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Derivation of the protein distribution for a two-stage model
of gene expression

From the master equation

The generating function for the master equation of the two-stage model satisfies (Eq. 1 in the
main text) 5 5
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where F(2,2) is defined as 3, ,(2')"2" Py, and we have let u = 2/ —1land v = 2z — 1. If r
measure the distance along a characteristic which starts at 7 = 0 with v = uy and v = vy for
some constant ug and vy, then Eq. 23 becomes
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which has solution bt
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for a constant C' as can be verified by differentiation. By Taylor expanding e so that €’ =
3, O we can evaluate the integral in Eq. 26,
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We can also carry out the sum in Eq. 27 in the limit of v > 1 following Bender and Orzag [1].
By comparing the ratio of the n — 1’th and the n’th term, we see that the elements of the sum
have a maximum when n ~ vbv. For v > 1, the sum will be dominated by terms with n near
~vbv. We therefore let n = vbv + s for some s, then n! can be shown to be approximately [1]

nl ~ (ybv)"e e \/2rybu (28)



using Stirling’s approximation. Consequently, by approximating the sum as an integral and
extending the range of the integral to —oo,
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to the lowest order in . From Eq. 27, u satisfies
u(v) ~ Ce "7 + b (30)
1—bv
when v > 1. We evaluate C' using u = ug when v = v, giving
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when v > 1 because v = vge” > vy from Eq. 24.
Finding the generating function
Using Eq. 31, Eq. 24 becomes
dF ab
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or, on integrating,
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because F(vg) = F(7 = 0). If initially we have k proteins then
F(vg) =Y Po(r1=0)2" =) 0,52" = 2" = (1 +v)". (34)

For our approximation, Eq. 31, to be valid, enough time must have passed for mRNA levels to
have reached steady-state. Strictly, this initial condition is only valid for non-zero 7 of the order
of di/dy = vy~!. Finally, inserting Eq. 34 into Eq. 33 gives
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because vy = (z — 1)e™". When k = 0, Eq. 35 becomes Eq. 7.



Deriving the probability distribution for proteins

We can find P, (7), the probability of having n proteins at time 7 given initially zero proteins, by
differentiating Eq. 35 when k = 0. By definition, P, satisfies P, = %%F(z, 7')‘ e By writing
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we can make use of the identities
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which is given at Wolfram Research (functlons.wolfram. com/Generalldentities/9).
Interpreting z(z) as the numerator of the quotient in Eq. 36 and y(z) as its denominator, we

find
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where we can use
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to simplify further. Eq. 40 can be verified by directly expanding the sum. Consequently,
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The hypergeometric function o F(a, b, ¢; z) obeys
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when «a is a negative integer and where (b); and (¢); are Pochhammer symbols [2]. From their
definition, (a); = I'(a + k)/I'(a), the Pochhammer symbols satisfy

Na+1)=(—1)—a)I(a—k+1). (43)
Writing I'(a —k+n) =T'(a+n—1—k+ 1) and using Eq. 42 and Eq. 43, we find that

1 b \" [(1+be " \T(a+n) 140
P”(T)_n!<1+b> < 150 ) I'a) 2F1< n,—a,l —a n’eT+b> (44)

which is valid for v > 1, 7 > 47", and a and b finite.
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Deriving the ‘propagator’ probability

By differentiating Eq. 35 for non-zero k, we can express the ‘propagator’ probability, P, (7), in
terms of Eq. 44. From the definition of P,(7), Eq. 35 can be written as

Fz,7) = Lf% Pn(T)zn] 1-c 42" (45)

or
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using the binomial theorem. From the coefficients of the powers of z, we find
k
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because F(z,7) =Y., Pyx(7)2" and remembering that P,(7) = 0 if n < 0.

Finding the probability distribution for the first passage time

With P,(7) and P,;(7), we can find the distribution for the first time the number of proteins
reaches a threshold N. We define this distribution to be fx(7). It obeys a renewal equation [3]

Pa(r) = /0 " dr () Prw (r — 7). (48)

The probability of having N proteins at time 7 is equal to the sum of the probability of first
reaching N proteins at 7" and then returning to NV proteins at a time 7 — 7/ later for all times
7/ less than 7. We have assumed that the initial number of proteins is zero, but this assumption
is not necessary.

Eq. 48 is a Volterra integral equation of the first kind and can be straightforwardly solved
numerically [4]. If N > 0 then fy(0) = 0 and Pyn(0) = 1 by definition. Consequently, by
discretizing and letting 7; = i¢ for integer ¢ and small ¢, we can write the integral in Eq. 48 as a
trapezium rule:

/On dr' (T ) Pyin (1 — 7') ~ € {;fzv(ﬂ') +§PNIN(TZ' - Tj)fN(Tj)] - (49)
Inserting Eq. 49 into Eq. 48 gives a series of equations for fx(7;) which we solve iteratively:
f(m) = 20 (50)
mm>=2}%m—iﬂmmwmwi. (51)
=

We implement Egs. 50 and 51 in Matlab (The Mathworks, Natick, Massachusetts). Our code is
available at www.cnd.mcgill.ca/"swain.
We use

<n(7—1)n(7—2)> = Z nn/Pn\n’ (T2 - Tl)Pn’ (Tl) (52)

n,n’
to find the auto-correlation function. We evaluate the sum in Eq. 52 numerically, cutting off the
sums when n is many times the mean steady-state value: (n) = ab.
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High ~ implies bursts of protein synthesis
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Figure 5: As « increases, protein synthesis occurs in bursts. Time courses of protein numbers
from simulations of the two-stage model of of Fig. 1. When +y is increased to 100 from 1, we see
steep bursts of synthesis: short-lived mRNAs are only able to be occasionally translated before
being degraded. The protein degradation rate is d; = 0.0005s7!. aa = 20 and b = 2.5. b
a = 0.5 and b = 100. Both examples have a mean protein number of 50.

Solving the master equation for bursts of protein synthesis

When v > 1, the distribution for protein numbers can also be derived by only considering P, (7),
the probability of having n proteins at time 7, if this probability obeys a master equation where
proteins are synthesized in bursts. We let the size r of a burst obey a geometric distribution,

po- () (1-12) -

The corresponding master equation is

0P, b " b \"
07_ —&[(1—M>7§<M> Pn_T—Pn]+(n+1)Pn+1—nPn (54)
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which can be converted into an equation for the generating function, F'(z) = 3, 2" P, (7).
The generating function obeys
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where we need to evaluate the sums over n and r. Relabelling and resuming
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where we use the definition of the generating function. Consequently, Eq. 55 becomes
oF OF  (1-1%
=(1-2)——+ ( H;b — 1) al’ (57)
or 0z — leb
o 10F OF  ab
a
vor T 1o 58)

with v = z — 1. This partial differential equation is Eq. 23 when v > 1 and Eq. 31 holds.

Derivation of the gamma distribution for protein numbers

We can derive the gamma distribution for protein numbers found by Friedman et al. [5] when n
is large. If P(nla,b) is the negative binomial distribution and I'(n|a, b) is the gamma distribution,

then
e AN

P(na,b) = /OOO d\ T(Aa, b) (59)

which is a general relation between the negative binomial and gamma distributions. It can be
verified by evaluating the integral using the definition of a gamma function [2]. If we approximate
the Poisson distribution by a normal distribution and write z = A — n, Eq. 59 becomes
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P(nla,b) =~ / ['(z + nla,b)

e
:/ P ey %> <1+n>

NG

r<n[1 + 2] a, b). (60)




We note that only values of z close to zero contribute to the integral when n > 1 because z = 0
is the minimum of the exponent in the integrand. Then n > 1 implies z/n < 1, and so

P(nla,b) z/ dz ['(n|a,b)
= (n]a,b) (61)

for large n, as expected [5].

Derivation of the protein distribution for a three-stage
model of gene expression

We can use the same approximation of large v to find the protein distribution for the three-
stage model. Let Pg% be the probability of having m mRNAs and n proteins when the DNA
is inactive and Pﬁ% be the probability of having m mRNAs and n proteins when the DNA is
active. The master equation consists of two coupled equations:
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where kg = ko/d; and k1 = ki /d;. By defining two generating functions
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At steady-state 8£—(T) = 8£—<T) = 0, and we find using the method of characteristics that
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where r measures the distance along a characteristic. Both v and v obey Eq. 24 again. Conse—
quently, v = r and u ~ 1 -
two coupled differential equations:
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Following Hornos et al. [6], Eqs. 68 and 69 can be reduced to one differential equation for
O (v) by solving Eq. 68 for f) in terms of f(°) and its derivative, and inserting the result into
Eq. 69. This equation becomes a second-order differential equation:

df© df©
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Eq. 70 has solution
fOW) = CyF (o, 3,1 — kg — K13 bv) (71)
where 5 F1(a, b, ¢; z) is a hypergeometric function,
1
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and C' is a constant of integration.

We can find the generating function for protein numbers, F(z) = f©(2)+f()(2), by using our
solution for f(*) and Eq. 68 to find f(*). Determining the constant of integration C' from F'(1) = 1
and using the relation c(c+1) o Fi(a, b, ¢; 2) = c(c+1) o F1(a, b, c+1; 2)+abz o Fi (a+1,b+1, c+2; 2),
we find that

F(z) = oFy (o, B, ko + ka3 b(z — 1)), (74)

replacing v by z — 1.

Expanding the generating function around z = 0 determines the probabilities P,. Using prop-
erties of the n-th derivatives with respect to z of the hypergeometric function, gFl(n)(a, b, c; z),
we can write
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and P, can be found from the definition of F(z): F(z) =, P,z". With the linear transforma-
tion formulae for hypergeometric functions [2], we write P, as

P L(a+m)D(8 + ) (s + k1) ( b ) (l - b)a
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The exact mRINA distributions

For completeness, we include the mRNA distributions for the two-stage and three-stage models.
With initially zero mRNAs, the two-stage model has a Poisson distribution:

Po(t) = e~ m® <m§?>m (77)




where (m(t)) = mg (1 - e_dot) and ms; = vy/dy is the steady-state number of mRNAs. The
propagator probability satisfies

k

k‘ k—r
Pm|k(t) — Z <T> Pm—r(t> (1 o e—dot) e—rdot (78)
r=0
with P, (t) =0 if m < 0.
The steady-state distribution of mRNA for the three-stage model was first derived by Peccoud
and Ycart, although they did not recognize it as such [7], and also by Raj et al. [8]. The exact
probability of having m RNAs at steady-state is

mge™™ (G +m)I'(C + 1)
m! T(G+ G +m)I(G)

P, = 11 (G, Go + G+ mismy) (79)

where mg = vg/dy, (o = ko/dy, and (; = ky/dy, and 1 Fi(a,b; z) is the confluent hypergeometric
function of the first kind [2]. Eq. 79 like Eq. 18 can be bimodal. For (; = ky/dy > 1, Eq. 79
tends to a negative binomial distribution [8], because then mRNA synthesis is more burst-like.

The distribution becomes Poisson when k; is zero, and the three-stage model reduces to the
two-stage model.
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