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Models. For the first class of models investigated, we have simulated
the dynamics of three reciprocally coupled single-compartment
Hodgkin and Huxley (HH) neurons arranged as in the configura-
tion shown in Fig. 1 of the main text. The temporal evolution of the
voltage across the membrane of each neuron is given by

av 3 4
CE = —gnah(V — Eng) — gen*(V — Ep) —g(V — Eyp)

Flex + Ly, [S1]

where C = 1 uF/cm? is the membrane capacitance, the constants
gna = 120 mS/cm?, gx = 36 mS/cm?, and g; = 0.3 mS/cm? are the
maximal conductances of the sodium, potassium, and leakage
channels, and Eyn, = 50 mV, Ex = =77 mV, and E; = — 54.5
mV stand for the corresponding reversal potentials. According
to HH formulation, the voltage-gated ion channels are described
by the following set of differential equations
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where the gating variables m(t), h(t), and n(t) represent the
activation and inactivation of the sodium channels and the
activation of the potassium channels, respectively. The experi-
mentally fitted voltage-dependent transition rates are

B 0.1(V + 40)
(V) = o (—(V + 40)/10) [S5]
B, (V) = dexp(—(V + 65)/18), (S6]
an(V) = 0.07exp(—(V + 65)/20), [S7]
Br(V) =[1 + exp(=(V + 35)/10)] ', [S8]
B (V + 55)/10

(V) = T exp(Z0.1(V + 55)) [59]
B(V) = 0.125exp(—(V + 65)/80). [S10]

The synaptic transmission between neurons is modeled by a
postsynaptic conductance change with the form of an « function

alt) = (exp(—t/7y) — exp(—t/7,)), [S11]

Tqg — Tp

where the parameters 7; and 7, stand for the decay and rise time of
the function and determine the duration of the response. Synaptic
rise and decay times were set to 7, = 0.1 and 7, = 3 ms, respectively,
for the simulations exhibited in Results in the main text. Other sets
of values running from 0.1 to 7 ms were also tested for such time
constants. Finally, the synaptic current takes the form
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Ixyn(t) = - ngax E E a(t - tspike - Tl)(V(t) - Esyn)7
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where g (here fixed to 0.05 mS/cm?) describes the maximal
synaptic conductance, and the internal sum is extended over the
train of presynaptic spikes occurring at ty,x.. The delays arising from
the finite conduction velocity of axons are taken into account
through the latency time 7 in the « function. Thus, the external sum
covers the N different latencies that arise from the conduction
velocities that different axons may have in connecting two neuronal
populations. N was typically set to 500 in the simulations. For the
single-latency case, all 7; were set to the same value, whereas when
studying the effect of a distribution of delays, we modeled such
dispersion by a v distribution with a probability density of

exp(—7/6)

f(Tl) = 7{(_1 Okr(k) >

[S13]

where k and 6 are shape and scale parameters of the vy distri-
bution. The mean time delay is given by 7, = k6.

Excitatory and inhibitory transmissions were differentiated by
setting the synaptic reversal potential to be Ey,, = 0 mV or E,, =
—80 mV, respectively. An external current stimulation I, was
adjusted to a constant value of 10 wA/cm?. Under such conditions,
a single HH-type neuron enters into a periodic regime, firing action
potentials at a natural period of 7, = 14.66 ms.

The second class of models we have considered consists of three
large balanced populations of integrate and fire (IAF) neurons.
Each population was composed of 4,175 IAF neurons from which
~80% were excitatory. The local connectivity was sparse and
random. Each neuron received thus a synapse from 10% of
randomly selected cells inside its population and from 0.25% from
the excitatory class of the neighboring populations. The voltage
dynamics of each neuron was then given by the following equation

dv;
T gy

= = Vi©) + RI0), [S14]

where 7, stands for the membrane constant and () is a term
collecting the currents arriving to the soma. The latter is decom-
posed in postsynaptic currents and external Poissonian noise

RI(0) = 7, 2, 0; 2, 8(t — 1 — ) + A&,

J k

[S15]

where J; is the postsynaptic potential amplitude, t]’»‘is the emission
time of the kth spike at neuron j, and 7 is the transmission axonal
delay. The external noise ¢ is simulated by subjecting each neuron
to the simultaneous input of 1,000 independent homogeneous
Poissonian action potential trains with an individual rate of 5 Hz.
Different cells were subjected to different realizations of the
Poissonian processes to ensure the independence of noise sources
for each neuron. J... and A amplitudes were set to 0.1 mV. The
balance of the network was controlled by setting J;,,, = —gJexe, With
g ranging from 3.5 to 4 to compensate the outnumbering of
excitatory units.

The dynamics of each neuron evolved from the reset potential of
V, = 10 mV by means of the synaptic currents up to the time when
the potential of the ith neurons reached a threshold of 20 mV, a
value at which the neuron fires and its potential relaxes to V. The
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potential is clamped then to this quantity for a refractory period of
2 ms during which no event can perturb this neuron.

Simulations. The set of Eq. S1-S12 was numerically integrated
using the Heun method with a time step of 0.02 ms. For the first
class of models we investigated, i.e., the three HH cells neuronal
circuit, we proceeded as follows. Starting from random initial
conditions, each neuron was first simulated without any synaptic
coupling for 200 ms, after which frequency adaptation occurred,
and each neuron settled into a periodic firing regime with a
well-defined frequency. The relation between the phases of the
oscillatory activities of the neurons at the end of this warm-up
time was entirely determined by the initial conditions. After this
period and once the synaptic transmission was activated, a
simulation time of 3 s was recorded. This allowed us to trace the
change in the relative timing of the spikes induced by the synaptic
coupling in this neural circuit.

The second class of model involving the interaction of heter-
ogeneous large populations of neurons was built with the
neuronal simulator package NEST (1). The simulation of such
networks uses a precise time-driven algorithm with the charac-
teristic that the spike events are not constrained to the discrete
time lattice. In a first stage of the simulation the three popula-
tions were initialized being isolated from each other and let them
to evolve just due to their internal local connectivity and external
Poissonian noise. In a subsequent phase, the three populations
were interconnected according to the motif investigated here
and simulated during 1 s.

Data Analysis. The strength of the synchronization and the phase
difference between each individual pair of neurons (m, n) were
derived for the first model of three HH neurons by the compu-
tation of the order parameter defined as

1
p(0) =5 lexp(idn(t) + explid, ()], [S16]

which takes the value of 1 when two systems oscillate in-phase
and 0 when they oscillate in an antiphase regime or in an
uncorrelated fashion. To compute this quantifier, it is only
necessary to estimate the phases of the individual neural oscil-
lators. An advantage of this method is that one can easily
reconstruct the phase of a neuronal oscillation from the train of
spikes without the need of recording the full membrane potential
time series (2). The idea behind this is that the time interval
between two well-defined events (such as action potentials)
defines a complete cycle, and the phase increase during this time
amounts to 2. Then, linear interpolation is used to assign a
value to the phase between the spike events.

The synchrony among the large populations of neurons of the
second model studied in the article was assessed by the compu-
tation of averaged cross-correlograms. For that purpose, we
randomly selected three neurons (one from each of the three
populations) and computed for each pair of neurons belonging
to different populations the histogram of coincidences (bin size
of 2 ms) as a function of the time shift of one of the spike trains.
We computed the cross-correlograms within the time window
ranging from 500 to 1,000 ms to avoid the transients toward the
synchronous state. The procedure was repeated 300 times to give
rise to the estimated averaged distributions of coincidences
exhibited in Figs. 5 and 6 in the main text.

Stability Computations. In this section, we follow an analytical
approach to compute the stability of the zero lag synchronization
of outer neurons interacting through a dynamical relaying ele-
ment (see the motif shown in Fig. 1 Top in the main text). In
particular, we demonstrate that the stability of such solution
extends over larger regions of the axonal delay parameter than
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for the case of only two neurons interacting directly. These
calculations are performed under the phase reduction approx-
imation of the spiking dynamics of neurons, which assume that
the oscillatory activity of each neuron can be described by a
phase variable.

The dynamics of each cell in the motif is then described as

T, [S17]

> aid(t — 1 — A6,
nk

where 6; is the phase of each neuron within its spiking cycle, T;
amounts to the natural period, a; is the strength of the interaction
between neurons, and #; represents the time of the nth spike of the
kth neuron (3). The axonal delay in the communication between
the neurons is taken into account by the temporal latency 7. The
pulse-coupled interaction among the neurons is captured by the
phase response curve (PRC) A(6). This curve characterizes the
change in the cycle period (phase shift) of an oscillator induced
by a perturbation as a function of the timing at which it is
received. It is defined as

T*(6)
T 2

AB)=1— [S18]

where 7% is the new period of the oscillation induced by a
perturbation injected at the phase 6. PRCs of neurons and many
other biological oscillators have been measured experimentally
as well as computed for models and provide a rigorous frame-
work to predict the dynamical properties of spiking neurons (4,
5). A recent example of the use of the PRC method in small
networks of biological neurons can also be found in ref. 6.

Once we establish the basic equations for the pulse-coupled
interaction among neurons, we proceed by computing the possible
phase locked states. Before that step we change first the reference
system of our phase variables by defining the new phase ¢ such that
6 =vt + ¢(t), with v = 1/T. Assuming identical natural periods of
the cells (vi = v, =v3 =v), Eq. S17 is rewritten for the motif of three
neurons interacting through dynamical relaying as

de
7; = al,zES(’ — 1 — DAVt + ¢y),

de
TIZ = 02,128([ =11 = 1AWVt + @)

+ays 08(t — 1 — DAVE + @),

dos

o a3, 20,8(t — 15 — DAWE + o). [S19]

Following ref. 3 in the weak coupling case, one can approximate
~ i

n
the nth spiking time of each neuron as ¢} = . Substituting

this expression in Eq. S19 and averaging the instantaneous
coupling over a full period of the oscillation results in

% =a,1,A(p; — @ +v7),
% = a1 A(@x — @1 T v7) + ax3A(@p — @3 +v7),
% =a;,A(3 — @3 + V7). [S20]
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Phase-locked solutions take the form ¢, (f) = Ot + ¢;, with ¢
being a constant. The existence of the zero phase lag solution
between the outer neurons (¢; = ¢3) requires the following
conditions being satisfied simultaneously

a1 = dsp,
(azy + az3)A(dy — b1 +v7) = a1 ,A(h1 — o + V7).

For simplicity, we consider the case where synaptic strength is
normalized by the number of afferent inputs of each neuron so
that the total coupling strength per neuron is the same (az; +
a3 = ai» = a). Insuch case, the second condition is simply A(¢>
— ¢1 +v1) = A(¢1 — ¢2 + v7). This condition can have multiple
solutions depending on the specific PRC of the neuron class that
we are interested in. In any case, two important solutions that
hold for any PRC are ¢ — ¢, = 0 and ¢; — ¢ = 1/2. These
solutions are the in-phase and antiphase relations for nearest
neighbors oscillators.

A linear stability analysis for perturbations of the phase-
locked solutions (¢; = Ot + ¢; + S¢;) gives rises to the system

ddd,
dt = aA’(d>1 - (bz + VT)(S(bI - 54)2)7

d5¢)2 _ a ,
di EA (b2 — ¢1 +v1)(28d, — 8y — S¢b3),

[S21]

ddds
dt = aA’(d)l - 4)2 + VT)(8¢3 - 8‘;’)2)7

[S22]

where ' stands for the derivative operator. The eigenvalues of the
characteristic equation are Ay = a[A'(¢p1 — P2 + v7) + A'(d2 —
¢é1 + vr)], A2 = 0, and A3 = aA'(¢1 — ¢ + vr) for the

corresponding eigenvectors ¥, = [1,—A'(¢2 — @1 + v1)/A'(¢1 —
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¢ +vi),1], V, = (1,1,1), and V5 = (—1,0,1). For the in-phase
and antiphase nearest-neighbors relations, the stability condition
of the negativity of the eigenvalues reduces to the cases of
aA’'(vt) < 0 and aA’(1/2 + v1) < 0, respectively. The main role
of the delay in this simplified description of the neuronal
dynamics is to shift the phase at which a neuron receives the
perturbation from the other neurons, which can substantially
modify the stability of the solutions.

It is important to notice that for two directly coupled neurons,
the zero phase lag synchronization exclusively corresponds to the
in-phase nearest-neighbor relation. However, for the case of
three neurons interacting as arranged in a bidirectional chain,
both the nearest-neighbor in-phase and antiphase relations
result in a zero phase solution for the outer neurons in the motif.
This allows the outer neurons to fire isochronously for such
delays where any of the two nearest-neighbor phase relations are
stable and thus increases the delay range over which zero phase
synchrony can appear. The precise range of stability must be
computed specifically for each type of PRC according to the
former stability criterion, but a general result is that such range
is larger for the network motif under study than for the direct
coupling of two neurons. In fact, when computing the phase
relation for nearest neighbors in the full HH model of three
neurons interacting through dynamical relaying, we could ob-
serve how this relation strongly varies as a function of the axonal
delay (see Fig. S1). For some delays, the nearest-neighbor
neurons were in-phase, but varying the delay they were observed
to enter into states in which the antiphase solution dominated.
For only two directly coupled neurons such changes limited the
range of delays for which they could synchronize without any lag.
However, the phase relation between the outer neurons 1 and 3
in the relaying motif was unsensitive to such sudden changes in
the nearest-neighbor phase relation and remained in a zero lag
solution for almost all explored delays up to 30 ms.
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Fig. S1.  Synchronization index at zero lag for pairs of HH neurons 1 and 3 (squares), 1 and 2 (upright triangles), and 2 and 3 (inverted triangles) as a function
of the axonal delay. The coupling is excitatory, and the neurons are interacting according to the scheme in Fig. 1 Top in the main text. The sudden decays of the
synchronization index between nearest neighbor neurons usually indicate the transitions to antiphase states. Notice that the zero-phase relation between
neurons 1 and 3 is almost insensitive to such changes.
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