Supporting Information

The Glycopeptide Antitumor Antibiotic Zorbamycin from *Streptomyces flavoviridis* ATCC21892: Strain Improvement and Structure Elucidation¹

Liyan Wang,[†] Bong-Sik Yun,[†] Nicholas P. George,[‡] Evelyn Wendt-Pienkowski,[†] Ute Galm,[†] Tae-Jin Oh,[†] Jane M. Coughlin,[§] Guodong Zhang,[†] Meifeng Tao,[†] and Ben Shen*^{†,‡,§,II}

Division of Pharmaceutical Sciences, Microbiology Doctoral Training Program, University of Wisconsin National Cooperative Drug Discovery Group, and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705

[⊥] Dedicated to the late Dr. Kenneth L. Rinehart, of the University of Illinois at Urbana-Champaign, for his pioneering work on bioactive natural products.

* To whom correspondence should be addressed: Tel: (608) 263-2673. Fax: (608) 262-5345. E-mail: <u>bshen@pharmacy.wisc.edu</u>.

[†] Division of Pharmaceutical Sciences.

[‡] Microbiology Doctoral Training Program.

[§] Department of Chemistry.

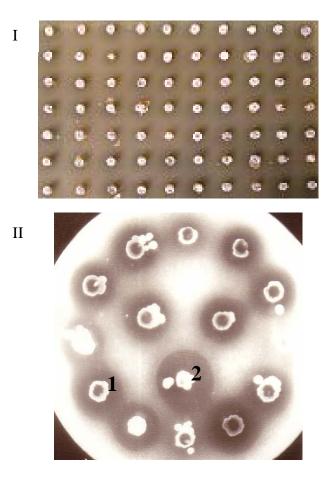
^{II} University of Wisconsin Natural Cooperative Drug Discovery Group.

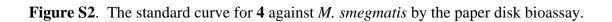
Table of Contents

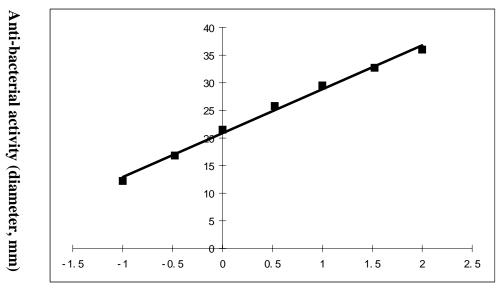
Table S1. UV-irradiation Time and S. flavoviridis ATCC21892 Spore Viability.

Figure S1. Screening for high-producing mutant strains of **1** upon UV irradiation of the wild-type *S*. *flavoviridis* ATCC21892 strain by bioassays against *M. smegmatis*.

Figure S2. The standard curve for 4 against *M. smegmatis* by the paper disk bioassay.


References


Table S1. UV-irradiation Time and S. flavoviridis ATCC21892 Spore Viability.


A spore stock solution (1 mL with ~ 10^3 spores) of *S. flavoviridis* ATCC21892 was exposed to UV irradiation (254 nm) at a distance of 12 cm for different time periods according to a standard literature protocol.¹ The colonized spores (living spores) were counted after incubation at 30 °C for 10 days. The most appropriate irradiation time was determined to be 4 to 5 min by the viability rate of 0.1% to 1%.

irradiation time (min)	colony number	viability (%)
0	1000	100
0.5	1000	100
1	700	70
2	140	14
3	19	1.9
4	8	0.8
5	4	0.4
10	0	0

Figure S1. Screening for high-producing strains of **1** upon UV irradiation of the wild-type *S*. *flavoviridis* ATCC21892 strain by bioassays against *M. smegmatis*. (I). Colonies showing different spore colors and morphology after UV irradiation were picked and inoculated into 96-well plates on agar medium (1.5% glucose, 1.5% starch, 2.0% soybean meal, 0.5% yeast extract, 0.25% NaCl, 0.32% CaCO₃, 0.0005% CuSO₄·5H₂O, 0.0005% MnCl₂·4H₂O, 0.005% ZnSO₄·7H₂O, pH 7.4, and 0.7% agar) and then incubated for 8 days. (II) Each of the agar blocks from the 96-well plates was placed on a bioassay plate pre-seeded with *M. smegmatis* to screen for high-producers of **1** with the wild-type *S*. *flavoviridis* ATCC21892 strain as a control. (1). The wild-type *S flavoviridis* ATCC21892 strain and (2) the improved *S. flavoviridis* SB9000 strain.

Log PLM D1 (4) (µg)

References and Notes

- Kieser, T.; Bibb, M. J.; Buttner, M. J.; Chater, K. F.; Hopwood, D. A. *Practical Streptomyces Genetics;* The John Innes Foundation: Norwich, UK; 2000, pp 102-103.
- (2) Okuda, T.; Awataguchi, S. Jpn. Tokkyo Koho, JP 47002557, 1972.
- (3) The optimized medium for zorbamycin production was derived from the original production medium in reference 2 by (i) increasing the concentrations of CuSO₄·5H₂O from 0.0005% to 0.01% and of ZnSO₄·7H₂O from 0.005% to 0.05% and (ii) eliminating MnCl₂·7H₂O completely.