Dataset S8. Dark respiration rates in eukaryotic microalgae

Notes to Table **S8**:

Data on dark respiration rates in unicellular, non-filamentous eukaryotic microalgae are presented. Taxonomic status (the "**Phylum: Class**" column) was determined for each genus following <u>www.algaebase.org</u>.

Abbreviations and universal conversions: DM – dry mass; WM – wet mass; N – nitrogen mass; Chl a – Chl a mass; C – carbon mass; Pr – protein mass; X/Y – X by Y mass ratio in the cell, e.g. DM/WM is the ratio of dry to wet cell mass; X/V – the ratio of variable X to volume, pg μ m³, e.g. N/V is how many pg nitrogen is contained in 1 μ m³ of cell volume; X/cell is the amount of X in one cell, pg; 1 W = 1 J s⁻¹; 1 mol O₂ = 32 g O₂; 1 mol C = 12 g C.

Column "U" (mass units of respiration rate measurements): D – dry mass or Chl a mass with known Chl a/DM ratio; W – wet mass without information on DM/WM ratio; Chl – chlorophyll mass without information on Chl a/DM ratio; Pr – protein mass; C – carbon mass.

"Original units" are the units of dark respiration rate measurements as given in the original publication ("Source"); qou is the numeric value of dark respiration rate in the original units. E.g., if it is "mg O₂ (g DM)⁻¹ hr⁻¹" in the column "Original units" and "1.1" in the column "qou", this means that dark respiration rate of the corresponding species, as given in the original publication indicated in the column "Source", is 1.1 mg O₂ (g DM)⁻¹ hr⁻¹.

qWkg is dark respiration rate converted to W (kg WM)⁻¹ (Watts per kg wet mass) using the following conversion factors: C/DM = 0.5 (Kratz & Myers 1955; Bratbak & Dundas 1984; Stal & Moezelaar 1997), Chl a/DM = 0.015 (APHA 1992), Pr/DM = 0.5 (Otte et al. 1999; Zubkov et al. 1999; Stal & Moezelaar 1997) and DM/WM = 0.3 as a crude mean for all taxa applied in the analysis (SI Methods, Table S12a). If the Chl a/DM ratio is known (shown in the "Comments" column), while **qou** is per unit Chl a mass, the dark respiration rate is first calculated per unit dry mass and then converted to **qWkg** using the reference DM/WM = 0.3. Energy conversion: 1 ml $O_2 = 20$ J. Where **qou** is calculated on cell basis, and carbon content of the cell is known, **qWkg** is first expressed per unit carbon mass and then per unit wet mass using the conversion factors above, rather than obtained by dividing by the known cell mass.

TC is ambient temperature during measurements, degrees Celsius.

q25Wkg is dark respiration rate converted to 25 °C using $Q_{10} = 2$, **q25Wkg** = **qWkg** × $2^{(25 - TC)/10}$, dimension W (kg WM)⁻¹. For each species rows are arranged in the order of increasing **q25Wkg**.

MIN – indicates the minimum q25Wkg value for each species, that was used in the analyses in the paper.

Mpg: estimated cell mass, pg (1 pg = 10^{-12} g). Square brackets around **Mpg** value indicate that this value was obtained from a different source than the source of dark respiration rate data. When converting cell volume to cell mass, cell density of 1 g ml⁻¹ was assumed.

Source: the first, unbracketed reference in this column is where the value of **qou** is taken from; references and data in square brackets refer to cell size determination.

Growth rate, day⁻¹: this column contains available growth rates as well as other information on culture conditions, including illumination (it is given in braces, where available, e.g. 150 μ mol m⁻² s⁻¹); Log – logarithmic, exp – exponential, stat – stationary phase of cell cycle.

Comments: information on cell composition

qN: dark respiration rate per unit nitrogen mass, **100 W (kg N)**⁻¹. I.e., **qN** = 5 means that dark respiration rate is 500 W (kg N)⁻¹. Where available, values of **qN** corresponding to minimal **q25Wkg** values (those in MIN rows), were converted to 25 °C in the same manner as **qWkg** (using Q₁₀ = 2) Analysis of these **directly available** nitrogen-based dark respiration rates (17 temperature-transformed values for 17 species) yielded a geometric mean value of $q_N = 4 \times 10^2$ W (kg N)⁻¹, in good agreement with the value of 3.7×10^2 W (kg N)⁻¹ in Table 1 of the paper, that was obtained by transforming mean data set **q25Wkg** value (8.8 W (kg WM)⁻¹, n = 47) with use of mean conversion coefficients as qN = **q25Wkg**/0.3/0.08, where 0.3 = DM/WM and 0.08 = N/DM. The value of N/DM = 0.08 was calculated for the studied species with the known N/C ratio assuming C/DM = 0.5 (SI Methods, Table S12b).

Log₁₀-transformed values of **q25Wkg** (W (kg WM)⁻¹), minimum for each species, were used in the analyses shown in Figures 1-2 and Table 1 in the paper (a total of 47 values for n = 47 species). These values are in rows marked **MIN** and highlighted in blue.

Species	U	MIN	Original units	qou	qWkg	тс	q25Wkg	Мрд	Phylum: Class	Source	Growth rate, day ⁻¹	Comments	qN
1. Asterionella formosa	W	MIN	mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	0.17	1.613	10	4.562	410	Bacillariophyta: Fragilariophyceae	Talling 1957	·		
2. Asterionella formosa	W		mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	0.23	2.182	14	4.677	410	Bacillariophyta: Fragilariophyceae	Talling 1957			
3. Asterionella formosa	W		mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	0.21	1.992	11	5.257	410	Bacillariophyta: Fragilariophyceae	Talling 1957			
4. Asterionella formosa	W		mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	0.24	2.276	11	6.006	410	Bacillariophyta: Fragilariophyceae	Talling 1957			
5. Asterionella formosa	W		mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	0.35	3.320	16	6.195	410	Bacillariophyta: Fragilariophyceae	Talling 1957			

6. Ast	erionella formosa	W		mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	0.21	2.094	7	7.292	390	Bacillariophyta:	Talling 1957			
7. Ast	erionella formosa	W		mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	0.21	1.992	6	7.434	410	Bacillariophyta:	Talling 1957			
8. Ast	erionella formosa	W		mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	0.20	1.897	5	7.588	410	Bacillariophyta:	Talling 1957			
9. Ast	erionella formosa	W		mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	0.41	3.889	10	11.000	410	Fragilariophyceae Bacillariophyta:	Talling 1957			
10. Ast	erionella formosa	W		mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	0.85	8.063	16	15.046	410	Fragilariophyceae Bacillariophyta:	Talling 1957			
11. Ast	erionella formosa	W		mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	0.45	4.268	5	17.072	410	Fragilariophyceae Bacillariophyta:	Talling 1957			
12. Ch	aetoceros furcellatus	С	MIN	g C (g cell C) ⁻¹ hr ⁻¹	0.00048	0.75	0.5	4.098	[150]	Fragilariophyceae Bacillariophyta: Coscinodiscophyceae	Sakshaug et al. 1991 [calculated assuming C/V=0.15	0.09	N/cell=3.8 pg C/cell=22 pg Chl a/cell=0.79 pg	0.2
13. Ch	aetoceros furcellatus	С		g C (g cell C) ⁻¹ hr ⁻¹	0.0017	2.6	0.5	14.207	[300]	Bacillariophyta: Coscinodiscophyceae	Sakshaug et al. 1991 [calculated assuming C/V=0.15	0.12	N/cell=8.9 pg C/cell=47 pg Chl a/cell=0.94 pg	0.9
14. Ch	aetoceros furcellatus	С		g C (g cell C) ⁻¹ hr ⁻¹	0.0028	4.4	0.5	24.042	[130]	Bacillariophyta: Coscinodiscophyceae	Sakshaug et al. 1991 [calculated assuming C/V=0.15	0.32	N/cell=2.9 pg C/cell=19 pg Chl a/cell=0.39 pg	1.9
15. Ch	aetoceros furcellatus	С		g C (g cell C) ⁻¹ hr ⁻¹	0.0036	5.6	0.5	30.599	[200]	Bacillariophyta: Coscinodiscophyceae	Sakshaug et al. 1991 [calculated assuming C/V=0.15	0.30	N/cell=4.9 pg C/cell=32 pg Chl a/cell=0.23 pg	2.4
16. Ch reinhar	lamydomonas dtii	Chl	MIN	mmol O_2 (mol Chl) ⁻¹ s ⁻¹	4	9	22	11.080	[2000]	Chlorophyta: Chlorophyceae	Polle et al. 2001 [http://protist.i.hosei.		1 mol Chl=893.5 g Chl/cell=3.9 pg	
17. Chi reinhar	lamydomonas dtii	Chl		$\begin{array}{l} mmol \ O_2 \ (mol \ Chl)^{-1} \\ s^{-1} \end{array}$	26.7	15	25	15.000	[2000]	Chlorophyta: Chlorophyceae	ac.jpj Coleman & Colman 1980 [http://protist.i.hosei.			
18. Chi reinhar	lamydomonas dtii	Chl		$\begin{array}{l} \text{mmol } O_2 \ (\text{mol } Chl)^{-1} \\ \text{s}^{-1} \end{array}$	54.9	31	35	15.500	[2000]	Chlorophyta: Chlorophyceae	ac.jpj Coleman & Colman 1980 [http://protist.i.hosei.			
19. Chi reinhar	lamydomonas dtii	Chl		$\begin{array}{l} \text{mmol } O_2 \ (\text{mol } Chl)^{-1} \\ \text{s}^{-1} \end{array}$	17.3	9.7	15	19.400	[2000]	Chlorophyta: Chlorophyceae	ac.jpj Coleman & Colman 1980 [http://protist.i.hosei.			
20. Ch	lorella kessleri	Chl	MIN	μmol O₂ (mg Chl) ⁻¹ hr ⁻¹	25	14	27	12.188	[90]	Chlorophyta: Trebouxiophyceae	ac.jpj Hammouda & El- Sheekh 1994 [Lee & Lee 2001, Fig. 1b; Krienitz et al. 2004, Fig. 8 diam 5-6 um]			
21. Ch	lorella pyrenoidosa	Chl	MIN	μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹	9.9/9.0	0.6	24	0.643		Chlorophyta: Trebouxiophyceae	Burris 1977	late exp/ early stat		

22. Chlorella pyrenoidosa	W		μ l O ₂ (0.2 g WM) ⁻¹ (30	20	1	25	1.000		Chlorophyta: Trebouxiophyceae	Gest & Kamen 1948			
23. Chlorella pyrenoidosa	D		μ l O ₂ (mg DM) ⁻¹ hr ⁻¹	4.6	7.7	25	7.700	30	Chlorophyta: Trebouxiophyceae	Myers & Graham 1971	0.35	DM/V=0.179 pg/μm ³ Cbl/DM=5 19%	
24. Chlorella pyrenoidosa	D		μ mol O ₂ (g DM) ⁻¹	4.14	9.3	25	9.300		Chlorophyta: Trebouxiophyceae	Pickett 1975	0.282	011/2101-0.1070	
25. Chlorella pyrenoidosa	D		μ l O ₂ (mg DM) ⁻¹ hr ⁻¹	5.9	9.8	25	9.800	32	Chlorophyta: Trebouxiophyceae	Myers & Graham 1971	0.78	DM/V=0.197 pg/μm ³ Cbl/DM=4 52%	
26. Chlorella pyrenoidosa	D		μ mol O ₂ (g DM) ⁻¹	5.00	11.2	25	11.200		Chlorophyta: Trebouxiophyceae	Pickett 1975	0.361		
27. Chlorella pyrenoidosa	D		μ mol O ₂ (g DM) ⁻¹	5.16	11.6	25	11.600		Chlorophyta: Trebouxiophyceae	Pickett 1975	0.439		
28. Chlorella pyrenoidosa	D		μ l O ₂ (mg DM) ⁻¹ hr ⁻¹	8.7	15	25	15.000	34	Chlorophyta: Trebouxiophyceae	Myers & Graham 1971	1.3	DM/V=0.215 pg/μm ³ Chl/DM=3.92%	
29. Chlorella pyrenoidosa	D		μmol O₂ (g DM) ⁻¹ min ⁻¹	7.43	16.6	25	16.600		Chlorophyta: Trebouxiophyceae	Pickett 1975	0.613	0	
30. Chlorella pyrenoidosa	D		μ l O ₂ (mg DM) ⁻¹ hr ⁻¹	11.2	19	25	19.000	49	Chlorophyta: Trebouxiophyceae	Myers & Graham 1971	1.8	DM/V=0.252 pg/μm ³ Chl/DM=3.10%	
31. Chlorella pyrenoidosa	D		μ l O ₂ (mg DM) ⁻¹ hr ⁻¹	11.9	20	25	20.000	92	Chlorophyta: Trebouxiophyceae	Myers & Graham 1971	2.3	DM/V=0.256 pg/µm ³ Chl/DM=1.53%	
32. Chlorella pyrenoidosa	D		μ l O ₂ (mg DM) ⁻¹ hr ⁻¹	13.8	23	25	23.000	75	Chlorophyta: Trebouxiophyceae	Myers & Graham 1971	2.4	DM/V=0.242 pg/µm ³ Chl/DM=1.14%	
33. Coscinodiscus sp. C38B	С	MIN	g C (g cell C) ⁻¹ hr ⁻¹	0.0038	5.9	18	9.585	275000	Bacillariophyta: Coscinodiscophyceae	Blasco et al. 1982	0.62; Log	C/V=0.044 pg/µm ³ C/N=7.9 Chl a/C=0.93%	3.1
34. Coscinodiscus sp. CoA	С	MIN	g C (g cell C) ⁻¹ hr ⁻¹	0.0035	5.4	18	8.772	6200000	Bacillariophyta: Coscinodiscophyceae	Blasco et al. 1982	0.55; Log	C/V=0.026 pg/µm ³ C/N=6.7 Chl a/C=1.33%	2.4
35. Ditylum brightwellii	С	MIN	g C (g cell C) ⁻¹ hr ⁻¹	0.0019	3.0	18	4.874	118000	Bacillariophyta: Coscinodiscophyceae	Blasco et al. 1982	1.0; one division away from stationary phase	C/V=0.023 pg/µm ³ C/N=5.9 ChI a/C=1.41%	1.2
36. Dunaliella salina	W	MIN	ml O ₂ (10 ⁸ cells) ⁻¹ hr ⁻¹	1.08	4	20	5.657	1570	Chlorophyta: Chlorophyceae	Vladimirova & Zotin 1983, 1985 (data of Mironyuk & Einor 1968)			
37. Dunaliella salina	Chl		μ mol O ₂ (mg Chl) ⁻¹ hr ⁻¹	33.5	18	24	19.292		Chlorophyta: Chlorophyceae	Liska 2004			
38. Dunaliella tertiolecta	С	MIN	$10^{-5} \text{ mol } O_2 \text{ (mol C)}^{-1} \text{ s}^{-1}$	0.17	9.5	18	15.433	[120]	Chlorophyta: Chlorophyceae	Quigg & Beardall 2003 [Sciandra et al. 1997, Fig. 1]	0.2	Chl a/C=6.9% Pr/cell=15.8 pg C/N=4.4	2.8
39. Dunaliella tertiolecta	С		μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 40 pg C per cell	3.1	8.7	15	17.400	69	Chlorophyta: Chlorophyceae	Falkowski & Owens 1980	0; Log	C/V=0.580 pg/μm ³ C/N=3.1	1.8
40. Dunaliella tertiolecta	С		μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 41 pg C per cell	4.0	11	15	22.000	73	Chlorophyta: Chlorophyceae	Falkowski & Owens 1980	0; Log	C/V=0.562 pg/μm ³ C/N=3.0	2.2

	~				4.0	4 -	~~ ~~~	~ ~			0.00.1		•
41. Dunaliella tertiolecta	С		μmol O ₂ cell ⁻ ' min ⁻ ' × 10 ¹⁰ at 37 pg C per	5.2	16	15	32.000	84	Chlorophyta: Chlorophyceae	Falkowski & Owens 1980	0.09; Log	C/V=0.440 pg/µm³ C/N=3.2	3.4
42. Dunaliella tertiolecta	С		$10^{-5} \text{ mol } O_2 \text{ (mol } \text{C}\text{)}^{-1} \text{ s}^{-1}$	0.48	27	18	43.862	[120]	Chlorophyta: Chlorophyceae	Quigg & Beardall 2003 [Sciandra et al. 1997, Fig. 1]	0.7	Chl a/C=8.4% Pr/cell=8.24 pg C/N=7.6	14
43. Dunaliella tertiolecta	С		µmol O₂ cell ^{−1} min ^{−1} × 10 ¹⁰ at 31 pg C per cell	7.2	26	15	52.000	90	Chlorophyta: Chlorophyceae	Falkowski & Owens 1980	0.42; Log	C/V=0.341 pg/µm ³ C/N=3.4	5.9
44. Dunaliella tertiolecta	С		$10^{-5} \text{ mol } O_2 \text{ (mol } \text{C}\text{)}^{-1} \text{ s}^{-1}$	0.61	34	18	55.233	[120]	Chlorophyta: Chlorophyceae	Quigg & Beardall 2003 [Sciandra et al. 1997, Fig. 1]	0.3	Chl a/C=6.6% Pr/cell=8.75 pg C/N=5.6	13
45. Dunaliella tertiolecta	С		μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 28 pg C per cell	7.3	29	15	58.000	104	Chlorophyta: Chlorophyceae	Falkowski & Owens 1980	0.66; Log	C/V=0.269 pg/µm ³ C/N=3.8	7.4
46. Dunaliella tertiolecta	С		μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 30 pg C per cell	8.4	31	15	62.000	112	Chlorophyta: Chlorophyceae	Falkowski & Owens 1980	0.87; Log	C/V=0.269 pg/µm ³ C/N=4.1	8.6
47. Dunaliella tertiolecta	С		$10^{-5} \text{ mol } O_2 \text{ (mol } \text{C}\text{)}^{-1} \text{ s}^{-1}$	0.72	40	18	64.980	[120]	Chlorophyta: Chlorophyceae	Quigg & Beardall 2003 [Sciandra et al. 1997, Fig. 1]	1.1	Chl a/C=7.2% Pr/cell=8.12 pg C/N=2.6	6.9
48. Dunaliella tertiolecta	С		μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 29 pg C per cell	8.9	34	15	68.000	115	Chlorophyta: Chlorophyceae	Falkowski & Owens 1980	1.25; Log	C/V=0.252 pg/µm ³ C/N=5.3	12
49. Dunaliella tertiolecta	С		10 ⁻⁵ mol O ₂ (mol C) ⁻¹ s ⁻¹	1.6	90	18	146.205	[120]	Chlorophyta: Chlorophyceae	Quigg & Beardall 2003 [Sciandra et al. 1997, Fig. 1]	1.0	Chl a/C=10.3% C/N=4.2	25
50. Dunaliella tertiolecta	С		$10^{-5} \text{ mol } O_2 \text{ (mol } \text{C}\text{)}^{-1} \text{ s}^{-1}$	1.6	90	18	146.205	[120]	Chlorophyta: Chlorophyceae	Quigg & Beardall 2003 [Sciandra et al. 1997, Fig. 1]	1.2	Chl a/C=4.1% C/N=3.7	22
51. Dunaliella tertiolecta	С		$10^{-5} \text{ mol } O_2 \text{ (mol } \text{C)}^{-1} \text{ s}^{-1}$	1.7	95	18	154.328	[120]	Chlorophyta: Chlorophyceae	Quigg & Beardall 2003 [Sciandra et al. 1997, Fig. 1]	1.4	Chl a/C=3.3% C/N=4.3	27
52. Emiliania huxleyi	С	MIN	μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹ at Chl a/Corg = 0.031	14	8	15	16.000	[64]	Haptophyta: Prymnesiophyceae	Nielsen 1997 [Verity et al. 1992]	0.27	Chl a/Corg=3.1% Corg/Ctot=0.62 Corg/N=4.8	2.6
53. Emiliania huxleyi	С		μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹ at Chl a/Corg =	16	8.4	15	16.800	[64]	Haptophyta: Prymnesiophyceae	Nielsen 1997 [Verity et al. 1992]	0.30	Chl a/Corg=2.8% Corg/Ctot=0.62 Corg/N=6.0	3.3
54. Emiliania huxleyi	Chl		mg O_2 (mg Chl) ⁻¹ hr ⁻¹	0.60	10	17.5	16.818	[64]	Haptophyta: Prymnesiophyceae	Flameling & Kromkamp 1998 [Verity et al. 1992]	cells dark- adapted for 15 mins		
55. Emiliania huxleyi	С		μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹ at Chl a/Corg = 0.009	65	11	15	22.000	[64]	Haptophyta: Prymnesiophyceae	Nielsen 1997 [Verity et al. 1992]	0.87	Chl a/Corg=0.9% Corg/Ctot=0.62 Corg/N=5.1	3.7
56. Emiliania huxleyi	С		μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹ at Chl a/Corg = 0.029	22	12	15	24.000	[64]	Haptophyta: Prymnesiophyceae	Nielsen 1997 [Verity et al. 1992]	0.64	Chl a/Corg=2.9% Corg/Ctot=0.62 Corg/N=5.6	4.4

57. Emiliania huxleyi	С		μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹ at Chl a/Corg = 0 024	28	12	15	24.000	[64]	Haptophyta: Prymnesiophyceae	Nielsen 1997 [Verity et al. 1992]	0.68	Chl a/Corg=2.4% Corg/Ctot=0.62 Corg/N=5.7	4.8
58. Emiliania huxleyi	С		μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹ at Chl a/Corg = 0.020	32	12	15	24.000	[64]	Haptophyta: Prymnesiophyceae	Nielsen 1997 [Verity et al. 1992]	0.66	Chl a/Corg=2.0% Corg/Ctot=0.62 Corg/N=6.3	5.0
59. Emiliania huxleyi	С		μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹ at Chl a/Corg = 0.015	48	14	15	28.000	[64]	Haptophyta: Prymnesiophyceae	Nielsen 1997 [Verity et al. 1992]	0.85	Chl a/Corg=1.5% Corg/Ctot=0.62 Corg/N=4.9	4.4
60. Emiliania huxleyi	С		μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹ at Chl a/Corg = 0.019	42	15	15	30.000	[64]	Haptophyta: Prymnesiophyceae	Nielsen 1997 [Verity et al. 1992]	0.80	Chl a/Corg=1.9% Corg/Ctot=0.62 Corg/N=6.8	6.8
61. Emiliania huxleyi	С		μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹ at Chl a/Corg = 0.019	43	15	15	30.000	[64]	Haptophyta: Prymnesiophyceae	Nielsen 1997 [Verity et al. 1992]	0.72	Chl a/Corg=1.9% Corg/Ctot=0.62 Corg/N=5.3	5.4
62. Emiliania huxleyi	С		μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹ at Chl a/Corg = 0.018	46	16	15	32.000	[64]	Haptophyta: Prymnesiophyceae	Nielsen 1997 [Verity et al. 1992]	0.75	Chl a/Corg=1.8% Corg/Ctot=0.62 Corg/N=6.0	6.2
63. Emiliania huxleyi	С		μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹ at Chl a/Corg = 0.022	40	17	15	34.000	[64]	Haptophyta: Prymnesiophyceae	Nielsen 1997 [Verity et al. 1992]	0.73	Chl a/Corg=2.2% Corg/Ctot=0.62 Corg/N=6.3	6.9
64. Emiliania huxleyi	Chl		mg O_2 (mg Chl) ⁻¹ hr ⁻¹	1.75	30	17.5	50.454	[64]	Haptophyta: Prymnesiophyceae	Flameling & Kromkamp 1998 [Verity et al. 1992]	cells dark- adapted for 15 mins		
65. Emiliania huxleyi	Chl		mg O ₂ (mg Chl) ^{-1} hr ^{-1}	1.92	33	17.5	55.499	[64]	Haptophyta: Prymnesiophyceae	Flameling & Kromkamp 1998 [Verity et al. 1992]	cells dark- adapted for 15 mins		
66. Euglena gracilis	W	MIN	ml $O_2 (10^8 \text{ cells})^{-1} \text{ hr}^{-1}$	12.8	7	20	9.899	10300	Euglenozoa: Euglenophyceae	Vladimirova & Zotin 1983, 1985 (data of Cook 1966)	mino		
67. Euglena gracilis	W		ml $O_2 (10^8 \text{ cells})^{-1} \text{ hr}^{-1}$	16.0	9	20	12.728	9700	Euglenozoa: Euglenophyceae	Vladimirova & Zotin 1983, 1985 (data of Cook 1966)			
68. Fragilaria crotonensis	W	MIN	mg $O_2 (10^9 \text{ cells})^{-1} \text{ hr}^{-1}$	1.78	23	16	42.920	300	Bacillariophyta: Fragilariophyceae	Talling 1957			
69. Glenodinium sp.	Chl	MIN	μ mol O ₂ (mg Chl a) ⁻¹	61.7/1.3	26	24	27.866		Myzozoa: Dinophyceae	Burris 1977	late exp/ early stat		
70. Gonyaulax polyedra	Pr	MIN	μ mol O ₂ (mg Chl) ⁻¹ hr ⁻¹ at Chl a/Pr =	64.1	5.7	20	8.061	21000	Myzozoa: Dinophyceae	Sweeney 1986	late log	Pr/cell=7100 pg Chl a/cell=33.9 pg	
71. Gonyaulax tamarensis	С	MIN	10 ⁻³ μmol O ₂ (μg C) ⁻¹ hr ⁻¹	0.64	12.0	15	24.000	15150	Myzozoa: Dinophyceae	Langdon 1987	0.520	C/V=0.277 pg/µm ³ C/N=8.4 C/Chl a=87.0 C/cell=4190 pg	6.7
72. Gonyaulax tamarensis	С		10 ⁻³ μmol O₂ (μg C) ⁻¹ hr ⁻¹	0.82	15.3	15	30.600	14137	Myzozoa: Dinophyceae	Langdon 1987	0.310	C/V=0.218 pg/µm ³ C/N=7.5 C/Chl a=106.0 C/cell=3078 pg	7.7

73. Gonyaulax tamarensis	С		$10^{-3} \ \mu mol \ O_2 \ (\mu g \ C)^{-1} \ hr^{-1}$	1.13	21	15	42.000	13036	Myzozoa: Dinophyceae	Langdon 1987	0.023	C/V=0.195 pg/μm ³ C/N=7.2 C/Chl a=57.0 C/cell=2539 pg	10
74. Gonyaulax tamarensis	С		$10^{-3} \ \mu mol \ O_2 \ (\mu g \ C)^{-1} \ hr^{-1}$	1.22	22.8	15	45.600	13306	Myzozoa: Dinophyceae	Langdon 1987	0.098	C/V=0.209 pg/µm ³ C/N=8.2 C/Chl a=90.0	12
75. Gonyaulax tamarensis	С		10 ⁻³ μmol O ₂ (μg C) ⁻¹ hr ⁻¹	1.52	28.4	15	56.800	16210	Myzozoa: Dinophyceae	Langdon 1987	0.600	C/V=0.249 pg/µm ³ C/N=9.0 C/Chl a=172.0 C/cell=4035 pg	17
76. Gonyaulax tamarensis	С		$10^{-3} \ \mu mol \ O_2 \ (\mu g \ C)^{-1} \ hr^{-1}$	1.58	29.5	15	59.000	10653	Myzozoa: Dinophyceae	Langdon 1987	0.580	C/V=0.184 pg/µm ³ C/N=8.2 C/Chl a=171.0 C/cell=1957 pg	16
77. Gymnodinium nelsoni	W	MIN	ml O ₂ (10 ⁸ cells) ⁻¹ hr ⁻¹	28.5	1.1	20	1.556	148000	Myzozoa: Dinophyceae	Vladimirova & Zotin 1983, 1985 (data of Hochachka & Teal 1964)		0,00m=1001 pg	
78. Isochrysis galbana	С	MIN	g C (g cell C) ⁻¹ hr ⁻¹	0.09	5.8	18	9.422	30	Haptophyta: Prymnesiophyceae	Herzíg & Falkowski 1989	growth rate 0.18 day ⁻¹	C/cell=18pg N/cell=1pg C/V=0.6 pg/µm ³ Chl a/cell=0.07pg	7.0
79. Isochrysis galbana	С		g C (g cell C) ⁻¹ hr ⁻¹	0.09	5.8	18	9.422	30	Haptophyta: Prymnesiophyceae	Herzig & Falkowski 1989	growth rate 0.25 day ⁻¹	C/cell=16pg N/cell=1.2pg C/V=0.54 pg/µm ³ Chl a/cell=0.08pg	5.2
80. Isochrysis galbana	С		g C (g cell C) ⁻¹ hr ⁻¹	0.10	6.5	18	10.559	30	Haptophyta: Prymnesiophyceae	Herzig & Falkowski 1989	growth rate 0.37 day ⁻¹	C/cell=15pg N/cell=1.3pg C/V=0.5pg/µm ³ Chl a/cell=0.1pg	5.0
81. Isochrysis galbana	С		g C (g cell C) ⁻¹ hr ⁻¹	0.12	7.8	18	12.671	32	Haptophyta: Prymnesiophyceae	Herzig & Falkowski 1989	growth rate 0.48 day ⁻¹	C/cell=15pg N/cell=1.4pg C/V=0.44 pg/µm ³ Chl a/cell=0.11pg	5.6
82. Isochrysis galbana	С		g C (g cell C) ⁻¹ hr ⁻¹	0.12	7.8	18	12.671	33	Haptophyta: Prymnesiophyceae	Herzig & Falkowski 1989	growth rate 0.53 day ⁻¹	C/cell=14pg N/cell=1.4pg C/V=0.43 pg/µm ³ Chl a/cell=0.11pg	5.2
83. Isochrysis galbana	С		g C (g cell C) ⁻¹ hr ⁻¹	0.12	7.8	18	12.671	31	Haptophyta: Prymnesiophyceae	Herzig & Falkowski 1989	growth rate 0.59 day ⁻¹	C/cell=13pg N/cell=1.4pg C/V=0.42 pg/µm ³ Chl a/cell=0.12pg	4.8
84. Isochrysis galbana	С		g C (g cell C) ⁻¹ hr ⁻¹	0.15	9.7	18	15.758	34	Haptophyta: Prymnesiophyceae	Herzig & Falkowski 1989	growth rate 0.72 day ⁻¹	C/cell=13pg N/cell=1.5pg C/V=0.38 pg/µm ³ Chl a/cell=0.13pg	5.6

85. Isochrysis galbana	С		g C (g cell C) ^{-1} hr ^{-1}	0.18	11.7	18	19.007	34	Haptophyta: Prymnesiophyceae	Herzig & Falkowski 1989	growth rate 0.87 day ^{_1}	C/cell=11pg N/cell=1.5pg C/V=0.32 pg/µm ³ Chl a/cell=0.13	5.7
86. Isochrysis galbana	С		$\mu mol~O_2~cell^{-1}~min^{-1}~\times 10^{10}$ at 10.3 pg C per cell	1.1	12	18	19.494	37	Haptophyta: Prymnesiophyceae	Falkowski et al. 1985	0.30 (30 μ mol m ⁻² s ⁻¹); steady growth	C/cell=10.3 pg C/V=0.278 pg/µm ³ C/N=6.3 ChI/C=2.38%	5.0
87. Isochrysis galbana	С		$\mu mol~O_2~cell^{-1}~min^{-1}~\times 10^{10}$ at 12.4 pg C per cell	1.3	12	18	19.494	50	Haptophyta: Prymnesiophyceae	Falkowski et al. 1985	0.70 (70 μ mol m ⁻² s ⁻¹); steady growth	C/cell=12.4 pg C/V=0.248 pg/µm ³ C/N=5.5 ChI/C=1.72%	4.3
88. Isochrysis galbana	С		$\mu mol~O_2~cell^{-1}~min^{-1}~\times 10^{10}$ at 20.0 pg C per cell	2.3	13	18	21.119	57	Haptophyta: Prymnesiophyceae	Falkowski et al. 1985	1.2 (600 μ mol m ⁻² s ⁻¹); steady growth	C/cell=20.0 pg C/V=0.351 pg/µm ³ C/N=7.5 ChI/C=0.58%	6.4
89. Isochrysis galbana	С		g C (g cell C) ⁻¹ hr ⁻¹ at 10 pg C per cell	0.20	13	18	21.119	33	Haptophyta: Prymnesiophyceae	Herzig & Falkowski 1989	growth rate 0.96 day ⁻¹	C/cell=10pg N/cell=1.5pg C/V=0.3pg/µm ³ Chl.a/cell=0.13pg	5.8
90. Isochrysis galbana	С		$\mu mol~O_2~cell^{-1}~min^{-1}~\times 10^{10}$ at 15 pg C per cell	2.0	15	18	24.368	55	Haptophyta: Prymnesiophyceae	Falkowski et al. 1985	1.10 (150 μmol m ⁻² s ⁻¹) ; steady growth	C/cell=15.0 pg C/V=0.273 pg/µm ³ C/N=5.7 ChI/C=1.37%	5.7
91. Isochrysis galbana	С		$\mu mol~O_2~cell^{-1}~min^{-1}\times 10^{10}$ at 16.5 pg C per cell	2.2	20	18	32.490	52	Haptophyta: Prymnesiophyceae	Falkowski et al. 1985	1.2 (320 μ mol m ⁻² s ⁻¹); steady growth	C/cell=16.5 pg C/V=0.317 pg/µm ³ C/N=3.7 ChI/C=0.88%	4.9
92. Leptocylindrus danicus	С	MIN	pg C (pg cell C) ⁻¹ hr ⁻¹	0.0025	4	15	8.000	1158	Bacillariophyta: Coscinodiscophyceae	Verity 1981, 1982a,b	mean minimum value among 49 combinatio ns of temperatur e, daylenght	$\begin{array}{l} \log C(pg){=}0.707 \ \text{log} \\ V(\mu\text{m}^3) {-}0.225 \\ \text{log} N(pg){=}0.718 \ \text{log} \\ V(\mu\text{m}^3) {-}1.024 \\ C/ChI a{=}20{-}100 \\ \text{depending on} \\ \text{temperature and day} \\ \text{length} \\ C/N{=}5.8 \end{array}$	1.5

and

irradiance, growth rates from 0.1 to 3.0 day⁻¹

93. Monochrysis lutheri	С	MIN	g C (g cell C) ⁻¹ hr ⁻¹	0.0052	8	20	11.314	[40]	Haptophyta: Prymnesiophyceae?	Laws & Caperon 1976 [estimated from C content using the formula of Verity et al. 1992 for non- diatomous algae]	0.19	C/cell=11.3 pg N/cell=0.885 pg [Verity et al. 1992: C/V (pg//µm ³)= =0.545×V ^{-0.181}]	6.9
94. Monochrysis lutheri	С		g C (g cell C) ^{_1} hr ^{_1}	0.0054	8.4	20	11.879	[25]	Haptophyta: Prymnesiophyceae?	Laws & Caperon 1976 [estimated from C content using the formula of Verity et al. 1992 for non- diatomous algae]	0.38	C/cell=7.58 pg N/cell=0.854 pg [Verity et al. 1992: C/V (pg//µm ³)= =0.545×V ^{-0.181}]	5.0
95. Monochrysis lutheri	С		g C (g cell C) ^{_1} hr ^{_1}	0.0082	13	20	18.385	[26]	Haptophyta: Prymnesiophyceae?	Laws & Caperon 1976 [estimated from C content using the formula of Verity et al. 1992 for non- diatomous algae]	0.60	C/cell=7.87 pg N/cell=1.058 pg [Verity et al. 1992: C/V (pg//µm ³)= =0.545×V ^{-0.181}]	6.4
96. Monochrysis lutheri	С		g C (g cell C) ⁻¹ hr ⁻¹	0.0091	14	20	19.799	[29]	Haptophyta: Prymnesiophyceae?	Laws & Caperon 1976 [estimated from C content using the formula of Verity et al. 1992 for non- diatomous algae]	0.77	C/cell=8.62 pg N/cell=1.289 pg [Verity et al. 1992: C/V (pg//µm ³)= =0.545×V ^{-0.181}]	6.2
97. Nannochloris atomus	С	MIN	pg C (pg cell C) ⁻¹ day ⁻¹	0.14	9	23	10.338	[6]	Chlorophyta: Chlorophyceae	Geider & Osborne 1989 [Sobrino et al. 2005, diam 2 μm, 0.025 pg Chl a/cell]			
98. Navicula pelliculosa	D	MIN	μmol O ₂ (10 ⁸ cells) ⁻¹ hr ⁻¹ at 28.6 pg DM (cell) ⁻¹	2	13	20	18.385	[95]	Bacillariophyta: Bacillariophyceae	Coombs et al. 1967a,b [calculated from dry mass]		Pr/DM=0.393 C/DM=0.412 Carbohydr./DM=0.1 54 Lipids/DM=0.338	
99. Ochromonas malhamensis	D	MIN	μ l O ₂ (mg DM) ⁻¹ hr ⁻¹	15	25	28	20.306		Ochrophyta: Chrysophyceae	Weiss & Brown 1959	starved 24 hr in the dark		
100. Ochromonas sp.	W	MIN	nl O ₂ (cell) ^{-1} hr ^{-1}	7.0×10 ⁻⁵	5.6	20	7.920	70	Ochrophyta: Chrysophyceae	Fenchel & Finlay 1983	starved		
101. Olisthodiscus luteus	С		10 ⁻³ μmol O₂ (μg C) ⁻¹ hr ⁻¹	0.26	4.9	15	9.800	1023	Ochrophyta: Raphidophyceae	Langdon 1987	0.340	C/V=0.199 pg/µm ³ C/N=7.9 C/Chl a=46.0 C/cell=204 pg	2.6
102. Olisthodiscus luteus	С		10 ⁻³ μmol O ₂ (μg C) ⁻¹ hr ⁻¹	0.34	6.4	15	12.800	905	Ochrophyta: Raphidophyceae	Langdon 1987	0.610	C/V=0.229 pg/µm ³ C/N=8.3 C/Chl a=46.0 C/cell=207 pg	3.5
103. Olisthodiscus luteus	С		$10^{-3} \ \mu mol \ O_2 \ (\mu g \ C)^{-1} \ hr^{-1}$	0.38	7.1	15	14.200	945	Ochrophyta: Raphidophyceae	Langdon 1987	0.174	C/V=0.194 pg/μm ³ C/N=7.5 C/Chl a=33.0 C/cell=183 pg	3.6

104. Olisthodiscus luteus	С		10 ⁻³ μmol O₂ (μg C) ⁻¹ hr ⁻¹	0.47	8.8	15	17.600	833	Ochrophyta: Raphidophyceae	Langdon 1987	0.056	C/V=0.202 pg/µm ³ C/N=7.5 C/Chl a=38.0	4.4
105. Olisthodiscus luteus	С		10 ⁻³ μmol Ο₂ (μg C) ⁻¹ hr ⁻¹	0.56	10.5	15	21.000	1124	Ochrophyta: Raphidophyceae	Langdon 1987	0.880	C/cell=168 pg C/V=0.266 pg/μm ³ C/N=9.5 C/Chl a=73.5	6.7
106. Olisthodiscus luteus	С		10 ⁻³ μmol O ₂ (μg C) ⁻¹ hr ⁻¹	0.70	13.1	15	26.200	1150	Ochrophyta: Raphidophyceae	Langdon 1987	0.810	C/Cell=299 pg C/V=0.273 pg/µm ³ C/N=9.7 C/Chl a=62.0 C/cell=314 pg	8.5
107. Peridinium gatunense	Chl	MIN	μ mol O ₂ (5 mg Chl) ⁻¹ min ⁻¹	5	33	22	40.628	[10000]	Myzozoa: Dinophyceae	Sukenik et al. 2002, Fig. 5 [Berman- Frank & Frez 1996]		C/Cell=314 pg	
108. Phaeocystis globosa	Chl	MIN	mg O_2 (mg Chl) ⁻¹ hr ⁻¹	1.49	26	17.5	43.727	[106]	Haptophyta: Prymnesiophyceae	Flameling & Flameling & Kromkamp 1998 [Olenina et al. 2006]	cells dark- adapted for 15		
109. Phaeocystis globosa	Chl		mg O_2 (mg Chl) ⁻¹ hr ⁻¹	1.83	32	17.5	53.817	[106]	Haptophyta: Prymnesiophyceae	Flameling & Kromkamp 1998 [Olenina et al. 2006]	cells dark- adapted for 15		
110. Phaeocystis globosa	Chl		mg O_2 (mg Chl) ⁻¹ hr ⁻¹	2.63	46	17.5	77.362	[106]	Haptophyta: Prymnesiophyceae	Flameling & Kromkamp 1998 [Olenina et al. 2006]	mins cells dark- adapted for 15		
111. Phaeodactylum tricornutum	С	MIN	$10^{-5} \text{ mol } O_2 \text{ (mol } \text{C}\text{)}^{-1} \text{ s}^{-1}$	0.38	21	18	34.115	[120]	Bacillariophyta: Bacillariophyceae	Quigg & Beardall 2003 [Glover et al.	mins 1.2		
112. Phaeodactylum tricornutum	Chl		mg O_2 (mg Chl) ⁻¹ hr ⁻¹	1.23	21	15	42.000	[120]	Bacillariophyta: Bacillariophyceae	Flameling & Kromkamp 1998 [Glover et al. 1987]	cells dark- adapted for 15		
113. Phaeodactylum tricornutum	Chl		mg O_2 (mg Chl) ⁻¹ hr ⁻¹	1.33	23	15	46.000	[120]	Bacillariophyta: Bacillariophyceae	Flameling & Kromkamp 1998 [Glover et al. 1987]	cells dark- adapted for 15		
114. Phaeodactylum tricornutum	С		$10^{-5} \text{ mol } O_2 \text{ (mol } \text{C})^{-1} \text{ s}^{-1}$	0.51	29	18	47.111	[120]	Bacillariophyta: Bacillariophyceae	Quigg & Beardall 2003 [Glover et al.	mins 0.55	Chl a/C=4.5% Pr/cell=3.49 pg	9.3
115. Phaeodactylum tricornutum	Chl		mg O_2 (mg Chl) ⁻¹ hr ⁻¹	1.49	26	15	52.000	[120]	Bacillariophyta: Bacillariophyceae	Flameling & Kromkamp 1998 [Glover et al. 1987]	cells dark- adapted for 15 mins	0/11-4.9	
116. Phaeodactylum tricornutum	С		$10^{-5} \text{ mol } O_2 \text{ (mol } \text{C}\text{)}^{-1} \text{ s}^{-1}$	0.63	35	18	56.858	[120]	Bacillariophyta: Bacillariophyceae	Quigg & Beardall 2003 [Glover et al. 1987]	0.2	Chl a/C=4.6% Pr/cell=2.73 pg C/N=4 4	10
117. Phaeodactylum tricornutum	С		µmol O₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 13 pg C per cell	4.21	36	18	58.482	[60]	Bacillariophyta: Bacillariophyceae	Greene et al. 1991 [calculated from Chl a content]		Chl a/cell=0.250 pg Chl a/C=1.94% C/N=5.3	13

118. Phaeodactylum tricornutum	С		$10^{-5} \text{ mol } O_2 \text{ (mol } \text{C})^{-1} \text{ s}^{-1}$	0.67	38	18	61.731	[120]	Bacillariophyta: Bacillariophyceae	Quigg & Beardall 2003 [Glover et al. 1987]	0.95	Chl a/C=3.4% C/N=4.4	11
119. Phaeodactylum tricornutum	С		$10^{-5} \text{ mol } O_2 \text{ (mol C)}^{-1} \text{ s}^{-1}$	0.76	43	18	69.854	[120]	Bacillariophyta: Bacillariophyceae	Quigg & Beardall 2003 [Glover et al.	1.15	Chl a/C=2.1% Pr/cell=2.34 pg C/N=5.3	15
120. Phaeodactylum tricornutum	С		$10^{-5} \text{ mol } O_2 \text{ (mol } \text{C}\text{)}^{-1} \text{ s}^{-1}$	0.80	45	18	73.103	[120]	Bacillariophyta: Bacillariophyceae	Quigg & Beardall 2003 [Glover et al. 1987]	1	Chl a/C=5.6% C/N=4.6	14
121. Phaeodactylum tricornutum	С		$10^{-5} \text{ mol } O_2 \text{ (mol } \text{C}\text{)}^{-1} \text{ s}^{-1}$	0.93	52	18	84.474	[120]	Bacillariophyta: Bacillariophyceae	Quigg & Beardall 2003 [Glover et al. 1987]	0.4	Chl a/C=7.5% Pr/cell=3.85 pg	
122. Prorocentrum micans	С	MIN	μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 1068 pg C per cell	70	7.3	18	11.859	4340	Myzozoa: Dinophyceae	Falkowski et al. 1985	0.075 (70 μ mol m ⁻² s ⁻¹); steady growth	C/cell=1068 pg C/V=0.246 pg/μm ³ C/N=3.7 ChI/C=0.62%	0.5
123. Prorocentrum micans	С		$\mu mol~O_2~cell^{-1}~min^{-1}\times 10^{10}$ at 1096 pg C per cell	85	8.7	18	14.133	5096	Myzozoa: Dinophyceae	Falkowski et al. 1985	0.108 (150 μ mol m ⁻² s ⁻¹); steady growth	C/cell=1096 pg C/V=0.215 pg/μm ³ C/N=4.1 Chl/C=0.47%	2.0
124. Prorocentrum micans	С		$\mu mol~O_2~cell^{-1}~min^{-1}\times 10^{10}$ at 1117 pg C per cell	125	13	18	21.119	5122	Myzozoa: Dinophyceae	Falkowski et al. 1985	0.164 (320 μ mol m ⁻² s ⁻¹); steady growth	C/cell=1117 pg C/V=0.218 pg/μm ³ C/N=4.1 Chl/C=0.29%	3.4
125. Prorocentrum micans	С		$\mu mol~O_2~cell^{-1}~min^{-1}\times 10^{10}$ at 1178 pg C per cell	150	14	18	22.743	5350	Myzozoa: Dinophyceae	Falkowski et al. 1985	0.178 (600 μ mol m ⁻² s ⁻¹); steady growth	C/cell=1178 pg C/V=0.220 pg/μm ³ C/N=3.9 Chl/C=0.24%	3.7
126. Scenedesmus obliquus	W	MIN	ml O ₂ $(10^8 \text{ cells})^{-1} \text{ hr}^{-1}$	0.04	1	20	1.414	220	Chlorophyta: Chlorophyceae	Vladimirova & Zotin 1983, 1985 (data of Margalef 1954)	growin		
127. Scenedesmus protuberans	Chl	MIN	mg O ₂ (mg Chl) ⁻¹ hr ⁻¹	0.36	6.3	20	8.910		Chlorophyta: Chlorophyceae	Flameling & Kromkamp 1998	cells dark- adapted for 15 mins		
128. Scenedesmus protuberans	Chl		mg O ₂ (mg Chl) ⁻¹ hr ⁻¹	0.50	8.7	20	12.304		Chlorophyta: Chlorophyceae	Flameling & Kromkamp 1998	cells dark- adapted for 15 mins		
129. Scenedesmus protuberans	Chl		mg O ₂ (mg Chl) ⁻¹ hr ⁻¹	0.67	12	20	16.971		Chlorophyta: Chlorophyceae	Flameling & Kromkamp 1998	cells dark- adapted for 15 mins		

130. Scenedesmus	С	MIN	μmol O ₂ (mg C) ⁻¹ (6	1.3	4	20	5.657	[80]	Chlorophyta:	Healey 1979	3 days of	C/cell=8 pg	4.0
quadricauda			hr) ⁻¹						Chlorophyceae	[calculated from C content]	nitrate deprivatio n	C/N=15 C/P=33 Chl a/C=0.8% Pr/C=0.45 Cathobydr/C=0.81	
131. Scenedesmus quadricauda	С		µmol O₂ (mg C) ⁻¹ (6 hr) ⁻¹	1.4	4.4	20	6.223	[70]	Chlorophyta: Chlorophyceae	Healey 1979 [calculated from C content]	7 days of P deprivatio n	C/cell=10 pg C/N=6.2 C/P=204 Chl a/C=1.5% Pr/C=0.72 Carbobydr/C=0.82	1.8
132. Scenedesmus quadricauda	С		μmol O ₂ (mg C) ⁻¹ (6 hr) ⁻¹	2.0	6.2	20	8.768		Chlorophyta: Chlorophyceae	Healey 1979	addition of N after 3 days of nitrate deprivatio n	24 hr after addition of N to 2 days' N- starved cells: C/cell=9pg C/N=5.1 C/P=19 Chl a/C=1.3% Pr/C=0.72 Carbobydr/C=0.72	
133. Scenedesmus quadricauda	С		μ mol O ₂ (mg C) ⁻¹ (6 hr) ⁻¹	2.2	6.8	20	9.617		Chlorophyta: Chlorophyceae	Healey 1979	addition of P after 7 days of P deprivatio n	36 hr after addition of P to 3 days' P- starved cells: C/cell=12pg C/N=4.7 C/P=26 Chl a/C=3.4% Pr/C=0.98 Carbobydr/C=0.54	
134. Selenastrum capricornutum	Chl	MIN	nmol O ₂ (10 ⁶ cells) ⁻¹ min ⁻¹ at 0.31 pg Chl a per cell	0.12	13	21	17.154	[50]	Chlorophyta: Chlorophyceae	Beardall et al. 1997 [Hall & Golding 1998]	(550 μmol m ⁻² s ⁻¹ ; 22 hr in darkness)	Galbonyuno-0.04	
135. Selenastrum capricornutum	Chl		nmol O ₂ (10 ⁶ cells) ⁻¹ min ⁻¹ at 0.35 pg Chl a per cell	0.15	14	21	18.473	[50]	Chlorophyta: Chlorophyceae	Beardall et al. 1997 [Hall & Golding 1998]	$(100 \ \mu mol m^{-2} \ s^{-1}; 0$ hr in darkness)		
136. Selenastrum capricornutum	Chl		nmol O ₂ (10 ⁶ cells) ⁻¹ min ⁻¹ at 0.29 pg Chl a per cell	0.12	14	21	18.473	[50]	Chlorophyta: Chlorophyceae	Beardall et al. 1997 [Hall & Golding 1998]	(100 μ mol m ⁻² s ⁻¹ ; 3.8 hr in darkness)		
137. Selenastrum capricornutum	Chl		nmol O₂ (10 ⁶ cells) ⁻¹ min ⁻¹ at 0.38 pg Chl a per cell	0.16	14	21	18.473	[50]	Chlorophyta: Chlorophyceae	Beardall et al. 1997 [Hall & Golding 1998]	$(100 \ \mu mol m^{-2} \ s^{-1}; 22 hr in darkness)$		
138. Selenastrum capricornutum	Chl		nmol O ₂ (10 ⁶ cells) ⁻¹ min ⁻¹ at 0.28 pg Chl a per cell	0.14	17	21	22.432	[50]	Chlorophyta: Chlorophyceae	Beardall et al. 1997 [Hall & Golding 1998]	(300 μmol m ⁻² s ⁻¹ ; 22 hr in darkness)		

139. Selenastrum capricornutum	Chl		nmol O ₂ (10 ⁶ cells) ⁻¹ min ⁻¹ at 0.22 pg Chl a per cell	0.14	21	21	27.710	[50]	Chlorophyta: Chlorophyceae	Beardall et al. 1997 [Hall & Golding 1998]	(300 μmol m ⁻² s ⁻¹ ; 3.8 hr in darkness)		
140. Selenastrum capricornutum	Chl		nmol O ₂ (10 ⁶ cells) ⁻¹ min ⁻¹ at 0.32 pg Chl a per cell	0.20	21	21	27.710	[50]	Chlorophyta: Chlorophyceae	Beardall et al. 1997 [Hall & Golding 1998]	$(550 \ \mu mol m^{-2} \ s^{-1};$ 3.8 hr in darkness)		
141. Selenastrum capricornutum	Chl		nmol O ₂ (10 ⁶ cells) ⁻¹ min ⁻¹ at 0.30 pg Chl a per cell	0.23	26	21	34.307	[50]	Chlorophyta: Chlorophyceae	Beardall et al. 1997 [Hall & Golding 1998]	(300 μ mol m ⁻² s ⁻¹ ; 0 hr in		
142. Selenastrum capricornutum	Chl		nmol O ₂ (10 ⁶ cells) ⁻¹ min ⁻¹ at 0.28 pg Chl a per cell	0.48	57	21	75.212	[50]	Chlorophyta: Chlorophyceae	Beardall et al. 1997 [Hall & Golding 1998]	$(550 \ \mu mol)$ m ⁻² s ⁻¹ ; 0 hr in darkness)		
143. Selenastrum minutum	Chl	MIN	fmol O ₂ cell ⁻¹ hr ⁻¹	4	6.4	20	9.051	77	Chlorophyta: Chlorophyceae	Theodorou et al. 1991	0.6	Chl/cell=0.235 pg	
144. Selenastrum minutum	Chl		fmol O_2 cell ⁻¹ hr ⁻¹	24	43	20	60.811	69	Chlorophyta: Chlorophyceae	Theodorou et al. 1991	1.68	Chl/cell=0.717 pg	
145. Skeletonema costatum	С	MIN	10 ⁻³ μmol Ο ₂ (μg C) ⁻¹ hr ⁻¹	0.11	2.1	15	4.200	65	Bacillariophyta: Coscinodiscophyceae	Langdon 1987	0.056	C/cell=16 pg C/V=0.246 pg/µm ³ C/N=6.8	0.9
146. Skeletonema costatum	С		μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 14.6 pg C per	0.47	2.6	15	5.200	77	Bacillariophyta: Coscinodiscophyceae	Falkowski & Owens 1980	0.19; Log	C/Chl a=22.9 C/V=0.260 pg/µm ³ C/N=4.5	0.7
147. Skeletonema costatum	С		μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 20 pg C per	0.59	3.3	15	6.600	79	Bacillariophyta: Coscinodiscophyceae	Falkowski & Owens 1980	0.28; Log	C/V=0.253 pg/µm ³ C/N=3.8	0.8
148. Skeletonema costatum	С		μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 19 pg C per cell	1.0	5.9	15	11.800	82	Bacillariophyta: Coscinodiscophyceae	Falkowski & Owens 1980	0.45; Log	C/V=0.232 pg/µm ³ C/N=4.3	1.7
149. Skeletonema costatum	С		g C (g cell C) ⁻¹ hr ⁻¹	0.0055	8.6	18	13.971	127	Bacillariophyta: Coscinodiscophyceae	Blasco et al. 1982	1.87; one division away from stationary phase	C/V=0.094 pg/µm ³ C/N=6.5 Chl a/C=1.56%	3.7
150. Skeletonema costatum	С		µmol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 17.5 pg C per cell	1.5	9.3	15	18.600	84	Bacillariophyta: Coscinodiscophyceae	Falkowski & Owens 1980	0.62; Log	C/V=0.214 pg/µm ³ C/N=3.4	2.1
151. Skeletonema costatum	С		10 ⁻³ μmol Ο ₂ (μg C) ⁻¹ hr ⁻¹	0.60	11.2	15	22.400		Bacillariophyta: Coscinodiscophyceae	Langdon 1987	0.330	C/cell=15 pg C/N=8.2 C/Cbl a=18 0	6.1
152. Skeletonema costatum	Chl		μ mol O ₂ (mg Chl) ⁻¹ hr ⁻¹	20	11.2	15	22.400		Bacillariophyta: Coscinodiscophyceae	Smith et al. 1992		0, 011 a=10.0	
153. Skeletonema costatum	Chl		μ mol O ₂ (mg Chl) ⁻¹ hr ⁻¹	23	13	15	26.000		Bacillariophyta: Coscinodiscophyceae	Smith et al. 1992			
154. Skeletonema costatum	С		10 ⁻³ μmol O ₂ (μg C) ⁻¹ hr ⁻¹	0.80	14.9	15	29.800		Bacillariophyta: Coscinodiscophyceae	Langdon 1987	1.410	C/cell=14 pg C/N=7.5 C/Chl a=18.9	7

155. Skeletonema costatum	Chl		μ mol O ₂ (mg Chl) ⁻¹	27.5	15.4	15	30.800		Bacillariophyta: Coscinodiscophyceae	Smith et al. 1992			
156. Skeletonema costatum	С		10 ⁻³ μmol Ο ₂ (μg C) ⁻¹ hr ⁻¹	0.83	15.5	15	31.000		Bacillariophyta: Coscinodiscophyceae	Langdon 1987	2.410	C/cell=31 pg C/N=8.1	8.4
157. Skeletonema costatum	С		$10^{-3} \ \mu mol \ O_2 \ (\mu g \ C)^{-1} \ hr^{-1}$	0.84	15.7	15	31.400		Bacillariophyta: Coscinodiscophyceae	Langdon 1987	1.240	C/Chi a=82.4 C/cell=16 pg C/N=6.4	6.7
158. Skeletonema costatum	С		μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 14 pg C per	2.3	16	15	32.000	91	Bacillariophyta: Coscinodiscophyceae	Falkowski & Owens 1980	0.95; Log	C/V=0.154 pg/μm ³ C/N=5.6	6.9
159. Skeletonema costatum	С		μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 16 pg C per	2.3	16	15	32.000	88	Bacillariophyta: Coscinodiscophyceae	Falkowski & Owens 1980	0.77; Log	C/V=0.182 pg/μm ³ C/N=3.7	4.0
160. Skeletonema costatum	Chl		μ mol O ₂ (mg Chl) ⁻¹ hr ⁻¹	28	16	15	32.000		Bacillariophyta: Coscinodiscophyceae	Smith et al. 1992			
161. Skeletonema costatum	С		10 ⁻³ μmol O ₂ (μg C) ⁻¹ hr ⁻¹	0.90	16.8	15	33.600	124	Bacillariophyta: Coscinodiscophyceae	Langdon 1987	1.880	C/cell=16 pg C/V=0.129 pg/μm ³ C/N=6.4 C/Cbl 2=51 3	7.2
162. Skeletonema costatum	С		µmol O₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 15 pg C per cell	2.2	18	15	36.000	92	Bacillariophyta: Coscinodiscophyceae	Falkowski & Owens 1980	0.88; Log	C/V=0.163 pg/μm ³ C/N=5.0	6.1
163. Skeletonema costatum	С		10 ⁻³ μmol O ₂ (μg C) ⁻¹ hr ⁻¹	1.05	19.6	15	39.200		Bacillariophyta: Coscinodiscophyceae	Langdon 1987	2.340	C/cell=18 pg C/Chl a=54.4	
164. Skeletonema costatum	С		10 ⁻³ μmol Ο₂ (μg C) ⁻¹ hr ⁻¹	1.20	22.4	15	44.800	124	Bacillariophyta: Coscinodiscophyceae	Langdon 1987	1.930	C/cell=22 pg C/V=0.177 pg/µm ³ C/N=8.2	12
165. Skeletonema costatum	С		$10^{-3} \ \mu mol \ O_2 \ (\mu g \ C)^{-1} \ hr^{-1}$	1.20	22.4	15	44.800		Bacillariophyta: Coscinodiscophyceae	Langdon 1987	2.370	C/cell=29 pg C/N=9.0 C/Cbl a=38 7	13
166. Skeletonema costatum	Chl		μ mol O ₂ (mg Chl) ⁻¹ hr ⁻¹	62.6	35	15	70.000		Bacillariophyta: Coscinodiscophyceae	Smith et al. 1992		0,011 0-00.1	
167. Skeletonema costatum	Chl		μ mol O ₂ (mg Chl) ⁻¹ hr ⁻¹	96	54	15	108.000		Bacillariophyta: Coscinodiscophyceae	Smith et al. 1992			
168. Stephanodiscus neoastraea	С	MIN	mg O ₂ (mg ChI a) ⁻¹ hr ⁻¹ at ChI a/C = 0.052	0.3	8.4	20	11.879	[14000]	Bacillariophyta: Coscinodiscophyceae	Fietz & Nicklisch 2002 [Olenina et al. 2006]		Silicates/DM=38% ODM/V=0.27 C/N=4.6 C/ODM=0.46 Chl a/ODM=0.024	2.8
169. Strombidium capitatum	С	MIN	nl O ₂ cell ⁻¹ hr ⁻¹ at 2.8×10 ³ pg C per cell	0.67	19	15	38.000	200000	Ologotrichia (ciliate)	Crawford & Stoecker 1996, Fig. 3	largest cells, little mortality during 24 hr starvation, active swimmer	The C/V ratio applied by the authors was 0.14 $pg/\mu m^3$ based on the data of Putt & Stoecker 1989 for ciliates	

170. Symbiodinium sp. (zooxanthellae from Aiptasia pallida)	Chl	MIN	$\mu g O_2 (\mu g Chl)^{-1} hr^{-1}$	0.86	15	25	15.000	[500]	Myzozoa: Dinophyceae	Goulet et al. 2005 [calculated from mean Chl a content]		Chl a/cell=1.9 pg	
171. Symbiodinium sp. (zooxanthellae from Aiptasia pallida)	Chl		μ g O ₂ (μ g Chl) ⁻¹ hr ⁻¹	1.24	22	25	22.000	[500]	Myzozoa: Dinophyceae	Goulet et al. 2005 [calculated from mean Chl a content]		Chl a/cell=2.8 pg	
172. Symbiodinium sp. (zooxanthellae from Aiptasia pallida)	Chl		μ g O ₂ (μ g Chl) ⁻¹ hr ⁻¹	2.33	41	32	25.238	[500]	Myzozoa: Dinophyceae	Goulet et al. 2005 [calculated from mean Chl a content]		Chl a/cell=2.8 pg	
173. Symbiodinium sp. (zooxanthellae from Aiptasia pallida)	Chl		μ g O ₂ (μ g Chl) ⁻¹ hr ⁻¹	4.26	77	32	47.399	[500]	Myzozoa: Dinophyceae	Goulet et al. 2005 [calculated from mean Chl a content]		Chl a/cell=1.9 pg	
174. Symbiodinium sp. (zooxanthellae from Aiptasia pallida)	Chl		μ g O ₂ (μ g Chl) ⁻¹ hr ⁻¹	6.26	109	34	58.412	[500]	Myzozoa: Dinophyceae	Goulet et al. 2005 [calculated from mean Chl a content]		Chl a/cell=2.8 pg	
175. Symbiodinium sp. (zooxanthellae from Aiptasia pallida)	Chl		μ g O ₂ (μ g Chl) ⁻¹ hr ⁻¹	6.26	109	34	58.412	[500]	Myzozoa: Dinophyceae	Goulet et al. 2005 [calculated from mean Chl a content]		Chl a/cell=1.9 pg	
176. Symbiodinium sp. (zooxanthellae from Pocillopora capitata)	Chl	MIN	$\mu mol O_2 (mg Chl a)^{-1} hr^{-1}$	16.5/2.4	4	24	4.287		Myzozoa: Dinophyceae	Burris 1977			
177. Terpsinoe musica	D	MIN	mg O ₂ (g DM) ⁻¹ hr ⁻¹	2.5	2.9	25	2.900		Bacillariophyta:	Necchi 2004			
178. Thalassiosira allenii	С	MIN	g C (g cell C) ⁻¹ day ⁻¹	0.04	2.6	20	3.677	[300]	Bacillariophyta: Coscinodiscophyceae	Geider & Osborne 1989 (data of Laws & Wong 1978) [Cózar & Echevarría 2005, Table 11			
179. Thalassiosira nordenskioeldii	С	MIN	g C (g cell C) ⁻¹ hr ⁻¹	0.0013	2	0.5	10.928	[500]	Bacillariophyta: Coscinodiscophyceae	Sakshaug et al. 1991 [calculated from C content using the formula of Verity 1981 for the similar- sized diatom Leptocylindrus danicus]	0.12	N/cell=9.0 pg C/cell=48 pg Chl a/cell=3.1 pg	0.7
180. Thalassiosira nordenskioeldii	С		g C (g cell C) ⁻¹ hr ⁻¹	0.0015	2.3	0.5	12.568	[470]	Bacillariophyta: Coscinodiscophyceae	Sakshaug et al. 1991 [calculated from C content using the formula of Verity 1981 for the similar- sized diatom Leptocylindrus danicus]	0.33	N/cell=9.1 pg C/cell=46 pg Chl a/cell=1.9 pg	0.7
181. Thalassiosira nordenskioeldii	С		g C (g cell C) ⁻¹ hr ⁻¹	0.0024	3.7	0.5	20.217	[430]	Bacillariophyta: Coscinodiscophyceae	Sakshaug et al. 1991 [calculated from C content using the formula of Verity 1981 for the similar- sized diatom Leptocylindrus danicus]	0.10	N/cell=7.8 pg C/cell=43 pg Chl a/cell=2.7 pg	1.4

182. Thalassiosira nordenskioeldii	С		g C (g cell C) ⁻¹ hr ⁻¹	0.0029	4.5	0.5	24.589	[830]	Bacillariophyta: Coscinodiscophyceae	Sakshaug et al. 1991 [calculated from C content using the formula of Verity 1981 for the similar- sized diatom Leptocylindrus danicus]	0.33	N/cell=13 pg C/cell=69 pg Chl a/cell=1.2 pg	1.6
183. Thalassiosira pseudonana	Chl	MIN	μ mol O ₂ (mg Chl a) ⁻¹ hr ⁻¹	74.6/8.3	5	24	5.359		Bacillariophyta: Coscinodiscophyceae	Burris 1977	late exp/ early stat		
184. Thalassiosira pseudonana	С		g C (g cell C) ⁻¹ hr ⁻¹	0.0080	12.4	18	20.144	77	Bacillariophyta: Coscinodiscophyceae	Blasco et al. 1982	1.92; Log	C/V=0.142 pg/μm ³ C/N=7.9 Chl a/C=1.33%	6.5
185. Thalassiosira weissflogii	С	MIN	μ mol O ₂ cell ⁻¹ min ⁻¹ × 10 ¹⁰ at 275 pg C per cell	20	8.1	18	13.158	1172	Bacillariophyta: Coscinodiscophyceae	Falkowski et al. 1985	0.25 (30 μ mol m ⁻² s ⁻¹); steady growth	C/cell=275 pg C/V=0.235 pg/µm ³ C/N=6.3 ChI/C=5.00%	3.4
186. Thalassiosira weissflogii	С		g C (g cell C) ⁻¹ hr ⁻¹	0.0097	15.1	18	24.530	529	Bacillariophyta: Coscinodiscophyceae	Blasco et al. 1982	1.25; Log	C/V=0.331 pg/μm ³ C/N=8.3 Chl a/C=1.43%	8.4
187. Thalassiosira weissflogii	С		$\mu mol~O_2~cell^{-1}~min^{-1}\times 10^{10}$ at 277 pg C per cell	47	19	18	30.866	1460	Bacillariophyta: Coscinodiscophyceae	Falkowski et al. 1985	0.62 (70 μ mol m ⁻² s ⁻¹); steady growth	C/cell=277 pg C/V=0.190 pg/µm ³ C/N=6.6 ChI/C=4.27%	8.4
188. Thalassiosira weissflogii	С		$\mu mol~O_2~cell^{-1}~min^{-1}\times 10^{10}$ at 328 pg C per cell	75	26	18	42.237	1364	Bacillariophyta: Coscinodiscophyceae	Falkowski et al. 1985	1.73 (320 μ mol m ⁻² s ⁻¹); steady growth	C/cell=328 pg C/V=0.240 pg/µm ³ C/N=8.3 Chl/C=2.11%	14
189. Thalassiosira weissflogii	С		$\mu mol~O_2~cell^{-1}~min^{-1}\times 10^{10}$ at 291 pg C per cell	72	28	18	45.486	1675	Bacillariophyta: Coscinodiscophyceae	Falkowski et al. 1985	1.15 (150 μ mol m ⁻² s ⁻¹); steady growth	C/cell=291 pg C/V=0.174 pg/µm ³ C/N=6.5 ChI/C=3.46%	12
190. Thalassiosira weissflogii	С		$\mu mol~O_2~cell^{-1}~min^{-1}\times 10^{10}$ at 326 pg C per cell	82	28	18	45.486	1480	Bacillariophyta: Coscinodiscophyceae	Falkowski et al. 1985	1.80 (600 μ mol m ⁻² s ⁻¹); steady growth	C/cell=326 pg C/V=0.220 pg/µm ³ C/N=8.1 Chl/C=1.55%	15
191. Trebouxia sp. (phycobiont of Caloplaca holocarpa)	D	MIN	$μl O_2 (mg DM)^{-1} hr^{-1}$	0.77	1.4	20	1.980	[1000]	Chlorophyta: Trebouxiophyceae	Showman 1972 [Hirose & Yamagishi 1977, genus, diam 10-15 µm]	overnight incubation in darkness	Chl a/WM=0.000625	
192. Trebouxia sp. (phycobiont of Cladonia cristatella)	D	MIN	μl O ₂ (mg DM) ⁻¹ hr ⁻¹	1.49	2.6	20	3.677	[1000]	Chlorophyta: Trebouxiophyceae	Showman 1972 [Hirose & Yamagishi 1977, genus, diam 10-15 μm]	overnight incubation in darkness	Chl a/WM=0.000358	

193. Trebouxia sp. D (phycobiont of Lecanora dispersa)	D	MIN	μl O ₂ (mg DM) ⁻¹ hr ⁻¹	0.96	1.7	20	2.404	[1000]	Chlorophyta: Trebouxiophyceae	Showman 1972 [Hirose & Yamagishi 1977, genus, diam 10-15 μm]	overnight incubation in darkness	Chl a/WM=0.000354
--	---	-----	--	------	-----	----	-------	--------	----------------------------------	---	---	-------------------

References to Table **S8**

- APHA (American Public Health Association, American Water Works Association and Water Pollution Control Federation) (1992) Standard Methods for the Examination of Water and Wastewater. 18th ed. Washington D.C.
- Berman-Frank I., Erezl J. (1996) Inorganic carbon pools in the bloom-forming dinoflagellate *Peridinium gatunense*. Limnology and Oceanography 41: 1780-1789.
- Blasco D., Packard T.T., Garfield P.C. (1982) Size-dependence of growth rate, respiratory electron transport system activity and chemical composition in marine diatoms in the laboratory. Journal of Phycology 18: 58-63.
- Bratbak G., Dundas I. (1984) Bacterial dry matter content and biomass estimations. Applied and Environmental Microbiology 48: 755-757.
- Choo K.-s., Snoeijs P., Pedersén M. (2002) Uptake of inorganic carbon by Cladophora glomerata (Chlorophyta) from the Baltic Sea. Journal of Phycology 38: 493-502.
- Cook J.R. (1966) Adaptations to temperature in two closely related strains of *Euglena gracilis*. Biological Bulletin 131: 83-93.
- Coombs J., Darley W.M., Holm-Hansen O., Volcani B.E. (1967a) Studies on the biochemistry and fine structure of silica shell formation in diatoms. Chemical composition of *Navicula pelliculosa* during silicon-starvation synchrony. Plant Physiology 42: 1601-1606.
- Coombs J., Spanis C., Volcani B.E. (1967b) Studies on the biochemistry and fine structure of silica shell formation in diatoms. Photosynthesis and respiration in silicon-starvation synchrony of *Navicula pelliculosa*. Plant Physiology 42: 1607-1611.
- Cózar A., Echevarría F. (2005) Size structure of the planktonic community in microcosms with different levels of turbulence. Scientia Marina 69: 187-197.
- Crawford D.W., Stoecker D.K. (1996) Carbon content, dark respiration and mortality of the mixotrophic planktonic ciliate *Strombidium capitatum*. Marine Biology 126: 415-422.
- Davey M.C. (1989) The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biology 10: 29-36.
- Falkowski P.G., Dubinsky Z., Wyman K. (1985) Growth-irradiance relationships in phytoplankton. Limnology and Oceanography 30: 311-321.

Falkowski P.G., Owens T.G. (1980) Light-shade adaptation. Two strategies in marine phytoplankton. Plant Physiology 66: 592-595.

Fenchel T.B., Finlay J. (1983) Respiration rates in heterotrophic, free-living protozoa. Microbial Ecology 9: 99-122.

- Fietz S., Nicklisch A. (2002) Acclimation of the diatom *Stephanodiscus neoastraea* and the cyanobacterium *Planktothrix agardhii* to simulated natural light fluctuations. Photosynthesis Research 72: 95-106.
- Flameling I.A., Kromkamp J. (1998) Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae. Limnology and Oceanography 43: 284-297.
- Geider R.J., Osborne B.A. (1989) Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytologist 112: 327-394.

- Gest H., Kamen M.D. (1948) Studies on the phosphorus metabolism of green algae and purple bacteria in relation to photosynthesis. Journal of Biological Chemistry 176: 299-318.
- Gilstad M., Johnsen G., Sakshaug E. (1993) Photosynthetic parameters, pigment composition and respiration rates of the marine diatom *Skeletonema costatum* grown in continuous light and a 12:12 h light-dark cycle. Journal of Plankton Research 15: 939-951.
- Glover H.E., Keller M.D., Spinrad R.W. (1987) The effects of light quality and intensity on photosynthesis and growth of marine eucaryotic and procaryotic phytoplankton clones. Journal of Experimental Marine Biology and Ecology 105: 137-I 59.
- Goulet T.L., Cook C.B., Goulet D. (2005) Effect of short-term exposure to elevated temperatures and light levels on photosynthesis of different host–symbiont combinations in the *Aiptasia pallida/Symbiodinium* symbiosis. Limnology and Oceanography 50: 1490-1498.
- Graham M.T, Kranzfelder J.A., Auer M.T. (1985) Light and temperature as factors regulating seasonal growth and distribution of *Ulothrix zonata* (*Ulvophyceae*). Journal of Phycology 21: 228-234.
- Graham M.T., Graham L.E. (1987) Growth and reproduction of *Bangia atropurpurea* (Roth) C. Ag. (Rhodophyta) from the Laurentian Great Lakes. Aquatic Botany 28: 317-331.
- Greene R.M., Geider R.J., Falkowski P.G. (1991) Effect of iron limitation on photosynthesis in a marine diatom. Limnology and Oceanography 36: 1772-1782.
- Hall J.A., Golding L.A. (1998) Standard methods for whole effluent toxicity testing: development and application. Report no. MFE80205. NIWA report for the Ministry for the Environment, Wellington, New Zealand. Appendix 4. Freshwater algae (*Selenastrum tricornutum*).
- Hammouda O.H.E., El-Sheekh M.M. (1994) Response of fresh water phytoplanktonic algae *Chlorella kessleri* and *Synechocystis* PCC 6803 to anthelmintic activity of the wild Egyptian plant *Calendula micrantha* officinalis. Archives of Environmental Contamination and Toxicology 27: 406-409.
- Healey F.P. (1979) Short-term responses of nutrient-deficient algae to nutrient addition. Journal of Phycology 15: 289-299.
- Herzig R., Falkowski P.G. (1989) Nitrogen limitation in *Isochrysis galbana* (Haptophyceae). 1. Photosynthetic energy conversion and growth efficiencies. Journal of Phycology 25: 462-471.
- Hirose H., Yamagishi T. (eds.) (1977) *Illustrations of the Japanese Freshwater Algae*. Uchidarokakuho-shinsha, Tokyo. http://protist.i.hosei.ac.jp Hochachka P.W., Teal J.M. (1964) Respiratory metabolism in a marine dinoflagellate. Biological Bulletin 126: 274-281.
- Johnson M., Shivkumar S., Berlowitz-Tarrant L. (1996) Structure and properties of filamentous green algae. Materials science and engineering B, Solid-state materials for advanced technology 38: 103-108.
- Kishler J., Taft C.E. (1970) Bangia atropurpuraea (Roth) A. in Western Lake Erie. The Ohio Journal of Science 70: 56-57.
- Kratz W.A., Myers J. (1955) Photosynthesis and respiration of three blue-green algae. Plant Physiology 30: 275-280.
- Krienitz L., Hegewald E.H., Hepperle D., Huss V.A.R., Rohr T., Wolf M. (2004) Phylogenetic relationship of *Chlorella* and *Parachlorella* gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43: 529-542.
- Langdon C. (1987) On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. Part I. A comparative study of the growth-irradiance relationship of three marine phytoplankton species: *Skeletonema costatum*, *Olisthodiscus luteus* and *Gonyaulax tamarensis*. Journal of Plankton Research 9: 459-482.

- Laws E.A, Wong C.L. (1978) Studies of carbon and nitrogen metabolism by three marine phytoplankton species in nitrate-limited continuous culture. Journal of Phycology 14: 406-416.
- Laws E.A., Caperon J. (1976) Carbon and nitrogen metabolism by *Monochrysis lutheri*: measurement of growth rate dependent respiration rates. Marine Biology 36: 85-97.
- Lee K., Lee C.-G. (2001) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnology and Bioprocess Engineering 6: 194-199.
- Liska A.J., Shevchenko A., Pick U., Katz A. (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in *Dunaliella* as revealed by homology-based proteomics. Plant Physiology 136: 2806-2817.
- Margalef R. (1954) Modifications induced by different temperatures on the cells of Scenedesmus obliquus (Chlorophyceae). Hydrobiologia 6: 83-94.
- Mironyuk V.I., Einor L.O. (1968) Oxygen metabolism and pigment content in different forms of *Dunaliella salina* Teod. at increased NaCl concentration. Gidrobiologicheskii Zhurnal Hydrobiological Journal 4: 23-29.
- Myers J., Graham J.-R. (1971) The photosynthetic unit in *Chlorella* measured by repetitive short flashes. Plant Physiology 48: 282-286.
- Necchi O. (2004) Photosynthetic responses to temperature in tropical lotic macroalgae. Phycological Research 52: 140-148.
- Nielsen M.V. (1997) Growth, dark respiration and photosynthetic parameters of the coccolithophorid *Emiliania huxleyi* (Prymnesiophyceae) acclimated to different length-irradiance combinations. Journal of Phycology 33: 818-822.
- Olenina I., Hajdu S., Edler L., Andersson A., Wasmund N., Busch S., Göbel J., Gromisz S., Huseby S., Huttunen M., Jaanus A., Kokkonen P., Ledaine I., Niemkiewicz E. (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. Helsinki Commission, Baltic Marine Environment Protection Commission, Baltic Sea Environment Proceedings No. 106, 144 pp.
- Otte S., Kuenen J.G., Nielsen L.P., Paerl H.W., Zopfi J., Schulz H.N., Teske A., Strotmann B., Gallardo V.A., Jørgensen B.B. (1999) Nitrogen, carbon, and sulfur metabolism in natural *Thioploca* samples. Applied and Environmental Microbiology 65: 3148-3157.
- Parker R.D.R., Drown D.B. (1982) Effects of phosphorus enrichment and wave simulation on populations of *Ulothrix zonata* from Northern Lake Superior. Journal of Great Lakes Research 8: 16-26.
- Pickett J.M. (1975) Growth of Chlorella in a nitrate-limited chemostat. Plant Physiology 55: 223-225.
- Polle J.E.W., Niyogi K.K., Melis A. (2001) Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga *Chlamydomonas reinhardtii*. Plant and Cell Physiology 42: 482-491. Coleman J.R., Colman B. (1980) Effect of oxygen and temperature on the efficiency of photosynthetic carbon assimilation in two microscopic algae. Plant Physiology 65: 980-983.
- Putt M., Stoecker D.K. (1989) An experimentally determined carbon:volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. Limnology and Oceanography 34:1097-1103.
- Quigg A., Beardall J. (2003) Protein turnover in relation to maintenance metabolism at low photon flux in two marine microalgae. Plant, Cell and Environment 26: 693-703.
- Rajagopal P.K. (1962) Respiration of some marine planktonic organisms. Proceedings of the Indian Academy of Sciences 55B: 76-81.
- Sakshaug E., Johnsen G., Andresen K., Vernet M. (1991) Modeling of light-dependent algal photosynthesis and growth: Experiments with the Barents Sea diatoms *Thalassiosira nordenskioeldii* and *Chaetoceros furcellatus*. Deep-Sea Research 38: 415-430.

Showman R.E. (1972) Photosynthetic response with respect to light in three strains of lichen algae. Ohio Journal of Science 72: 114-117. Skinner S., Entwisle T.J. (2004). Non-marine algae of Australia: 6. Cladophoraceae (Chlorophyta). Telopea 10: 731-748.

- Smith G.J., Zimmerman R.C., Alberte R.S. (1993) Molecular and physiological responses of diatoms to variable levels of irradiance and nitrogen availability: Growth of *Skeletonema costatum* in simulated upwelling conditions. Limnology and Oceanography 37: 989-1007.
- Sobrino C., Montero O., Lubián L.M. (2005) Effect of UV-A and UV-B on the diel patterns of growth and metabolic activity in *Nannochloris atomus* cultures assessed by flow cytometry. Marine Ecology Progress Series 293: 29-35.
- Spencer D.F., Lembi C.A., Graham J.M. (1985) Influence of light and temperature on photosynthesis and respiration by *Pithophora oedogonia* (Mont.) Wittr. (Chlorophyceae). Aquatic Botany 23: 109-118.
- Stal L.J., Moezelaar R. (1997) Fermentation in cyanobacteria. FEMS Microbiology Reviews 21: 179-211.
- Sukenik A., Eshkol R., Livne A., Hadas O., Rom M., Tchernov D., Vardi A., Kaplan A. (2002) Inhibition of growth and photosynthesis of the dinoflagellate *Peridinium gatunense* by *Microcystis* sp. (cyanobacteria): A novel allelopathic mechanism. Limnology and Oceanography 47: 1656-1663.

Sweeney B.M. (1986) The loss of the circadian rhythm in photosynthesis in an old strain of *Gonyaulax polyedra*. Plant Physiology 80: 978-981.

- Talling J.F. (1957) Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytologist 56: 29-50.
- Theodorou M.E., Elrifi I.R., Turpin D.H., Plaxton W.C. (1991) Effects of phosphorus limitation on respiratory metabolism in the green alga *Selenastrum minutum*. Plant Physiology 95: 1089-1095.
- Verity P.G. (1981) Effects of temperature, irradiance, and daylength on the marine diatom *Leptocylindrus danicus* Cleve. I. Photosynthesis and cellular composition. Journal of Experimental Marine Biology and Ecology 55, 79-91.
- Verity P.G. (1982a) Effects of temperature, irradiance and daylength on the marine diatom *Leptocylindrus danicus* Cleve. III. Dark respiration. Journal of Experimental Marine Biology and Ecology 60, 197-207.
- Verity P.G. (1982b) Effects of temperature, irradiance, and day-length on the marine diatom Leptocylindrus danicus Cleve. IV. Growth. Journal of Experimental Marine Biology and Ecology 60, 209-222
- Verity P.G., Robertson C.Y., Tronzo C.R., Andrews M.G., Nelson J.R., Sieracki M.E. (1992) Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnology and Oceanography 37: 1434-1446.
- Vladimirova I.G., Zotin A.I. (1983) Respiration rates of Protozoa. Manuscript No. 5500-B3 12.08.1983 deposited in the All-Russian Institute of Scientific and Technical Information (VINITI), 62 pp.
- Vladimirova I.G., Zotin A.I. (1985) Dependence of metabolic rate in Protozoa on body temperature and weight. Zhurnal Obschei Biologii Journal of General Biology 46: 165-173.
- Weis D., Brown A.H. (1959) Kinetic relationships between photosynthesis and respiration in the algal flagellate, Ochromonas malhamensis. Plant Physiology 34: 235-239.
- Zubkov M.V. Fuchs B.M., Eilers H., Burkill P.H., Amann R. (1999) Determination of total protein content of bacterial cells by SYPRO staining and flow cytometry. Applied and Environmental Microbiology 65: 3251-3257.