SUPPORTING INFORMATION Analysis of IgA1 *N*-glycosylation and its contribution to FcαRI binding Michelle M. Gomes, Stephanie B. Wall, Kazuo Takahashi, Jan Novak, Matthew B.

Renfrow, and Andrew B. Herr

Experimental Procedures

Enzymatic removal of IgA1 N-glycans for FT-ICR MS analysis—N-glycans were released by treatment with PNGase F as previously described (1) with modifications. The reaction was optimized for release of N-glycans from 100 μ g of IgA1 with denatured protein per manufacturer's protocol for glycerol-free PNGase F (New England Biolabs). The reaction was incubated for 28 h at 37° C and glycan removal was verified by monitoring the shift in migration of IgA1 heavy chain on SDS-PAGE under reducing conditions. Released IgA1 N-glycans were analyzed by use of a hybrid linear quadrupole ion trap FT-ICR mass spectrometer (LTQ FT MS, Thermo Electron). A Triversa NanoMate was used as the source of electrospray ions. Individual candidate IgA1 N-glycans were confirmed by use of collision induced dissociation (CID) in the LTQ and detection of fragment ions in either the ion trap or FT-ICR cell. All identified PNGase F-released IgA1 N-glycans were observed with mass accuracies ≤ 4 ppm.

Reference

1. Moore, J. S., Wu, X., Kulhavy, R., Tomana, M., Novak, J., Moldoveanu, Z., Brown, R., Goepfert, P. A., and Mestecky, J. (2005) *AIDS* **19**, 381-389

Figure Legends

Figure S1: PNGase F-released N-glycans. NanoMate ESI FT-ICR mass spectrum of PNGase F-released IgA1 *N*-glycans from mIgA1 κ . The identified series of*N*-glycans were compared to the identified IgA1 tailpiece *N*-glycopeptides to identify putative C_H2 domain *N*-glycans. All PNGase F-removed *N*-glycans identified in both mIgA1 κ and mIgA1 λ analysis were calculated as potential N459 *N*-glycans. Those that were not observed in the IgA1 *N*-glycopeptide LC FT-ICR MS analysis were assigned as C_H2 *N*-glycans.

Figure S2: Representative structural analysis of a triantennary IgA1 *N*-glycan. The LTQ MS/MS spectrum of PNGase F-released mIgA1 λ *N*-glycans demonstrates the structural analysis of a triantennary mIgA1 λ *N*-glycan (observed as an *N*-glycopeptide in figure 6A), similar to that shown in Figure 4B. The precursor mass in the FT-ICR MS spectrum (not shown) corresponded to the IgA1 *N*-glycan [(NeuAc)₁(Gal)₂(GlcNAc)₃(Man)₃(GlcNAc)₂]²⁺. Nomenclature for the monosaccharides is the same as in Figure 4.

TABLE SI				
Sedimentation coefficients of the species observed in IgA1 samples				
Data was analyzed using the c(s) analysis routine in the program Sedfit.				
Sample	Monomer	Dimer	Trimer	Polymer or high MW aggregate
	(Svedberg)	(Svedberg)	(Svedberg)	(Svedberg)
IgA1ĸ	6.2 ± 0.3	9.1 ± 0.5	12.2 ± 0.6	19.7 ± 0.2
IgA1λ	6.1 ± 0.3	9.2 ± 0.3	11.6 ± 0.4	19.9 ± 0.4
$IgA1_{Mce}$	6.3 ± 0.2	9.5 ± 0.3	12.3 ± 0.5	$15.5 \pm 0.7, 19.9 \pm 0.1$

Figure S1.

Figure S2.

