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Derivation of the protein distribution for a two-stage model

of gene expression

From the master equation

The generating function for the master equation of the two-stage model satisfies (Eq. 1 in the
main text)

1

v

∂F

∂τ
+

∂F

∂v
− γ

[
b(1 + u)− u

v

]
∂F

∂u
= a

u

v
F (23)

where F (z′, z) is defined as
∑

m,n(z′)mznPm,n, and we have let u = z′ − 1 and v = z − 1. If r
measure the distance along a characteristic which starts at τ = 0 with u = u0 and v = v0 for
some constant u0 and v0, then Eq. 23 becomes

dv
dr

= 1 ; dτ
dr

= 1
v

du
dr

= −γ
[
b(1 + u)− u

v

]
; dF

dr
= au

v
F.

(24)

Consequently, v = r and
du

dv
= −γ

[
b(1 + u)− u

v

]
(25)

which has solution

u(v) = e−γbvvγ

[
C − bγ

∫ v

dv′
eγbv′

v′γ

]
(26)

for a constant C as can be verified by differentiation. By Taylor expanding eγbv so that eγbv =∑
n

(γbv)n

n!
, we can evaluate the integral in Eq. 26,

u(v) = e−γbv

[
Cvγ −

∞∑
n=0

(γbv)n+1

n!(n− γ + 1)

]
. (27)

We can also carry out the sum in Eq. 27 in the limit of γ � 1 following Bender and Orzag [1].
By comparing the ratio of the n− 1’th and the n’th term, we see that the elements of the sum
have a maximum when n ' γbv. For γ � 1, the sum will be dominated by terms with n near
γbv. We therefore let n = γbv + s for some s, then n! can be shown to be approximately [1]

n! ' (γbv)ne−γbve
s2

2γbv

√
2πγbv (28)
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using Stirling’s approximation. Consequently, by approximating the sum as an integral and
extending the range of the integral to −∞,

∞∑
n=0

(γbv)n+1

n!(n− γ + 1)
'

∫ ∞

−∞
ds

e−
s2

2γbv

√
2πγbv

· γbveγbv

γ(bv − 1) + s + 1

=
∫ ∞

−∞
ds

e−
s2

2γbv

√
2πγbv

· . bveγbv

bv − 1

[
1 + γ−1

(
s + 1

bv − 1

)]−1

=
bveγbv

bv − 1

∫ ∞

−∞
ds

e−
s2

2γbv

√
2πγbv

+ O
(
γ−1

)
' bveγbv

bv − 1
(29)

to the lowest order in γ. From Eq. 27, u satisfies

u(v) ' Ce−γbvvγ +
bv

1− bv
(30)

when γ � 1. We evaluate C using u = u0 when v = v0 giving

u '
(
u0 −

bv0

1− bv0

)
e−γb(v−v0)

(
v

v0

)γ

+
bv

1− bv

' bv

1− bv
. (31)

when γ � 1 because v = v0e
τ > v0 from Eq. 24.

Finding the generating function

Using Eq. 31, Eq. 24 becomes
dF

dv
=

ab

1− bv
F (32)

or, on integrating,

log
F (v)

F (v0)
= −a log

(
1− bv

1− bv0

)
(33)

because F (v0) = F (τ = 0). If initially we have k proteins then

F (v0) =
∑

Pn(τ = 0)zn =
∑

δn,kz
n = zk = (1 + v0)

k. (34)

For our approximation, Eq. 31, to be valid, enough time must have passed for mRNA levels to
have reached steady-state. Strictly, this initial condition is only valid for non-zero τ of the order
of d1/d0 = γ−1. Finally, inserting Eq. 34 into Eq. 33 gives

F (z, τ) =

[
1− b(z − 1)e−τ

1− bz + b

]a [
1 + (z − 1)e−τ

]k
(35)

because v0 = (z − 1)e−τ . When k = 0, Eq. 35 becomes Eq. 7.
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Deriving the probability distribution for proteins

We can find Pn(τ), the probability of having n proteins at time τ given initially zero proteins, by

differentiating Eq. 35 when k = 0. By definition, Pn satisfies Pn = 1
n!

∂n

∂zn F (z, τ)
∣∣∣
z=0

. By writing

F (z, τ) =

(
1 + be−τ

1 + b

)a

·

[
1− b

1+b
z
]−a

[
1− b

eτ+b
z
]−a , (36)

we can make use of the identities

∂n

∂zn
[1− qz]−a

∣∣∣∣∣
z=0

=
Γ(a + n)

Γ(a)
qn (37)

and
∂n

∂zn

x(z)

y(z)
= n!

n∑
k=0

∂n−k

∂zn−k
x(z) ·

k∑
j=0

(−1)j(k + 1)y(z)−j−1

(j + 1)!(n− k)!(k − j)!

∂k

∂zk
y(z)j (38)

which is given at Wolfram Research (functions.wolfram.com/GeneralIdentities/9).
Interpreting x(z) as the numerator of the quotient in Eq. 36 and y(z) as its denominator, we

find

Pn(τ) =

(
1 + be−τ

1 + b

)a n∑
k=0

Γ(a + n− k)

Γ(a)

(
b

1 + b

)n−k

×
k∑

j=0

(−1)j(k + 1)

(j + 1)!(n− k)!(k − j)!
· Γ(aj + k)

Γ(aj)
·
(

b

eτ + b

)k

(39)

where we can use
k∑

j=1

(−1)jΓ(aj + k)

Γ(aj)(j + 1)!(k − j)!
=

(−1)kΓ(a + 1)

Γ(a− k + 1)(k + 1)!
(40)

to simplify further. Eq. 40 can be verified by directly expanding the sum. Consequently,

Pn(τ) =

(
b

1 + b

)n (
1 + be−τ

1 + b

)a n∑
k=0

(−1)k

k!

Γ(a− k + n)

Γ(n− k + 1)Γ(a− k + 1)

(
1 + b

eτ + b

)k

. (41)

The hypergeometric function 2F1(a, b, c; z) obeys

2F1(−n, b, c; z) =
n∑

k=0

(−1)k Γ(n + 1)

Γ(n− k + 1)

(b)k

(c)k

zk

k!
(42)

when a is a negative integer and where (b)k and (c)k are Pochhammer symbols [2]. From their
definition, (a)k = Γ(a + k)/Γ(a), the Pochhammer symbols satisfy

Γ(a + 1) = (−1)k(−a)kΓ(a− k + 1). (43)

Writing Γ(a− k + n) = Γ(a + n− 1− k + 1) and using Eq. 42 and Eq. 43, we find that

Pn(τ) =
1

n!

(
b

1 + b

)n (
1 + be−τ

1 + b

)a
Γ(a + n)

Γ(a)
2F1

(
−n,−a, 1− a− n;

1 + b

eτ + b

)
(44)

which is valid for γ � 1, τ > γ−1, and a and b finite.
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Deriving the ‘propagator’ probability

By differentiating Eq. 35 for non-zero k, we can express the ‘propagator’ probability, Pn|k(τ), in
terms of Eq. 44. From the definition of Pn(τ), Eq. 35 can be written as

F (z, τ) =

[ ∞∑
n=0

Pn(τ)zn

] [
1− e−τ + ze−τ

]k
(45)

or

F (z, τ) =
∞∑

n=0

Pn(τ)zn
k∑

r=0

(
k

r

)(
1− e−τ

)k−r (
ze−τ

)r
(46)

using the binomial theorem. From the coefficients of the powers of z, we find

Pn|k(τ) =
k∑

r=0

(
k

r

)
Pn−r(τ)

(
1− e−τ

)k−r
e−rτ (47)

because F (z, τ) =
∑

n Pn|k(τ)zn and remembering that Pn(τ) = 0 if n < 0.

Finding the probability distribution for the first passage time

With Pn(τ) and Pn|k(τ), we can find the distribution for the first time the number of proteins
reaches a threshold N . We define this distribution to be fN(τ). It obeys a renewal equation [3]

PN(τ) =
∫ τ

0
dτ ′fN(τ ′)PN |N(τ − τ ′). (48)

The probability of having N proteins at time τ is equal to the sum of the probability of first
reaching N proteins at τ ′ and then returning to N proteins at a time τ − τ ′ later for all times
τ ′ less than τ . We have assumed that the initial number of proteins is zero, but this assumption
is not necessary.

Eq. 48 is a Volterra integral equation of the first kind and can be straightforwardly solved
numerically [4]. If N > 0 then fN(0) = 0 and PN |N(0) = 1 by definition. Consequently, by
discretizing and letting τi = iε for integer i and small ε, we can write the integral in Eq. 48 as a
trapezium rule:∫ τi

0
dτ ′fN(τ ′)PN |N(τi − τ ′) ' ε

1

2
fN(τi) +

i−1∑
j=1

PN |N(τi − τj)fN(τj)

 . (49)

Inserting Eq. 49 into Eq. 48 gives a series of equations for fN(τi) which we solve iteratively:

fN(τ1) =
2PN(τ1)

ε
(50)

fN(τi) = 2

PN(τi)

ε
−

i−1∑
j=1

PN |N(τi−j)fN(τj)

 . (51)

We implement Eqs. 50 and 51 in Matlab (The Mathworks, Natick, Massachusetts). Our code is
available at www.cnd.mcgill.ca/~swain.

We use
〈n(τ1)n(τ2)〉 =

∑
n,n′

nn′Pn|n′(τ2 − τ1)Pn′(τ1) (52)

to find the auto-correlation function. We evaluate the sum in Eq. 52 numerically, cutting off the
sums when n is many times the mean steady-state value: 〈n〉 = ab.
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High γ implies bursts of protein synthesis

Figure 5: As γ increases, protein synthesis occurs in bursts. Time courses of protein numbers
from simulations of the two-stage model of of Fig. 1. When γ is increased to 100 from 1, we see
steep bursts of synthesis: short-lived mRNAs are only able to be occasionally translated before
being degraded. The protein degradation rate is d1 = 0.0005s−1. a a = 20 and b = 2.5. b
a = 0.5 and b = 100. Both examples have a mean protein number of 50.

Solving the master equation for bursts of protein synthesis

When γ � 1, the distribution for protein numbers can also be derived by only considering Pn(τ),
the probability of having n proteins at time τ , if this probability obeys a master equation where
proteins are synthesized in bursts. We let the size r of a burst obey a geometric distribution,

P (r) =

(
b

1 + b

)r (
1− b

1 + b

)
. (53)

The corresponding master equation is

∂Pn

∂τ
= a

[(
1− b

1 + b

)
n∑

r=0

(
b

1 + b

)r

Pn−r − Pn

]
+ (n + 1)Pn+1 − nPn (54)
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which can be converted into an equation for the generating function, F (z) =
∑

n znPn(τ).
The generating function obeys

∂F

∂τ
= (1− z)

∂F

∂z
− aF + a

(
1− b

1 + b

) ∞∑
n=0

n∑
r=0

zn

(
b

1 + b

)r

Pn−r (55)

where we need to evaluate the sums over n and r. Relabelling and resuming

∞∑
n=0

n∑
r=0

zn

(
b

1 + b

)r

Pn−r =
∞∑

n=0

n∑
k=0

zn

(
b

1 + b

)n−k

Pk

=
∞∑

k=0

(
b

1 + b

)−k

Pk

∞∑
n=k

(
bz

1 + b

)n

=
∞∑

k=0

Pk

(
bz

1+b

)k

(
1− bz

1+b

) (
b

1+b

)k

=
F (z)

1− bz
1+b

(56)

where we use the definition of the generating function. Consequently, Eq. 55 becomes

∂F

∂τ
= (1− z)

∂F

∂z
+

(
1− b

1+b

1− bz
1+b

− 1

)
aF (57)

or
1

v

∂F

∂τ
+

∂F

∂v
=

ab

1− bv
F (58)

with v = z − 1. This partial differential equation is Eq. 23 when γ � 1 and Eq. 31 holds.

Derivation of the gamma distribution for protein numbers

We can derive the gamma distribution for protein numbers found by Friedman et al. [5] when n
is large. If P (n|a, b) is the negative binomial distribution and Γ(n|a, b) is the gamma distribution,
then

P (n|a, b) =
∫ ∞

0
dλ

e−λλn

n!
Γ(λ|a, b) (59)

which is a general relation between the negative binomial and gamma distributions. It can be
verified by evaluating the integral using the definition of a gamma function [2]. If we approximate
the Poisson distribution by a normal distribution and write z = λ− n, Eq. 59 becomes

P (n|a, b) '
∫ ∞

−∞
dz

e−
z2

2(z+n)√
2π(z + n)

Γ(z + n|a, b)

=
∫ ∞

−∞
dz

e−
z2

2n(1+ z
n)

−1

√
2πn

·
(
1 +

z

n

)− 1
2

Γ
(

n
[
1 +

z

n

]∣∣∣∣ a, b
)
. (60)
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We note that only values of z close to zero contribute to the integral when n � 1 because z = 0
is the minimum of the exponent in the integrand. Then n � 1 implies z/n � 1, and so

P (n|a, b) '
∫ ∞

−∞
dz

e−
z2

2n

√
2πn

Γ(n|a, b)

= Γ(n|a, b) (61)

for large n, as expected [5].

Derivation of the protein distribution for a three-stage

model of gene expression

We can use the same approximation of large γ to find the protein distribution for the three-
stage model. Let P (0)

m,n be the probability of having m mRNAs and n proteins when the DNA

is inactive and P (1)
m,n be the probability of having m mRNAs and n proteins when the DNA is

active. The master equation consists of two coupled equations:

∂P (0)
n,m

∂τ
= κ1P

(1)
m,n − κ0P

(0)
m,n + (n + 1)P

(0)
m,n+1 − nP (0)

m,n

+γ
[
(m + 1)P

(0)
m+1,n −mP (0)

m,n + bm
(
P

(0)
m,n−1 − P (0)

m,n

)]
(62)

∂P (1)
n,m

∂τ
= −κ1P

(1)
m,n + κ0P

(0)
m,n + (n + 1)P

(1)
m,n+1 − nP (1)

m,n + a
(
P

(1)
m−1,n − P (1)

m,n

)
+γ

[
(m + 1)P

(1)
m+1,n −mP (1)

m,n + bm
(
P

(1)
m,n−1 − P (1)

m,n

)]
(63)

where κ0 = k0/d1 and κ1 = k1/d1. By defining two generating functions

f (0)(z′, z) =
∑

m,n(z′)mznP (0)
m,n ; f (1)(z′, z) =

∑
m,n(z′)mznP (1)

m,n, (64)

these equations become

1

v

∂f (0)

∂τ
=

1

v

[
κ1f

(1) − κ0f
(0)
]
− ∂f (0)

∂v
+ γ

[
b(1 + u)− u

v

]
∂f (0)

∂u
(65)

1

v

∂f (1)

∂τ
=

1

v

[
−κ1f

(1) + κ0f
(0)
]
− ∂f (1)

∂v
+ a

u

v
f (1) + γ

[
b(1 + u)− u

v

]
∂f (1)

∂u
(66)

with u = z′ − 1 and v = z − 1.
At steady-state ∂f (0)

∂τ
= ∂f (1)

∂τ
= 0, and we find using the method of characteristics that

dv
dr

= 1 ; du
dr

= −γ
[
b(1 + u)− u

v

]
df (0)

dr
= 1

v

[
κ1f

(1) − κ0f
(0)
]

; df (1)

dr
= 1

v

[
−κ1f

(1) + κ0f
(0)
]
+ au

v
f (1)

(67)

where r measures the distance along a characteristic. Both u and v obey Eq. 24 again. Conse-
quently, v = r and u ' bv

1−bv
from Eq. 31 when γ � 1. From Eq. 67, we therefore obtain the

two coupled differential equations:

v
df (0)

∂v
= κ1f

(1) − κ0f
(0) (68)

v
df (1)

∂v
= −κ1f

(1) + κ0f
(0) +

abv

1− bv
f (1). (69)
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Following Hornos et al. [6], Eqs. 68 and 69 can be reduced to one differential equation for
f (0)(v) by solving Eq. 68 for f (1) in terms of f (0) and its derivative, and inserting the result into
Eq. 69. This equation becomes a second-order differential equation:

v(bv − 1)
df (0)

dv2
+
[
(κ0 + κ1)(bv − 1) + bv(1 + a)− 1

]df (0)

dv
+ abκ0f

(0) = 0. (70)

Eq. 70 has solution
f (0)(v) = C 2F1(α, β, 1− κ0 − κ1; bv) (71)

where 2F1(a, b, c; z) is a hypergeometric function,

α =
1

2

(
a + κ0 + κ1 +

√
(a + κ0 + κ1)2 − 4aκ0

)
(72)

β =
1

2

(
a + κ0 + κ1 −

√
(a + κ0 + κ1)2 − 4aκ0

)
, (73)

and C is a constant of integration.
We can find the generating function for protein numbers, F (z) = f (0)(z)+f (1)(z), by using our

solution for f (0) and Eq. 68 to find f (1). Determining the constant of integration C from F (1) = 1
and using the relation c(c+1) 2F1(a, b, c; z) = c(c+1) 2F1(a, b, c+1; z)+abz 2F1(a+1, b+1, c+2; z),
we find that

F (z) = 2F1

(
α, β, κ0 + κ1; b(z − 1)

)
, (74)

replacing v by z − 1.
Expanding the generating function around z = 0 determines the probabilities Pn. Using prop-

erties of the n-th derivatives with respect to z of the hypergeometric function, 2F
(n)
1 (a, b, c; z),

we can write

F (z) =
∞∑

n=0

2F
(n)
1

(
α, β, κ0 + κ1;−b

)bn

n!
zn

=
∞∑

n=0

Γ(α + n)Γ(β + n)Γ(κ0 + κ1)b
n

Γ(α)Γ(β)Γ(κ0 + κ1 + n)n!
2F1

(
α + n, β + n, κ0 + κ1 + n;−b

)
zn (75)

and Pn can be found from the definition of F (z): F (z) =
∑

n Pnz
n. With the linear transforma-

tion formulae for hypergeometric functions [2], we write Pn as

Pn =
Γ(α + n)Γ(β + n)Γ(κ0 + κ1)

Γ(n + 1)Γ(α)Γ(β)Γ(κ0 + κ1 + n)

(
b

1 + b

)n (
1− b

1 + b

)α

× 2F1

(
α + n, κ0 + κ1 − β, κ0 + κ1 + n;

b

1 + b

)
. (76)

The exact mRNA distributions

For completeness, we include the mRNA distributions for the two-stage and three-stage models.
With initially zero mRNAs, the two-stage model has a Poisson distribution:

Pm(t) = e−〈m(t)〉 〈m(t)〉m

m!
(77)
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where 〈m(t)〉 = ms

(
1− e−d0t

)
and ms = v0/d0 is the steady-state number of mRNAs. The

propagator probability satisfies

Pm|k(t) =
k∑

r=0

(
k

r

)
Pm−r(t)

(
1− e−d0t

)k−r
e−rd0t (78)

with Pm(t) = 0 if m < 0.
The steady-state distribution of mRNA for the three-stage model was first derived by Peccoud

and Ycart, although they did not recognize it as such [7], and also by Raj et al. [8]. The exact
probability of having m RNAs at steady-state is

Pm =
mm

s e−ms

m!
· Γ(ζ0 + m)Γ(ζ0 + ζ1)

Γ(ζ0 + ζ1 + m)Γ(ζ0)
1F1(ζ1, ζ0 + ζ1 + m; ms) (79)

where ms = v0/d0, ζ0 = k0/d0, and ζ1 = k1/d0, and 1F1(a, b; z) is the confluent hypergeometric
function of the first kind [2]. Eq. 79 like Eq. 18 can be bimodal. For ζ1 = k1/d0 � 1, Eq. 79
tends to a negative binomial distribution [8], because then mRNA synthesis is more burst-like.
The distribution becomes Poisson when k1 is zero, and the three-stage model reduces to the
two-stage model.
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