journal of Bacteriology 102: 149-160.

- Robertson J.G., Batt R.D. (1973) Survival of *Nocardia corallina* and degradation of constituents during starvation. Journal of General Microbiology 78: 109-117.
- Rogoff M.H. (1962) Chemistry of oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. Journal of Bacteriology 83: 998-1004.
- Sabina L.R., Pivnick H. (1956) Oxidation of soluble oil emulsions and emulsifiers by *Pseudomonas oleovorans* and *Pseudomonas formicans*. Applied Microbiology 4: 171-175.
- Sariaslani F.S., Sudmeier T.J.L., Focht D.D. (1982) Degradation of 3-phenylbutyric acid by *Pseudomonas* sp. Journal of Bacteriology 152: 411-421.
 Schatz A., Bovell C. Jr. (1952) Growth and hydrogenase activity of a new bacterium, *Hydrogenomonas facilis*. Journal of Bacteriology 63: 87-98.
 Schleper C., Puehler G., Holz I., Gambacorta A., Janekovic D., Santarius U., Klenk H.-P., Zillig W. (1995) *Picrophilus* gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. Journal of Bacteriology 177:
 - 7050-7059.
- Sebek O.K., Barker H.A. (1968) Metabolism of β -methylaspartate by a pseudomonad. Journal of Bacteriology 96: 2094-2098.
- Segal W., Bloch H. (1956) Biochemical differentiation of *Mycobacterium tuberculosis* grown in vivo and in vitro. Journal of Bacteriology 72: 132-141. Shaw DR. (1956) Polyol dehydrogenases. 3. Galactitol dehydrogenase and D-iditol dehydrogenase. Biochemical Journal 64: 394-405.
- Sierra G., Gibbons N.E. (1962) Role and oxidation pathway of poly-β-hydroxybutyric acid in *Micrococcus halodenitrificans*. Canadian Journal of Microbiology 8: 255-269.
- Silver M. (1970) Oxidation of elemental sulfur and sulfur compounds and CO₂ fixation by *Ferrobacillus ferrooxidans* (*Thiobacillus thiooxidans*). Canadian Journal of Microbiology 16: 845-848.
- Smith A., Tranter E.K., Cain R.B. (1968) The utilization of some halogenated aromatic acids by *Nocardia*. Effects on the growth and enzyme induction. Journal of Bacteriology 106: 203-209.
- Smith A.J., Hoare D.S. (1968) Acetate assimilation by *Nitrobacter agilis* in relation to its "obligate autotrophy". Journal of Bacteriology 95: 844-855. Sobek J.M., Charba J.F., Foust W.N. (1966) Endogenous metabolism of *Azotobacter agilis*. Journal of Bacteriology 92: 687-695.

Sobek J.M., Talburt D.E. (1968) Effects of the rare earth cerium on *Escherichia coli*. Journal of Bacteriology 95: 47-51.

- Sorokin D.Y., Jones B.E., Kuenen J.G. (2000) An obligate methylotrophic, methane-oxidizing *Methylomicrobium* species from a highly alkaline environment. Extremophiles 4: 145-155.
- Sparnins V.L., Chapman P.J. (1976) Catabolism of L-tyrosine by the homoprotocatechuate pathway in gram-positive bacteria. Journal of Bacteriology 127: 362-366.
- Sparnins V.L., Chapman P.J., Dagley S. (1974) Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid. Journal of Bacteriology 120: 159-167.

- Spendlove R., Weiser H.H., Harper W.J. (1957) Factors affecting the initiation of respiration of *Streptococcus lactis*. Applied Microbiology 5: 281-285.
- Stevenson J. (1966) The specific requirement for sodium chloride for the active uptake of I-glutamate by *Halobacterium salinarium*. Journal of Bacteriology 99: 257-260.
- Stokes J.L. (1954) Studies on the filamentous sheathed iron bacterium Sphaerotilus natans. Journal of Bacteriology 67: 278-291.
- Straley S.C., LaMarre A.G., Lawrence L.J., Conti S.F. (1979) Chemotaxis of *Bdellovibrio bacteriovorus* toward pure compounds. Journal of Bacteriology 140: 634-642.
- Subba-Rao R.V., Alexander M. (1977) Products formed from analogues of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) metabolites by *Pseudomonas putida*. Applied and Environmental Microbiology 33: 101-108.
- Subba-Rao R.V., Alexander M. (1985) Bacterial and fungal cometabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and its breakdown products. Applied and Environmental Microbiology 49: 509-516.
- Takayanagi S., Kawasaki H., Sugimori K., Yamada T., Sugai A., Ito T., Yamasato K., Shioda M. (1996) *Sulfolobus hakonensis* sp. nov., a novel species of acidothermophilic archaeon. International Journal of Systematic Bacteriology 46: 377-382.
- Takeo K., Uesaka I. (1975) Existence of a simple configuration in the wall surface of Nocardia mycellium. Journal of General Microbiology 87: 373-376.
- Tappe W., Laverman A., Bohland M., Braster M., Rittershaus S., Groeneweg J., van Verseveld H.W. (1999) Maintenance energy demand and starvation recovery dynamics of *Nitrosomonas europaea* and *Nitrobacter winogradskyi* cultivated in a retentostat with complete biomass retention. Applied and Environmental Microbiology 65: 2471-2477.
- Taylor B.F. (1983) Aerobic and anaerobic catabolism of vanillic acid and some other methoxy-aromatic compounds by *Pseudomonas* sp. strain PN-1. Applied and Environmental Microbiology 46: 1286-1292.
- Tepper B.S. (1968) Differences in the utilization of glycerol and glucose by Mycobacterium phlei. Journal of Bacteriology 95: 1713-1717.
- Tesh M.J., Morse S.A., Miller R.D. (1983) Intermediary metabolism in *Legionella pneumophila*: Utilization of amino acids and other compounds as energy sources. Journal of Bacteriology 154: 1104-1109.
- Tisa L.S., Ensign J.C. (1987) Isolation and nitrogenase activity of vesicles from Frankia sp. strain EANI_{pec}. Journal of Bacteriology 169: 5054-5059.
- Tomlinson G.A., Campbell J.J. (1963) Patterns of oxidative assimilation in strains of *Pseudomonas* and *Achromobacter*. Journal of Bacteriology 86: 434-444.
- Tros M.E., Bosma T.N.P., Schraa G., Zehnder A.J.B. (1996) Measurement of minimum substrate concentration (*S*_{min}) in a recycling fermentor and its prediction from the kinetic parameters of *Pseudomonas* sp. strain B13 from batch and chemostat cultures. Applied and Environmental Microbiology 62: 3655-3661.
- Trudinger P.A. (1967) Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil. Journal of Bacteriology 93: 550-559.
- Tsai J.C., Aladegbami S.L., Vela G.R. (1979) Phosphate-limited culture of Azotobacter vinelandii. Journal of Bacteriology 139: 639-645.
- Van de Vossenberg J.L.C.M., Driessen A.J.M., Zillig W., Konings W.N. (1998) Bioenergetics and cytoplasmic membrane stability of the extreme acidophilic thermophilic archaeon *Picrophilus oshimae*. Extremophiles 2: 67-74.

- Van Ginkel C.G., Van Dijk J.B., Kroon A.G.M. (1992) Metabolism of hexadecyltrimethylammonium chloride in *Pseudomonas* strain B1. Applied and Environmental Microbiology 58: 3083-3087.
- Van Niel E.W.J., Gottschal J.C. (1998) Oxygen consumption by *Desulfovibrio* strains with and without polyglucose. Applied and Environmental Microbiology 64: 1034-1039.
- Van Veen H.W., Abee T., Kortstee G.J., Konings W.N., Zehnder A.J. (1993) Characterization of two phosphate transport systems in *Acinetobacter johnsonii* 210A. Journal of Bacteriology 175: 200-206.
- Vangnai A.S., Sayavedra-Soto S.A., Arp D.J. (2002) Roles for the two 1-butanol dehydrogenases of *Pseudomonas butanovora* in butane and 1butanol metabolism. Journal of Bacteriology 184: 4343-4350.
- Ventosa A., Nieto J.N.J., Oren A. (1998) Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews 62: 504-544.
- Vogler K.G. (1942a) The presence of an endogenous respiration in the autotrophic bacteria. Journal of General Physiology 25: 617-622.
- Vogler K.G. (1942b) Studies on the metabolism of autotrophic bacteria. II. The nature of the chemosynthetic reaction. Journal of General Physiology 26: 103-117.
- Walker J.R. (1959) Pyruvate metabolism in Lactobacillus brevis. Biochemical Journal 72: 188-192.
- Warren R.A., Ells A.F., Campbell J.J. (1960) Endogenous respiration of *Pseudomonas aeruginosa*. Journal of Bacteriology 79: 875-879.
- Watson G.K., Cain R.B. (1975) Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria. Biochemical Journal 146: 157-172.
- Weinstein I., Guss M.L., Altenbern R.A. (1962) Pyruvate oxidation by *Pasteurella tularensis* strains of graded virulence. Journal of Bacteriology 83: 1010-1016.
- Welch D.F., Sword C.P., Brehm S., Dusanic D. (1979) Relationship between superoxide dismutase and pathogenic mechanisms of *Listeria mono-cytogenes*. Infection and Immunity 23: 863-872.
- Wen A., Fegan M., Hayward C., Chakraborty S., Sly L.I. (1999) Phylogenetic relationships among members of the *Comamonadaceae*, and description of *Delftia acidovorans* (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. International Journal of Systematic Bacteriology 49: 567-576.
- Wessman G.E., Miller D.J. (1966) Biochemical and physical changes in shaken suspensions of *Pasteurella pestis*. Applied Microbiology 14: 636-642.
- White D.C. (1962) Cytochrome and catalase patterns during growth of *Haemophilus parainfluenzae*. Journal of Bacteriology 83: 851-859.
- Wieslander A., Nordström S., Dahlqvist A., Rilfors L., Lindblom G. (1987) Membrane lipid composition and cell size of *Acholeplasma laidlawii* strain A are strongly influenced by lipid acyl chain length. European Journal of Biochemistry 227: 734-744.
- Yotis W.W. (1963) Absorption of the antibacterial serum factor by staphylococci. Journal of Bacteriology 85: 911-917.
- Yotis W.W., Ekstedt R.D. (1959) Studies on staphylococci I. Effect of serum and coagulase on the metabolism of coagulase positive and coagulase negative strains. Journal of Bacteriology 78: 567-574.
- Youmans A.S., Youmans G.P. (1962a) Effect of mycosuppressin on the course of experimental tuberculosis in mice. Journal of Bacteriology 84: 701-707.

- Youmans A.S., Youmans G.P. (1962b) Effect of mycosuppressin on the respiration and growth of *Mycobacterium tuberculosis*. Journal of Bacteriology 84: 708-715.
- Youmans A.S., Youmans G.P., Hegre A. Jr. (1960) Effect of homogenates of organs from immunized guinea pigs on the respiration of *Mycobacterium tuberculosis*. Journal of Bacteriology 80: 394-399.
- Zubkov M.V. Fuchs B.M., Eilers H., Burkill P.H., Amann R. (1999) Determination of total protein content of bacterial cells by SYPRO staining and flow cytometry. Applied and Environmental Microbiology 65: 3251-3257.

Table **S1b**. Numeric values used in the analyses presented in Figures 1-3 and Table 1 in the paper (after Table S1a). Log is decimal logarithm of the corresponding variable.

	Valid name	Class: Order	MIN	qWkg	LogqWkg	TC	q25Wkg	Logq25Wkg	Mpg	LogMpg
1.	Acetobacter aceti	Clostridia: Clostridiales	MIN	0.6	-0.222	30	0.42	-0.377	0.75	-0.125
2.	Acholeplasma laidlawii	Mollicutes: Acholeplasmatales	MIN	1.4	0.146	37	0.61	-0.215	0.04	-1.398
3.	Achromobacter ruhlandii	Betaproteobacteria: Burkholderiales	MIN	15	1.176	30	10.61	1.026	0.2	-0.699
4.	Achromobacter sp.	Betaproteobacteria: Burkholderiales	MIN	8.4	0.924	30	5.94	0.774	0.6	-0.222
5.	Achromobacter viscosus	Betaproteobacteria: Burkholderiales	MIN	35	1.544	30	24.75	1.394	0.6	-0.222
6.	Achromobacter xerosis	Betaproteobacteria: Burkholderiales	MIN	23	1.362	30	16.26	1.211	0.5	-0.301
7.	Acidovorax facilis	Betaproteobacteria: Burkholderiales	MIN	7	0.845	30	4.95	0.695	0.3	-0.523
8.	Acinetobacter baumannii	Gammaproteobacteria: Pseudomonadales	MIN	12	1.079	30	8.49	0.929	2	0.301
9.	Acinetobacter calcoaceticus	Gammaproteobacteria: Pseudomonadales	MIN	6.7	0.826	30	4.74	0.676	2	0.301
10.	Acinetobacter johnsonii	Gammaproteobacteria: Pseudomonadales	MIN	46	1.663	30	32.53	1.512	2	0.301
11.	Acinetobacter sp.	Gammaproteobacteria: Pseudomonadales	MIN	3.3	0.519	25	3.30	0.519	2	0.301
12.	Acinetobacter sp.	Gammaproteobacteria: Pseudomonadales	MIN	6	0.778	30	4.24	0.627	2	0.301
13.	Acinetobacter sp.	Gammaproteobacteria: Pseudomonadales	MIN	8	0.903	30	5.66	0.753	2	0.301
14.	Aeromonas hydrophila	Gammaproteobacteria: Aeromonadales	MIN	38	1.580	30	26.87	1.429		
15.	Aeromonas veronii	Gammaproteobacteria: Aeromonadales	MIN	20	1.301	30	14.14	1.150		
16.	Agrobacterium tumefaciens	Alphaproteobacteria: Rhizobiales	MIN	20	1.301	30	14.14	1.150	1.5	0.176
17.	Alcaligenes eutrophus	Betaproteobacteria: Burkholderiales	MIN	83	1.919	33	47.67	1.678	0.8	-0.097
18.	Alcaligenes faecalis	Betaproteobacteria: Burkholderiales	MIN	27	1.431	30	19.09	1.281		
19.	Alcaligenes sp.	Betaproteobacteria: Burkholderiales	MIN	2.1	0.322	30	1.48	0.170		
20.	Aminobacter lissarensis	Alphaproteobacteria: Rhizobiales	MIN	1.6	0.204	25	1.60	0.204	0.6	-0.222
21.	Amoebobacter purpureus	Gammaproteobacteria: Chromatiales	MIN	11	1.041	30	7.78	0.891	36	1.556
22.	Amoebobacter roseus	Gammaproteobacteria: Chromatiales	MIN	5.4	0.732	30	3.82	0.582	5	0.699
23.	Amoebobaeter pendens	Gammaproteobacteria: Chromatiales	MIN	8.5	0.929	30	6.01	0.779	5	0.699
24.	Aquaspirillum itersonii	Betaproteobacteria: Neisseriales	MIN	10	1.000	30	7.07	0.849	0.9	-0.046
25.	Arthrobacter crystallopoietes	Actinobacteria: Actinomycetales	MIN	0.2	-0.699	30	0.14	-0.854	1.7	0.230
26.	Arthrobacter globiformis	Actinobacteria: Actinomycetales	MIN	8.3	0.919	30	5.87	0.769	0.5	-0.301
27.	Arthrobacter sp.	Actinobacteria: Actinomycetales	MIN	1.2	0.079	30	0.85	-0.071	1.5	0.176
28.	Arthrobacter sp.	Actinobacteria: Actinomycetales	MIN	0.75	-0.125	25	0.75	-0.125	0.2	-0.699
29.	Arthrobacter sp.	Actinobacteria: Actinomycetales	MIN	6	0.778	30	4.24	0.627		
30.	Arthrobacter sp.	Actinobacteria: Actinomycetales	MIN	14	1.146	30	9.90	0.996		

31.	Azomonas agilis?	Gammaproteobacteria: Pseudomonadales	MIN	21	1.322	26	19.59	1.292	13	1.114
32.	Azorhizobium caulinodans	Alphaproteobacteria: Rhizobiales	MIN	38	1.580	30	26.87	1.429	0.5	-0.301
33.	Azospirillum brasiliense	Alphaproteobacteria: Rhodospirillales	MIN	27	1.431	37	11.75	1.070	1	0.000
34.	Azospirillum lipoferum	Alphaproteobacteria: Rhodospirillales	MIN	39	1.591	37	16.98	1.230	4	0.602
35.	Azotobacter chroococcum	Gammaproteobacteria: Pseudomonadales	MIN	25	1.398	30	17.68	1.247	14	1.146
36.	Azotobacter vinelandii	Gammaproteobacteria: Pseudomonadales	MIN	1.5	0.176	30	1.06	0.025	0.5	-0.301
37.	Bacillus cereus	"Bacilli": Bacillales	MIN	14	1.146	37	6.09	0.785	3.7	0.568
38.	Bacillus firmus	"Bacilli": Bacillales	MIN	13	1.114	30	9.19	0.963	0.9	-0.046
39.	Bacillus megaterium	"Bacilli": Bacillales	MIN	3.3	0.519	30	2.33	0.367	7	0.845
40	Bacillus popilliae	"Bacilli": Bacillales	MIN	0.8	-0.097	30	0.57	-0.244	0.8	-0.097
41	Bacillus pumilus	"Bacilli": Bacillales	MIN	5	0.699	30	3.54	0.549	0.7	-0.155
42	Bacillus stearothermophilus	"Bacilli": Bacillales	MIN	82	0.914	50	1 45	0.161	0.7	-0 155
43	Bacillus subtilis	"Bacilli": Bacillales	MIN	3.3	0.519	30	2.33	0.367	14	0 146
44	Bdellovibrio bacteriovorus	Deltaproteobacteria: Bdellovibrionales	MIN	25	1 398	30	17.68	1 247	0.3	-0.523
45	Beneckea natriegens	Gammaproteobacteria: "Vibrionales"	MIN	265	2 423	30	187.38	2 273	1.5	0.176
46	Bradyrhizobium japonicum	Alphanroteobacteria: Rhizohiales	MIN	1.0	0.000	29	0.76	_0 119	0.7	-0 155
40.	Branhamella catarrhalis	Gammaproteobacteria: Pseudomonadales	MIN	1.0	0.000	37	0.70	-0 131	13	0.100
48	Brucella melitensis	Alphanroteobacteria: Phizobiales	MIN	6.5	0.200	34	3.48	0.542	0.3	-0 523
40. 49	Burkholderia sp	Retaproteobacteria: Rurkholderiales	MIN	21	1 322	30	14 85	1 172	0.5	-0.323
50		Gammaproteobacteria: Pseudomonadales	MIN	37	1 568	30	26.16	1.172	2	0.100
51	Chromatium sp	Cammaproteobacteria: Chromatiales	MIN	11	1.000	25	11 00	1.410	2	0.001
52	Chromatium vinosum	Cammaproteobacteria: Chromatiales	MIN	22	0.342	20	1 56	0.103	15	0 176
52.		Actinobacteria: Actinomycetales	MIN	6.7	0.342	30	1.50	0.135	1.5	0.170
54	Convnebacterium sp	Actinobacteria: Actinomycetales	MIN	10	1 000	30	7.07	0.070		
55	Dolftia acidovorans	Rotaprotochactoria: Rurkholdorialos	MIN	10	1.000	30	0.10	0.049	0.8	0.007
55.	Denulfavibria adavigana	Deltaproteobacteria: Desulfavibrianalas	IVIIIN	10	1.114	20	9.19	0.903	0.0	-0.097
50.	Enterphaeter aerogonos	Commente constante : "Enterchasteriales"	IVIIIN	10	1.114	20	9.19	0.905	1.0	0.170
57.		Gammaproteobacteria: "Enterobacteriales"	IVIIIN	24	1.000	20	7.07	0.049	0.5	-0.525
50.		"Depilli": "Lestebepillelee"	IVIIIN	20	1.491	30	21.92	1.341	0.9	-0.040
59.			IVIIIN	3.0	0.560	30	2.09	0.430	0.4	-0.396
60.		Bacilii Laciobaciliales	IVIIIN	0.3	-0.523	30	0.21	-0.078	0.2	-0.699
61.	Enterococcus nirae		IVIIN	1.5	0.176	30	1.06	0.025	0.0	0.007
62.	Enterococcus sp.	Bacilli : Laciobacillales	IVIIIN	33	1.519	30	23.33	1.308	0.8	-0.097
63.		Gammaproteobacteria: Enterobacteriales	IVIIN	32	1.505	37	14	1.146	0.7	-0.155
64.	Flavobacterium capsulatum	Flavobacteria: Flavobacteriales	IVIIN	63	1.799	30	44.55	1.649	0.3	-0.523
65.		Gammaproteobacteria: I niotricnales	IVIIN	3.7	0.568	37	1.61	0.207	0.01	-2.000
66.	Frankla sp.	Actinobacteria: Actinomycetales	MIN	9	0.954	25	9.00	0.954	0.44	0.054
67.	Haemophilus influenzae	Gammaproteobacteria: Pasteurellales	MIN	0.5	-0.301	37	0.22	-0.658	0.14	-0.854
68.	Haemophilus parahaemolyticus	Gammaproteobacteria: Pasteurellales	MIN	3.5	0.544	37	1.52	0.182		
69.	Haemophilus parainfluenzae	Gammaproteobacteria: Pasteurellales	MIN	3.5	0.544	37	1.52	0.182	0.4	-0.398
70.	Halobacterium salinarum	Archaea: Halobacteria: Halobacteriales	MIN	17	1.230	30	12.02	1.080	3.9	0.591
71.	Halomonas halodenitrificans	Gammaproteobacteria: Oceanospirillales	MIN	67	1.826	25	67.00	1.826	0.4	-0.398
72.	Klebsiella pneumoniae	Gammaproteobacteria: "Enterobacteriales"	MIN	3.3	0.519	30	2.33	0.367	0.4	-0.398
73.	Lactobacillus brevis	"Bacıllı": "Lactobacillales"	MIN	0.2	-0.699	30	0.14	-0.854	1.6	0.204
74.	Lactobacillus casei	"Bacilli": "Lactobacillales"	MIN	1.7	0.230	30	1.20	0.079		
75.	Lactococcus lactis	"Bacilli": "Lactobacillales"	MIN	0.6	-0.222	30	0.42	-0.377	0.2	-0.699
76.	Lactococcus sp.	"Bacilli": "Lactobacillales"	MIN	2.3	0.362	30	1.63	0.212	0.8	-0.097

77. Legionella pneumopl	nila	Gammaproteobacteria: Legionellales	MIN	20	1.301	37	8.71	0.940	0.3	-0.523
78. Methylobacterium ex	torquens	Alphaproteobacteria: Rhizobiales	MIN	6	0.778	30	4.24	0.627	1	0.000
79. Methylomicrobium sp).	Gammaproteobacteria: Methylococcales	MIN	11	1.041	30	7.78	0.891	3	0.477
80. Methylophilus methy	lotrophus	Betaproteobacteria: Methylophiliales	MIN	1.6	0.204	40	0.57	-0.244	0.15	-0.824
81. Methylosinus trichos	porium	Alphaproteobacteria: Rhizobiales	MIN	42	1.623	30	29.70	1.473	1	0.000
82. Micrococcus luteus		Actinobacteria: Actinomycetales	MIN	1.2	0.079	37	0.52	-0.284	1.1	0.041
83. Micrococcus sp.		Actinobacteria: Actinomycetales	MIN	10	1.000	30	7.07	0.849		
84. Micrococcus sp.		Actinobacteria: Actinomycetales	MIN	17	1.230	30	12.02	1.080		
85. Moraxella osloensis		Gammaproteobacteria: Pseudomonadales	MIN	13	1.114	30	9.19	0.963	2.3	0.362
86. Mycobacterium fortui	itum	Actinobacteria: Actinomycetales	MIN	17	1.230	30	12.02	1.080		
87. Mycobacterium lepra	e	Actinobacteria: Actinomycetales	MIN	3.3	0.519	37	1.44	0.158		
88. Mycobacterium lepra	emurium	Actinobacteria: Actinomycetales	MIN	3.3	0.519	37	1.44	0.158		
89. Mycobacterium phlei		Actinobacteria: Actinomycetales	MIN	14	1.146	37	6.09	0.785	0.4	-0.398
90. Mycobacterium smee	amatis	Actinobacteria: Actinomycetales	MIN	24	1.380	37	10.45	1.019		
91. Mycobacterium tuber	culosis	Actinobacteria: Actinomycetales	MIN	2.2	0.342	37	0.96	-0.018	0.2	-0.699
92. Myxococcus xanthus		Deltaproteobacteria: Myxococcales	MIN	4.6	0.663	30	3.25	0.512	1	0.000
93. Neisseria elongata		Betaproteobacteria: Neisseriales	MIN	8.3	0.919	30	5.87	0.769	0.2	-0.699
94 Neisseria flava		Betaproteobacteria: Neisseriales	MIN	12	1 079	30	8 4 9	0.929	0.2	-0.699
95. Neisseria gonorrhoea	ае	Betaproteobacteria: Neisseriales	MIN	0.6	-0.222	37	0.26	-0.585	0.2	-0.699
96 Neisseria mucosa		Betaproteobacteria: Neisseriales	MIN	15	1 176	30	10.61	1 026	0.2	-0.699
97 Neisseria sicca		Betaproteobacteria: Neisseriales	MIN	13	1 114	30	9 1 9	0.963	0.2	-0.699
98 Nitrobacter winograd	skvi	Alphaproteobacteria: Rhizobiales	MIN	10	1 000	30	7.07	0.849	0.24	-0.620
99 Nitrosomonas europa		Betaproteobacteria: Nitrosomonadales	MIN	11	1.000	25	11 00	1 041	0.6	-0 222
100 Nocardia corallina		Actinobacteria: Actinomycetales	MIN	17	0.230	30	1 20	0.079	2.1	0.322
101 Nocardia farcinica		Actinobacteria: Actinomycetales	MIN	83	0.200	30	5.87	0.769	0.1	-1 000
102 Nocardia sp		Actinobacteria: Actinomycetales	MIN	2.2	0.313	30	1 56	0.103	0.1	-1.000
103 Nocardia sp.		Actinobacteria: Actinomycetales	MIN	2.2	0.342	30	2.12	0.195		
104 Nonomuraoa sp		Actinobacteria: Actinomycetales	MIN	1	0.477	25	1.00	0.020		
105 Paracoccus donitrific	000	Aunobaciena. Acimoniyceiales	MIN	02	0.000	20	5.87	0.000	0.16	0 706
106 Pastourolla psoudot	iborculocic	Cammaprotoobacteria: Enterobacteriales	MIN	12	1 070	25	12.00	1.070	0.10	-0.730
107 Dediessesus saidilas	tioi	"Bacilli": "Lastabacillaloa"	IVIIIN MINI	22	0.510	20	12.00	0.267	2.2	0 242
109 Dhaqqapirillum fulyur		Alphanratachastaria: Bhadaanirillalaa		0.0 00	0.019	20	2.33	0.307	2.2	0.342
100.FildeOspirilium luivu	11	Alphapioleobaciena. Rhouospinilales		20	1.447	20	22.74	1.557	2	0.301
1109. Picrophilus Oshimae		Commonitationalia (Archaea). Thermopiasinalaies		20	1.390	20	2.21	0.544		0.000
110.Proteus morganii		Gammaproteobacteria: "Enterobacteriales"		5	0.699	30	3.04	0.049	0.4	-0.396
112 Decudemented corrug	ineee	Gammaproteobacteria: Enterobacteriales		5 6 7	0.099	37	2.10	0.330	0.4	-0.396
112.Pseudomonas aerug	mosa	Gammaproteobacteria: Pseudomonadales		0.7	0.020	30	4.74	0.070	0.5	-0.301
113.Pseudomonas liuore	scens	Gammaproteobacteria: Pseudomonadales	IVIIIN	4.4	0.643	28	3.57	0.553	<u> </u>	0.000
114.Pseudomonas formic	cans	Gammaproteobacteria: Pseudomonadales	MIIN	10	1.000	30	7.07	0.849	/	0.845
115.Pseudomonas oleovo	orans	Gammaproteobacteria: Pseudomonadales	MIIN	3.3	0.519	30	2.33	0.367	0.16	-0.796
116.Pseudomonas putida	1	Gammaproteobacteria: Pseudomonadales	MIN	1	0.000	30	0.71	-0.149	1.7	0.230
117.Pseudomonas sacch	arophila	Gammaproteobacteria: Pseudomonadales	MIN	33	1.519	30	23.33	1.368		
118.Pseudomonas sp.		Gammaproteobacteria: Pseudomonadales	MIN	2.2	0.342	30	1.56	0.193		
119.Pseudomonas sp.		Gammaproteobacteria: Pseudomonadales	MIN	8	0.903	30	5.66	0.753		
120.Pseudomonas sp.		Gammaproteobacteria: Pseudomonadales	MIN	3.3	0.519	25	3.30	0.519		
121.Pseudomonas sp.		Gammaproteobacteria: Pseudomonadales	MIN	8.3	0.919	30	5.87	0.769		
122.Pseudomonas sp.		Gammaproteobacteria: Pseudomonadales	MIN	15	1.176	30	10.61	1.026		

123 Pseudomonas sp	Gammaproteobacteria: Pseudomonadales	MIN	18	1 255	30	12 73	1 105		
124 Pseudomonas sp	Gammaproteobacteria: Pseudomonadales	MIN	35	1 544	20	49.50	1 695		
125 Pseudomonas sp	Gammaproteobacteria: Pseudomonadales	MIN	17	1 230	30	12.02	1 080		
126. Pseudonocardia nitrificans	Actinobacteria: Actinomycetes	MIN	2.5	0.398	30	1.77	0.248		
127 Rhizobium japonicum	Alphaproteobacteria: Rhizobiales	MIN	16	1 204	23	18.38	1 264	07	-0 155
128 Rhizobium leguminosarum	Alphaproteobacteria: Rhizobiales	MIN	9.5	0.978	30	6.72	0.827	0.6	-0 222
129 Rhizobium meliloti	Alphaproteobacteria: Rhizobiales	MIN	12	1 079	30	8 4 9	0.929	0.0	-0 155
130 Rhodobacter sphaeroides	Alphaproteobacteria: Rhodobacterales	MIN	17	1 230	28	13.81	1 140	0.8	-0.097
131 Rhodococcus rhodochrous	Actinobacteria: Actinomycetales	MIN	17	1 230	30	12.02	1 080	0.0	0.001
132 Rhodococcus sp	Actinobacteria: Actinomycetales	MIN	22	0.342	25	2 20	0.342		
133 Rhodococcus sp	Actinobacteria: Actinomycetales	MIN	7	0.845	30	4 95	0.695		
134 Rhodococcus sp	Actinobacteria: Actinomycetales	MIN	74	0.869	25	7 40	0.869		
135 Rhodospirillum rubrum	Alphanroteobacteria: Rhodospirillales	MIN	3.8	0.580	28	3.09	0.490	9	0 954
136 Sallinivibrio costicola	Gammaproteobacteria: "Vibrionales"	MIN	7	0.845	25	7.00	0.450	04	-0.398
137 Salmonella typhimurium	Gammaproteobacteria: "Enterobacteriales"	MIN	15	1 176	37	6.53	0.815	0.66	-0.180
138 Serratia marcescens	Gammaproteobacteria: "Enterobacteriales"	MIN	4	0.602	37	1 74	0.010	0.00	_0.398
130 Shigella flevneri	Cammaproteobacteria: "Enterobacteriales"	MIN	10	1 000	37	1.74	0.241	0.4	-0.550
140 Sphaorotilus natans	Botaprotoobacteria: Burkholderiales	MIN	45	1.000	20	36.55	1 563	65	0.913
140.Spinderollius Indians	"Pacilli": Pacillalos	MIN	40	1.055	20	9.40	0.020	0.0	0.013
142 Stanbylosocous aurous	"Dacilli": Dacillales	IVIIIN MINI	12	1.079	27	0.49	0.929	0.07	0.560
142. Staphylococcus auteus	Daulii . Dauliales		10	1.204	20	10.00	0.040	0.27	-0.009
143. Staphylococcus epidermidis		IVIIIN	21	1.431	30	19.09	1.201	0.5	-0.301
144. Staphylococcus simulans		IVIIIN	10	1.000	37	4.35	0.038		
145. Staphylococcus sp.		MIN	17	1.230	30	12.02	1.080		0.500
146. Streptococcus agalactiae	"Bacilli": "Lactobacillales"	MIN	1.7	0.230	37	0.74	-0.131	0.3	-0.523
147. Streptococcus pneumoniae	"Bacilli": "Lactobacillales"	MIN	1.7	0.230	30	1.20	0.079	0.4	-0.398
148.Streptococcus pyogenes	"Bacilli": "Lactobacillales"	MIN	3.3	0.519	30	2.33	0.367	0.2	-0.699
149.Streptomyces coelicolor	Actinobacteria: Actinomycetales	MIN	40	1.602	30	28.28	1.451		
150.Streptomyces fradiae	Actinobacteria: Actinomycetales	MIN	22	1.342	30	15.56	1.192		
151.Streptomyces griseus	Actinobacteria: Actinomycetales	MIN	18	1.255	30	12.73	1.105		
152.Streptomyces longispororuber	Actinobacteria: Actinomycetales	MIN	3.3	0.519	30	2.33	0.367		
153.Streptomyces olivaceus	Actinobacteria: Actinomycetales	MIN	9	0.954	37	3.92	0.593		
154. Sulfolobus acidocalcadareus	Archaea: Thermoprotei (Crenarchaeota): Sulfolobales	MIN	15	1.176	60	1.33	0.124	0.4	-0.398
155.Taylorella equigenitalis	Betaproteobacteria: Burkholderiales	MIN	0.1	-1.000	30	0.07	-1.155	0.4	-0.398
156. Thiobacillus ferrooxidans	Betaproteobacteria: Hydrogenophilales	MIN	0.5	-0.301	25	0.50	-0.301	0.25	-0.602
157. Thiobacillus intermedius	Betaproteobacteria: Hydrogenophilales	MIN	11	1.041	30	7.78	0.891	0.4	-0.398
158. Thiobacillus thiooxidans	Betaproteobacteria: Hydrogenophilales	MIN	1.5	0.176	28	1.22	0.086	0.25	-0.602
159. Thiocapsa roseopersicina	Gammaproteobacteria: Chromatiales	MIN	5.6	0.748	30	3.96	0.598	1	0.000
160.Thiocystis violacea	Gammaproteobacteria: Chromatiales	MIN	2.5	0.398	30	1.77	0.248	11	1.041
161. Thiorhodovibrio winogradskvi	Gammaproteobacteria: Chromatiales	MIN	6.6	0.820	30	4.67	0.669		
162.Unidentified bacterium	Gammaproteobacteria: Pseudomonadales	MIN	11	1.041	30	7.78	0.891	0.6	-0.222
163 Unknown	Unknown	MIN	6.7	0.826	30	4.74	0.676		
164 Unknown	Unknown	MIN	30	1.477	30	21.21	1.327		
165. Unnamed rhizobiaceae	Alphaproteobacteria: Rhizobiales	MIN	42	1.623	25	42.00	1.623		
166. Vibrio alginolyticus	Gammaproteobacteria: "Vibrionales"	MIN	3.3	0.519	30	2.33	0.367	0.6	-0 222
167 Vibrio fischeri	Gammaproteobacteria: "Vibrionales"	MIN	22	1 342	20	31 11	1 4 9 3	0.6	-0 222
168 Vibrio metschnikovii	Gammaproteobacteria: "Vibrionales"	MIN	3.3	0.519	30	2 33	0.367	0.6	-0 222
			0.0	0.0.0	~~~	2.00	0.001	0.0	· ·

169.Vibrio parahaemolyticus	Gammaproteobacteria: "Vibrionales"	MIN	1.7	0.230	30	1.20	0.079	0.6	-0.222
170.Vibrio sp.	Gammaproteobacteria: "Vibrionales"	MIN	0.11	-0.959	5	0.44	-0.357	0.14	-0.854
171.Vitreoscilla stercoraria	Betaproteobacteria: Neisseriales	MIN	35	1.544	30	24.75	1.394		
172.Xanthomonas axonopodis	Gammaproteobacteria: Xanthomonadales	MIN	37	1.568	30	26.16	1.418	0.25	-0.602
173.Yersinia pestis	Gammaproteobacteria: Enterobacteriales	MIN	4.8	0.681	28	3.90	0.591	0.55	-0.260