Solid Phase Total Synthesis and Structure Proof of Callipeltin B

Supporting Information

Ravi Krishnamoorthy, Leslie D. Vazquez-Serrano [†] , Jeffrey A. Turk [†] , Jennifer A. Kowalski [†] , Alan G. Benson [†] , Nneka T. Breaux [†] and Mark A. Lipton*	
Department of Chemistry and Cancer Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084	
lipton@purdue.edu	
General Experimental	S3
Synthesis of Fmoc-D-Arg(NO ₂)	S3
Synthesis of Fmoc-Thr-OAllyl – General Procedure	S3
Fmoc-D-aThr-OAllyl	S4
Fmoc-L-Thr-OAllyl	S4
Synthesis of Fmoc-Thr(THP)-OAllyl – General Procedure	
Fmoc-D- <i>a</i> Thr(THP)-OAllyl	
Fmoc-L-Thr(THP)-OAllyl	S5
Synthesis of Fmoc-Thr(THP) – General Procedure	S6
Fmoc-D- <i>a</i> Thr(THP)	S6
Fmoc-L-Thr(THP)	S6
Synthesis of Alloc-MeAla	S7
Synthesis of (3S, 4R)-Dimethyl-L-pyroglutamic acid	S7
Solid Phase Synthesis (Method A)	S8
Solid Phase Synthesis (Method B)	S11
Synthesis of 1a	S14
Synthesis of 1b	S15
Synthesis of 1c	S15
Table 1. Comparison of ¹ H NMR spectra of natural callipeltin B and $1c$	S16
¹ H NMR of Fmoc-D-Arg(NO₂)	S18
¹³ C NMR of Fmoc-D-Arg(NO₂)	S19
¹ H NMR of Fmoc-D- <i>a</i> Thr-OAllyl	S20
¹³ C NMR of Fmoc-D- <i>a</i> Thr-OAllyl	S21
¹ H NMR of Fmoc-L-Thr-OAllyl	S22
¹³ C NMR of Fmoc-L-Thr-OAllyl	S23

¹ H NMR of Fmoc-D - <i>a</i> Thr(THP)-OAllyl	
¹³ C NMR of Fmoc-D- <i>a</i> Thr(THP)-OAllyl	
¹ H NMR of Fmoc-L-Thr(THP)-OAllyl	
¹³ C NMR of Fmoc-L- <i>a</i> Thr(THP)-OAllyl	
¹ H NMR of Alloc-MeAla	S28
¹³ C NMR of Alloc-MeAla	
¹ H NMR of natural Callipeltin B	
¹ H NMR of 1c	
¹ H NMR of 1a	
¹ H NMR of 1b	S33
Comparison ¹ H NMR of 1c , 1a and 1b	S34
HPLC traces of 1a-c	

General Experimental

NMR spectra were recorded at 300 MHz and 75 MHz for proton and carbon nuclei respectively. ¹H NMR spectra of 1a-c were recorded at 500 MHz. Solvents were purified by passage through an activated column prior to use.¹

Fmoc-D-Arg(NO₂)

A suspension of D-Arg(NO₂) (340 mg, 1.55 mmol), Fmoc-OSu (784 mg, 2.32 mmol) and a 10% aqueous solution of Na₂CO₃ (6 mL) in Dioxane (3 mL) was stirred at room temperature for 15 h. The reaction mixture was washed with diethyl ether (2x10 mL). The aqueous layer was acidified to pH 1 with 5% citric acid and extracted with ethyl acetate (3x 50 mL). The combined organic layers were washed with brine solution and dried over Na₂SO₄. The solvent was evaporated in vacuo to afford Fmoc-D-Arg(NO₂) (502 mg, 73% yield) which was used without further purification.

mp 148 °C. ¹H NMR (300 MHz, CD₃OD) _ 7.81 (d, J = 7.0 Hz, 2H), 7.66 (dd, J = 6.5, 7.0 Hz, 2H), 7.40 (m, 4H), 4.41 (d, J = 7.0 Hz, 2H), 4.23 (t, J = 7.0, 6.4 Hz, 2H), 3.28 (t, J = 7.0, 5.9 Hz, 2H), 1.97 (m, 2H), 1.73 (m, 2H); ¹³C NMR (75 MHz, CD₃OD) _ 174.2, 159.6, 157.4, 143.9, 143.7*, 141.2, 127.4, 126.8, 124.8, 119.5, 66.5, 53.5, 47.1, 40.3, 28.5, 24.8 (* denotes signals arising from a minor rotamer); IR (KBr) _max 3311, 2950, 1707, 1633, 1532, 1450, 1263, 1106 cm⁻¹; HRMS (ESI) calculated for $C_{21}H_{23}N_5O_6$ (M + Na)⁺ 464.1546, found 464.1551.

Synthesis of Fmoc-Thr-OAllyl – General Procedure

¹ Solvent columns are composed of activated alumina and supported copper redox catalyst reactant. See: *Organometallics* **1996**, 15, 1518-1520.

A mixture of aliquat 336 (500 mg) and allylbromide (5.3 eq) in CH_2Cl_2 (3 mL) was added to a mixture of Fmoc-Thr (1 eq) and NaHCO₃ (1 eq) in H₂O (3 mL). The resulting suspension was stirred vigorously at room temperature for 15 h. The reaction mixture was diluted with water (15 mL) and extracted with CH_2Cl_2 (3x 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concenterated in vacuo to afford the crude product. Flash column chromatography of the crude product (30% ethylacetate/hexanes) afforded Fmoc-Thr-OAllyl ester.

Fmoc-D-*a***Thr-OAllyl:** Fmoc-D-*a*Thr (250 mg, 0.73 mmol), NaHCO₃ (61.5 mg, 0.732 mmol), allylbromide (0.34 mL, 3.9 mmol). Colorless solid, 271 mg, 97% yield, mp 108 °C. ¹H (300 MHz, CDCl₃) _ 7.74 (d, J = 7.6 Hz, 2H), 7.58 (d, J = 7.0 Hz, 2H), 7.37 (m, 4H), 5.88 (m, 1H), 5.32 (m, 2H), 4.66 (d, J = 5.3 Hz, 2H), 4.47 (m, 1H), 4.40 (d, J = 7.0 Hz, 2H), 4.21 (t, J = 7.0, 7.0 Hz, 2H), 2.98 (br s., 1H), 1.22 (d, J = 5.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) _ 170.2, 156.7, 143.8*, 143.7, 141.3, 131.3, 127.8, 127.2, 125.2, 120.1, 119.3*, 68.9, 67.4, 66.3, 59.6, 47.2, 19.0 (* denotes signals arising from a minor rotamer); IR (neat) _max 3383, 1718, 1520, 1450, 1255, 1196, 1035 cm⁻¹; HRMS (ESI) calculated for C₂₂H₂₃NO₅ (M + Na)⁺404.1474, found 404.1470.

Fmoc-L-Thr-OAllyl: Fmoc-L-Thr (500 mg, 1.46 mmol), NaHCO₃ (122.6 mg, 0.732 mmol), allylbromide (0.67 mL, 7.74 mmol). Colorless solid, 527 mg, 94% yield, mp 109 °C. ¹H (300 MHz, CDCl₃) _ 7.75 (d, J = 7.4 Hz, 2H), 7.60 (d, J = 5.3 Hz, 2H), 7.38 (m, 4H), 5.90 (m, 1H), 5.72 (d, J = 8.2 Hz, 1H), 5.37 (m, 2H), 4.67 (d, J = 5.3 Hz, 2H), 4.41 (d, J = 7.6 Hz, 2H), 4.39 (d, J = 7.6 Hz, 1H), 4.24 (t, J = 7.0, 7.0 Hz, 1H), 2.34 (br s., 1H), 1.82 (br s., 1H), 1.25 (d, J = 5.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) _ 171.2, 157.1, 144.1*, 143.9, 141.6, 131.7, 128.0, 127.4, 125.4, 120.3, 119.3*, 68.3, 67.5, 66.6, 59.5, 47.4, 20.2 (* denotes signals arising from a minor rotamer); IR (neat) __max 3408, 1721, 1520, 1450, 1205, 1070 cm⁻¹; HRMS (EI) calculated for C₂₂H₂₃NO₅ M⁺ 381.1576, found 381.1582

Synthesis of Fmoc-Thr(THP)-OAllyl – General Procedure

To a solution of Fmoc-Thr-OAllyl (1 eq) in 1,2- dichloroethane (5 mL) was added 3, 4dihydro-2H-pyran (5 eq) followed by PPTS (2.5 mol%). The reaction was stirred at 60 °C for 12 h, whereupon the reaction mixture was diluted with water (15 mL) and extracted with CH_2Cl_2 (3x 20 mL). The combined organic layers were washed with brine solution, dried over Na_2SO_4 and concentrated in vacuo to afford the crude product. Flash column chromatography of the crude product (20% ethylacetate/hexanes) afforded Fmoc-Thr(THP)-OAllyl as a colorless, viscous oil in quantitative yield.

Fmoc-D-aThr(THP)-OAllyl: Fmoc-D-*a*Thr-OAllyl (162 mg, 0.43 mmol), 3, 4-dihydro-2H-pyran (160 _L, 1.75 mmol), PPTS (2 mg, 2.5 mol %). Colorless viscous oil, quantitative yield (200 mg). ¹H (300 MHz, CDCl₃) _ 7.75 (d, J = 7.5 Hz, 2H), 7.65* (d, J = 7.8 Hz, 2H), 7.6 (d, J = 7.8 Hz, 2H), 7.38 (m, 4H), 6.30 (d, J = 8.6 Hz, 1H), 5.92 (m, 1H), 5.55* (d, J = 8.6 Hz, 1H), 5.28 (m, 2H), 5.22* (m, 2H), 4.76* (br s., 1H), 4.68 (d, J = 5.6 Hz, 2H), 4.64* (d, J = 7.6 Hz, 2H), 4.61 (br s., 1H), 4.38 (d, J = 5.1 Hz, 2H), 4.32* (d, J = 4.5 Hz, 2H), 4.25 (t, J = 7.3, 9.1 Hz, 1H), 4.21* (t, J = 4.5, 6.4 Hz, 1H), 4.06 (q, J = 3.1, 3.2, 3.1 Hz, 1H), 3.94* (q, J = 5.7, 5.7, 5.3 Hz, 1H), 3.88* (m, 2H), 3.53 (t, J = 5.4, 5.7 Hz, 2H), 1.76 (m, 2H), 1.69* (m, 2H), 1.33 (d, J = 6.6 Hz, 3H), 1.27* (d, J = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) _ 170.1*, 169.6, 156.1, 144.1*, 143.9*, 143.8, 141.3, 131.8, 131.5*, 127.8, 127.7* 127.1, 127.0*, 125.3, 125.2*, 120.0, 119.9*, 119.1*, 118.4, 98.4*, 98.0*, 74.5, 72.9, 67.1, 67.0*, 66.1*, 65.8, 63.4, 62.7*, 58.6, 57.2*, 47.2, 31.1*, 30.6, 25.4*, 25.2, 20.0, 19.5*, 17.5 (* denotes minor rotamer); IR (neat) __max 3337, 2943, 1726, 1522, 1450, 1386, 1200, 1122, 1076, 1030 cm⁻¹; HRMS (ESI) calculated for C₂₇H₃₁NO₆ (M + Na)* 488.2049, found 488.2050.

Fmoc-L-Thr(THP)-OAllyl: Fmoc-L-Thr-OAllyl (483 mg, 1.27 mmol), 3, 4-dihydro-2Hpyran (580 _L, 6.35 mmol), PPTS (8 mg, 2.5 mol %). Colorless viscous oil, quantitative yield (592 mg). ¹H (300 MHz, CDCl₃) 7.75 (d, J = 7.6 Hz, 2H), 7.67* (d, J = 6.5 Hz, 2H), 7.64 (d, J = 6.4 Hz, 2H), 7.38 (m, 4H), 5.94 (m, 1H), 5.76 (d, J = 8.8 Hz, 1H), 5.61* (d, J = 9.4 Hz, 1H), 5.34 (d, J = 15.8 Hz, 1H), 5.27 (m, 1H), 4.67 (t, J = 5.3, 5.9 Hz, 2H),4.6* (d, J = 5.9 Hz, 1H), 4.56 (d, J = 3.5 Hz, 1H), 4.45 (m, 2H), 4.40* (m, 2H), 4.31 (t, J = 7.0, 7.6 Hz, 1H), 3.90 (q, J = 6.5, 3.5, 5.3 Hz, 1H), 3.73 (m, 1H), 3.47 (m, 1H), 1.74 (m, 2H), 1.65* (m, 2H), 1.53 (m, 4H), 1.34* (d, J = 6.5 Hz, 3H), 1.24 (d, J = 5.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) 170.8*, 170.7, 157.0, 156.9*, 144.2, 144.0*, 141.5, 131.9, 131.7*, 127.9, 127.2, 125.4, 125.1*, 120.2, 119.4*, 118.9, 100.6*, 96.1, 75.2*, 71.3, 67.4, 66.2*, 63.2*, 62.7, 59.2, 47.4, 31.0*, 30.9, 25.4, 20.0*, 19.7, 19.2*, 16.8 (* denotes minor rotamer); IR (neat) max 3436, 3338, 2943, 1727, 1511, 1450, 1307, 1201, 1074, 1033 cm⁻¹; HRMS (EI) calculated for $C_{27}H_{31}NO_6 M^+$ 465.2151, found 465.2149.

Fmoc-Thr(THP) – General Procedure

To a mixture of Fmoc-D-aThr(THP)-OAllyl (1 eq) and PhSiH₃ (2 eq) in CH₂Cl₂ (2 mL) was added $Pd(PPh_3)_4^2$ (5 mol%) and stirred at room temperature for 45 min. The reaction mixture was diluted with H₂O (10 mL) and extracted with CH₂Cl₂ (3x10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The crude product was used immediately in the solid phase synthesis to avoid autocatalytic decomposition.

Fmoc-D-aThr(THP): Fmoc-D-aThr(THP)-OAllyl (29 mg, 0.063 mmol), PhSiH₃ (17.7 μ L, 0.144 mmol), Pd(PPh₃)₄ (3.6 mg, 5 mol%). Crude product was obtained as a gummy brown solid.

Fmoc-L-Thr(THP): Fmoc-L-Thr(THP)-OAllyl (33.5 mg, 0.072 mmol), PhSiH₃ (23 µL, 0.19 mmol), Pd(PPh₃)₄ (4.2 mg, 5 mol%). Crude product was obtained as a gummy brown solid.

² Prior to use Pd(PPh₃)₄ was washed with DMSO (3x), EtOH (3x) and Et₂O (3x).

Alloc-MeAla

A mixture of *N*-methyl-L-alanine (600 mg, 5.8 mmol), allylchloroformate (3.1 mL, 5.8 mmol) and 2 M NaOH (5.8 mL) in 1:2 THF-H₂O (9 mL) was stirred at room temperature for 3 h. After completion the reaction mixture was concentrated in vacuo to reduce the volume, acidified to pH 2.0 with 2 M HCl and extracted with EtOAc (3x 25 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo to afford the crude product. Flash column chromatography of the crude product (5% MeOH/ CH₂Cl₂) afforded Alloc-MeAla (952 mg, 87% yield) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) _ 10.1 (br s., 1H), 5.93* (m, 1H), 5.85 (m, 1H), 5.26* (m, 2H), 5.19 (m, 2H), 4.85 (q, J = 7.6, 7.0, 7.6 Hz, 1H), 4.70* (q, J = 7.0, 7.6, 7.0 Hz, 1H), 4.56 (d, J = 5.3 Hz, 2H), 2.86 (s, 3H), 1.39 (d, J = 7.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) _ 176.9, 156.7, 156.1*, 132.6, 117.5, 66.6, 54.1, 30.9*, 30.3, 15.1*, 14.6 (* denotes minor rotamer); IR (neat) __max 2947, 1746, 1706, 1674, 1456, 1402, 1320, 1164, 1096 cm⁻¹; HRMS (ESI) calculated for C₈H₁₃NO₄ (M + Na)* 210.0742, found 210.0745.

(3S, 4R)-Dimethyl-L-pyroglutamic acid

N-Boc-(3*S*, 4*R*)-Dimethyl-L-pyroglutamic acid³ (17 mg, 0.065 mmol) was dissolved in 33% TFA/CH₂Cl₂ (2 mL) and stirred at room temperature for 1 h. After completion of the reaction, the solvent was evaporated under reduced pressure, redissolved in toluene and reevaporated to afford the crude product (10.2 mg), which was used without further purification in the synthesis.

³ Acevedo, C. M.; Kogut , E. F.; Lipton, M. A. *Tetrahedron* 2001, 57, 6353.

Solid Phase Synthesis - Method A:

Novasyn Tentagel Sieber resin 2 (200 mg, 0.12 mmol/g) was swelled in DMF (2 mL) and treated with a 25% piperidine/DMF solution (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by filtration and the reaction was repeated. The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). The cyclic anhydride **3** (26.3 mg, 0.072 mmol) was added to the resin, followed by DMF (600 μ L), and the resin was mixed by bubbling a slow stream of N₂ through the suspension for 1 h. The solution was removed from the reaction vessel by filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x). This reaction, and all subsequent reactions, was analyzed by HPLC and MALDI-MS by removing an aliquot of beads (2 mg).

The resin was swelled in 9:1 CH₂Cl₂/DMF (2 mL) and the coupling reagent HATU (21.7 mg, 0.057 mmol) was added to the resin, followed by a solution of (2*R*, 3*R*)-_- OMeTyr(Bn)-OAllyl HCl 4 (19.5 mg, 0.057 mmol) in 9:1 CH₂Cl₂/DMF (600 μ L), DIEA (20 μ L, 0.114 mmol). The resin was mixed by bubbling a slow stream of N₂ through the suspension for 2 h. The solvent volume was maintained by adding CH₂Cl₂ as needed. The solution was removed by vacuum filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x).

The resin was swelled in DMF (2 mL) and treated with a 25% piperidine/DMF (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by vacuum filtration and the deprotection step was repeated. The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). The coupling reagents Fmoc-Leu (25.4 mg, 0.072 mmol), HATU (27.4 mg, 0.072 mmol) and HOAt (9.8 mg, 0.072 mmol) were added to the resin, followed by DMF (600 μ L) and DIEA (25 μ L, 0.144 mmol). The resin was mixed by bubbling a slow stream of N₂ through the suspension for 2 h. The solution was removed by vacuum filtration and the resin was mashed with DMF (4x), CH₂Cl₂ (2x).

The resin was swelled in DMF (2 mL) and treated with a 25% piperidine/DMF solution (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by vacuum filtration and the deprotection step was repeated. The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). The coupling

reagents Fmoc-D-Arg(Z₂) (40 mg, 0.06 mmol), PyBOP (31.2 mg, 0.06 mmol) and HOBtH₂O (9.2 mg, 0.060 mmol) were placed in a vial, followed by addition of DMF (600 μ L) and DIEA (21 μ L, 0.12 mmol). The solution was allowed to react for 2 min and then added to the resin suspension. The resin was mixed by bubbling a slow stream of N₂ through the suspension for 2.5 h. The solution was removed by vacuum filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x).

The resin was swelled in DMF (2 mL) and treated with a 2% DBU/DMF (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by vacuum filtration and the deprotection step was repeated. The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). The coupling reagents PyBOP (37.4 mg, 0.072 mmol) and HOBtH₂O (11 mg, 0.072 mmol) were added to the flask containing Fmoc-L-Thr(THP) (0.072 mmol), used as a crude solution obtained from the deprotection of its allyl ester (*vide supra*), and the mixture was dissolved in DMF (600 μ L) and DIEA (25 _L, 0.144 mmol). The solution was allowed to react for 2 min and then added to the resin suspension. The resin was mixed by bubbling a slow stream of N₂ through the suspension for 2.5 h. The solution was removed by vacuum filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x).

The resin was swelled in DMF (2 mL) and treated with a 2% DBU/DMF solution (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by vacuum filtration and the deprotection step was repeated (2x). The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). The coupling reagents Fmoc-Thr (for **1a**) or Fmoc-D-*a*Thr (for **1b**) (24.6 mg, 0.072 mmol), HATU (27.4 mg, 0.072 mmol) and HOAt (9.8 mg, 0.072 mmol) were placed in a vial and dissolved in DMF (600 L) and DIEA (25 L, 0.144 mmol). The mixture was allowed to react for 2 min and then added to the resin suspension. The resin was mixed by bubbling a slow stream of N₂ through the suspension for 2.5 h. The solution was removed by vacuum filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x).

The resin was swelled in DMF (2 mL) and treated with a 2% DBU/DMF solution (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by vacuum filtration and the deprotection step was repeated (2x). The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). HOSu (8.2 mg,

0.071 mmol) was added to a flask containing crude (3*S*, 4*R*)-Dimethyl-L-pyroglutamic acid (11.1 mg) followed by DMF (600 μ L), DIC (11 μ L, 0.071 mmol) and DIEA (12.4 μ L, 0.071 mmol). The mixture was allowed to react for 2 min and then added to the resin suspension. The resin was mixed by bubbling a slow stream of N₂ through the suspension for 2 h. The solution was removed by vacuum filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x).

MSNT (85 mg, 0.288 mmol) and Alloc-MeAla (54 mg, 0.288 mmol) were placed separately in flame dried vials which were purged with N₂ for 2 min. To the vial containing the Alloc-MeAla, dry CH₂Cl₂ (400 _L) was added followed by *N*-methylimidazole (46 μ L, 0.576 mmol). The solution was mixed for 1 min, added to the vial containing MSNT under a N₂ atmosphere and allowed to react for 5 min. The resin was swelled in dry CH₂Cl₂ (2 mL) and the preactivated amino acid solution was added to the resin. The resin was mixed by bubbling a slow stream of N₂ through the suspension for 2.5 h. The solvent volume was maintained by adding CH₂Cl₂ (2x), DMF (4x) and CH₂Cl₂ (2x).

CH₂Cl₂ (600 μ L) was added to the resin, followed by PhSiH₃ (120 μ L, 0.96 mmol) and the resin was mixed by bubbling N₂ through the suspension. After 5 min, Pd(PPh₃)₄⁴ (19.4 mg, 16.8 μ mol) was added to the resin and mixed for 45 min. The solvent volume was maintained by adding dry CH₂Cl₂ as needed. The solution was removed by vacuum filtration and the resin was washed with CH₂Cl₂ (2x), 19:1 CH₂Cl₂/DIEA (2x), DMF (2x) and CH₂Cl₂ (2x).

The resin was swelled in 9:1 CH₂Cl₂/DMF (2 mL). PyAOP (31.3 mg, 0.06 mmol) was added to the resin followed by 9:1 CH₂Cl₂/DMF (600 _L) and 2,4,6-collidine (15.8 μ L, 0.12 mmol). The resin was mixed by bubbling a slow stream of N₂ through the suspension for 45 min. The solvent volume was maintained by adding CH₂Cl₂ as needed. The solution was removed by vacuum filtration and the resin was washed with Et₂O, CH₂Cl₂, DMF (4x) and CH₂Cl₂ (2x).

The resin was transferred to a vial and treated with 2% TFA/CH₂Cl₂ (2 mL) for 5 minutes. The solution was removed by pipette and filtered through a plug of cotton. The

⁴ see footnote 2

remaining resin was sequentially treated with 2% TFA/ CH₂Cl₂ five times (for 5 min each). The combined 2% TFA/CH₂Cl₂ solution was evaporated in vacuo to get crude protected callipeltin B isomers.

The crude protected macrocycle was dissolved in 5% HCO₂H/MeOH (5 mL) and 20% Pd(OH)₂-C (6 mg, 2 μ mol) was added. The reaction flask was evacuated, flushed with argon, evacuated again and filled with H₂. The reaction mixture was stirred under balloon pressure of H₂ for 6 h (H₂ balloon was refilled every 3 h). After completion of the reaction, the catalyst was removed by filtration through a cotton plug and the filtrate was evaporated in vacuo to afford the crude callipeltin B isomer. The crude product was purified by reverse phase HPLC (Vydac C8 column, 5-40% CH₃CN-H₂O gradient over 25 min).

Method B: Synthesis of 1c

Novasyn Tentagel Sieber resin 2 (100 mg, 0.12 mmol/g) was swelled in DMF (2 mL) and treated with a 25% piperidine/DMF solution (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by filtration and the reaction was repeated. The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). The cyclic anhydride **3** (22 mg, 0.060 mmol) was added to the resin, followed by DMF (400 μ L), and the resin was mixed by bubbling a slow stream of N₂ through the suspension for 1 h. The solution was removed from the reaction vessel by filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x). This reaction, and all subsequent reactions, was analyzed by HPLC and MALDI-MS by removing an aliquot of beads (2 mg).

The resin was swelled in 9:1 CH₂Cl₂/DMF (2 mL) and the coupling reagent HATU (24 mg, 0.063 mmol) was added to the resin, followed by a solution of (2*R*, 3*R*)-_-OMeTyr(Bn)-OAllylHCl **4** (24 mg, 0.063 mmol) in 9:1 CH₂Cl₂/DMF (450 μ L), DIEA (22 μ L, 0.13 mmol). The resin was mixed by bubbling a slow stream of N₂ through the suspension for 1 h. The solvent volume was maintained by adding CH₂Cl₂ as needed. The solution was removed by vacuum filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x). The resin was swelled in DMF (2 mL) and treated with a 25% piperidine/DMF (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by vacuum filtration and the deprotection step was repeated. The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). The coupling reagents Fmoc-Leu (20 mg, 0.56 mmol), HATU (21 mg, 0.056 mmol) and HOAt (7.6 mg, 0.056 mmol) were added to the resin, followed by DMF (400 μ L) and DIEA (19.5 μ L, 0.12 mmol). The resin was mixed by bubbling a slow stream of N₂ through the suspension for 1 h. The solution was removed by vacuum filtration and the resin was washed with DMF (4x), CH₂Cl₂ (2x).

The resin was swelled in DMF (2 mL) and treated with a 25% piperidine/DMF solution (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by vacuum filtration and the deprotection step was repeated (2x). The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). The coupling reagents Fmoc-D-Arg(NO₂) (28 mg, 0.063 mmol), PyBOP (33 mg, 0.63 mmol) and HOBtH₂O (9.6 mg, 0.063 mmol) were placed in a vial, followed by addition of DMF (450 μ L) and DIEA (21.9 μ L). The solution was allowed to react for 2 min and then added to the resin suspension. The resin was mixed by bubbling a slow stream of N₂ through the suspension for 1.5 h. The solution was removed by vacuum filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x).

The resin was swelled in DMF (2 mL) and treated with a 25% piperidine/DMF (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by vacuum filtration and the deprotection step was repeated (2x). The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). The coupling reagents PyBOP (33 mg, 0.063 mmol) and HOBtH₂O (9.6 mg, 0.063 mmol) were added to the flask containing Fmoc-D-*a*Thr(THP) (0.063 mmol), used as a crude solution obtained from the deprotection of its allyl ester (*vide supra*), and the mixture was dissolved in DMF (450 µL) and DIEA (22 _L). The solution was allowed to react for 2 min and then added to the resin suspension. The resin was mixed by bubbling a slow stream of N₂ through the suspension for 1.5 h. The solution was removed by vacuum filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x).

The resin was swelled in DMF (2 mL) and treated with a 25% piperidine/DMF solution (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by vacuum filtration and the deprotection step was repeated (2x). The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). The coupling reagents Fmoc-D-*a*Thr (22 mg, 0.063 mmol), HATU (24 mg, 0.063 mmol) and HOAt (8.6 mg, 0.063 mmol) were placed in a vial and dissolved in DMF (450 _L) and DIEA (22 _L, 0.13 mmol). The mixture was allowed to react for 2 min and then added to the resin suspension. The resin was mixed by bubbling a slow stream of N₂ through the suspension for 1.5 h. The solution was removed by vacuum filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x).

The resin was swelled in DMF (2 mL) and treated with a 25% piperidine/DMF solution (2 mL) by bubbling a slow stream of N₂ through the suspension for 15 min. The solution was removed by vacuum filtration and the deprotection step was repeated (3x). The resin was sequentially washed with Et₂O (2x), CH₂Cl₂ (2x) and DMF (4x). HOSu (7.5 mg, 0.065 mmol) was added to a flask containing crude (3*S*, 4*R*)-Dimethyl-L-pyroglutamic acid (10.2 mg) followed by DMF (465 μ L), DIC (10 μ L, 0.065 mmol) and DIEA (11 μ L, 0.065 mmol). The mixture was allowed to react for 2 min and then added to the resin suspension. The resin was mixed by bubbling a slow stream of N₂ through the suspension for 2 h. The solution was removed by vacuum filtration and the resin was washed with DMF (4x) and CH₂Cl₂ (2x).

MSNT (57 mg, 0.19 mmol) and Alloc-MeAla (36 mg, 0.19 mmol) were placed separately in flame dried vials which were purged with N₂ for 2 min. To the vial containing the Alloc-MeAla, dry CH₂Cl₂ (400 _L) was added followed by *N*-methylimidazole (31 μ L, 0.38 mmol). The solution was mixed for 1 min, added to the vial containing MSNT under a N₂ atmosphere and allowed to react for 5 min. The resin was swelled in dry CH₂Cl₂ (2 mL) and the preactivated amino acid solution was added to the resin. The resin was mixed by bubbling a slow stream of N₂ through the suspension for 1.5 h. The solvent volume was maintained by adding CH₂Cl₂ as needed. The solution was removed by vacuum filtration and the resin was washed with CH₂Cl₂ (2x), DMF (4x) and CH₂Cl₂ (2x).

CH₂Cl₂ (400 μ L) was added to the resin, followed by PhSiH₃ (59 μ L, 0.58 mmol) and the resin was mixed by bubbling N₂ through the suspension. After 5 min, Pd(PPh₃)₄⁵ (9.7 mg, 8.4 μ mol) was added to the resin and mixed for 40 min. The solvent volume was maintained by adding dry CH₂Cl₂ as needed. The solution was removed by vacuum filtration and the resin was washed with CH₂Cl₂ (2x), 19:1 CH₂Cl₂/DIEA (2x), DMF (2x) and CH₂Cl₂ (2x).

The resin was swelled in 9:1 CH₂Cl₂/DMF (2 mL). PyAOP (16 mg, 0.030 mmol) was added to the resin followed by 9:1 CH₂Cl₂/DMF (450 _L) and 2,4,6-collidine (8 μ L, 0.06 mmol). The resin was mixed by bubbling a slow stream of N₂ through the suspension for 45 min. The solvent volume was maintained by adding CH₂Cl₂ as needed. The solution was removed by vacuum filtration and the resin was washed with Et₂O, CH₂Cl₂, DMF (4x) and CH₂Cl₂ (2x).

The resin was transferred to a vial and treated with 2% TFA/CH₂Cl₂ (2 mL) for 5 minutes. The solution was removed by pipette and filtered through a plug of cotton. The remaining resin was sequentially treated with 2% TFA/CH₂Cl₂ five times (for 5 min each). The combined 2% TFA/CH₂Cl₂ solution was evaporated in vacuo to get the crude protected callipeltin B isomer.

The crude protected macrocycle was dissolved in 5% $HCO_2H/MeOH$ and 20% $Pd(OH)_2$ -C (3 mg, 1 µmol) was added. The reaction flask was evacuated, flushed with argon, evacuated again and filled with H₂. The reaction mixture was stirred under balloon pressure of H₂ for 9 h (H₂ balloon was refilled every 1.5 h). After completion of the reaction, the catalyst was removed by filtration through a cotton plug and the filtrate was evaporated in vacuo to afford the crude callipeltin B isomer. The crude product was purified by reverse phase HPLC (Vydac C8 column, 5-40% CH₃CN-H₂O gradient over 25 min).

1a: Synthesized by Method A. Crude, protected macrocycle obtained as a yellow oil (35 mg). HPLC retention time: 13.2 min. **1a** was obtained as a colorless foam (3.6 mg, 15% overall yield). ¹H NMR (500 MHz, CD₃OD) _ 8.5 (m, 1H), 8.36* (d, J = 8.9 Hz, 1H), 8.10* (d, J = 8.4 Hz, 1H), 7.98 (br s., 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.89* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.80* (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.80* (d, J = 8.5 Hz, 1H), 7.80* (d, J = 9.3 Hz, 1H),

⁵ see footnote 2

1H), 7.77 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 8.4 Hz, 2H), 7.17* (m, 1H), 7.05* (d, J = 6.0 Hz, 1H), 6.81 (d, J = 8.6 Hz, 2H), 6.79* (d, J = 8.5 Hz, 2H), 6.73* (d, J = 7.0 Hz, 1H), 5.54 (m, 1H), 5.21 (q, J = 7.3, 2.6, 8.8 Hz, 1H), 5.08 (t, J = 9.9, 9.9 Hz, 1H), 4.81 (m, 1H), 4.63 (d, J = 9.6 Hz, 1H), 4.56* (d, J = 6.7 Hz, 1H), 4.48 (m, 1H), 4.35 (d, J = 9.2 Hz, 1H), 4.08 (m, 1H), 3.99 (d, J = 3.3 Hz, 1H), 3.97* (d, J = 3.3 Hz, 1H), 3.48 (t, J = 1.5, 1.6 Hz, 1H), 3.22 (m, 3H), 3.19* (s, 1H), 3.16 (d, J = 8.0 Hz, 2H), 3.03 (s, 1H), 2.97 (m, 1H), 2.92* (s, 1H), 2.90 (s, 2H), 2.86* (bs, 1H), 2.80 (m, 1H), 2.73* (d, J = 7.8 Hz, 1H), 2.67 (s, 2H), 2.05 (m, 1H), 1.9 (m, 1H), 1.7 (m, 4H), 1.6* (m, 1H), 1.49 (t, J = 3.3, 4.5 Hz, 2H), 1.36 (t, J = 7.2, 7.4 Hz, 2H), 1.32 (s, 1H), 1.30* (s, 1H), 1.26 (t, J = 6.6, 6.1 Hz, 2H), 1.19 (m, 3H), 1.11 (d, J = 7.0 Hz, 3H), 0.99 (m, 6H); HRMS-MALDI calculated for $C_{47}H_{74}N_{12}O_{14}$ (M + H)* 1031.5526, found 1031.5492.

1b: Synthesized by Method A. Crude, protected macrocycle obtained as a yellow oil (35 mg). HPLC retention time: 12.9 min. **1b** was obtained as colorless foam (3.8 mg, 14% yield). ¹H NMR (500 MHz, CD₃OD) _ 8.81 (d, J = 9.7 Hz, 1H), 8.62 (d, J = 9.0 Hz, 1H), 8.36 (d, J = 9.3 Hz, 1H), 8.3* (m, 1H), 8.17 (m, 1H), 8.07* (d, J = 8.3 Hz, 1H), 7.80*(d, J = 7.7 Hz, 1H), 7.72 (d, J = 9.1 Hz, 1H), 7.60* (d, J = 7.5 Hz, 1H), 7.40* (m, 1H), 7.31 (d, J = 8.3 Hz, 2H), 7.29* (d, J = 7.4 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 7.10* (d, J = 8.4 Hz, 1H), 6.99* (d, J = 8.3 Hz, 1H), 6.76 (m, 2H), 6.68* (d, J = 8.1 Hz, 1H), 5.64 (q, J = 5.0, 7.2, 9.0 Hz, 1H), 5.40 (m, 1H), 5.25 (t, J = 9.8, 9.7 Hz, 1H), 5.05 (m, 1H), 4.67 (m, 1H), 4.54 (m, 1H), 4.48 (m, 1H), 4.39 (m, 1H), 4.23 (m, 1H), 4.08 (m, 1H), 3.86 (m, 1H), 3.77 (t, J = 4.1, 4.3 Hz, 1H), 3.65* (m, 2H), 2.74 (d, J = 10.2 Hz, 2H), 2.70* (s, 1H), 2.62 (m, 1H), 2.55 (s, 1H), 1.91 (m, 2H), 1.65* (m, 3H), 1.54 (m, 3H), 1.37 (m, 3H), 1.32* (m, 2H), 1.23 (d, J = 7.1 Hz, 2H), 1.12 (d, J = 6.8 Hz, 2H), 1.07 (m, 4H), 0.94 (d, J = 6.4 Hz, 2H), 0.93 (d, J = 6.6 Hz, 3H); HRMS-MALDI calculated for C₄₇H₇₄N₁₂O₁₄ (M + H)⁺ 1031.5526, found 1031.5535.

1c: Synthesized using Method B. Crude, protected **1c** was obtained as a pale yellow, flocculent solid (12 mg). HPLC retention time: 15.5 min. **1c** was obtained as a colorless foam (1.8 mg, 15% overall yield). ¹H (500 MHz, CD₃OD) $_$ 8.40 (d, J = 9.9 Hz, 1H),

7.43 (d, J = 8.2 Hz, 1H), 7.24 (d, J = 8.5 Hz, 2H), 6.76 (d, J = 8.5 Hz, 2H), 5.48 (m, 1H), 5.47 (d overlapped, J = 5.1 Hz, 1H), 5.33 (q, J = 7.1 Hz, 1H), 4.91 (t, J = 9.9 Hz, 1H), 4.75 (m, 1H), 4.50 (d, J = 9.4 Hz, 1H), 4.14 (ddd, J = 5.3, 9.1, 9.4 Hz, 1H), 4.09 (d overlapped, J = 5.8 Hz, 1H), 4.08 (m overlapped, 1H), 3.93 (d, J = 3.1 Hz, 1H), 3.20 (m, 1H), 3.19 (m, 2H), 3.17 (s, 3H), 2.98 (s, 3H), 2.76 (m, 1H), 2.74 (s, 3H), 1.93 (m, 2H), 1.92 (m, 2H), 1.77 (m, 2H), 1.76 (m, 2H), 1.73 (m, 1H), 1.66 (m, 2H), 1.65 (m, 2H), 1.58 (m, 2H), 1.57 (m, 2H), 1.50 (m, 2H), 1.34 (m, 2H), 1.29 (d, J = 7.2 Hz, 3H), 1.28 (d, J = 7.2 Hz, 3H), 1.27 (d, J = 6.3 Hz, 3H), 1.21 (d, J = 7.2 Hz, 3H), 1.18 (d, J = 7.5 Hz, 3H), 0.94 (d, J = 6.7 Hz, 3H), 0.92 (d, J = 6.5 Hz, 3H); HRMS (ESI) calculated for $C_{47}H_{74}N_{12}O_{14}$ (M + H)⁺ 1031.5526, found 1031.5534.

aa	Natural callipeltin B _ _H	1cH
MeAla		
_	5.34 q (7.1)	5.33 q (7.1)
_	1.30 d (7.1)	1.29 d (7.2)
NCH ₃	2.74 s	2.74 s
OMeTyr		
_	4.90 t (9.5)	4.91 t (9.9)
_	4.52 d (9.5)	4.50 d (9.4)
C5/C9	7.26 d (8.1)	7.24 d (8.5)
C6/C8	6.78 d (8.1)	6.76 d (8.5)
OCH ₃	3.18 s	3.17 s
CONH	8.44 d (9.5)	8.40 d (9.9)
MeGln		
_	4.94 overlapped	4.94 overlapped
_	1.59, 1.50 m	1.57, 1.50 m
_	1.94, 1.78 m	1.92, 1.79 m
NCH ₃	3.01 s	3.00 s
Leu		
_	4.77 m	4.75 m
	1.65, 1.38 m	1.65, 1.34 m
	1.70 m	1.73 m
	0.96 d (6.7)	0.94 d (6.7)
1	0.93 d (6.7)	0.92 d (6.5)
CONH	7.44 d (8.1)	7.43 d (8.2)
Arg		
_	4.16 ddd (9.5, 8.1, 5.1)	4.14 ddd (9.4, 9.1, 5.3)
_	1.94, 1.78 m	1.93, 1.77 m
_	1.65, 1.59 m	1.66, 1.58 m

Table 1. Comparsion of ¹H NMR spectra of natural callipeltin B and **1c**

3.19 m	3.19 m
8.26 d (8.1)	-
4.12 overlapped	4.09 overlapped
4.12 overlapped	4.08 overlapped
1.28 d (7.1)	1.28 d (7.2)
7.79 d (6.4)	-
5.49 overlapped	5.47 overlapped
5.50 overlapped	5.48 overlapped
1.28 d (6.8)	1.27 d (6.3)
8.70 d (9.1)	8.63 d (9.5)
	(~ 90% exchanged)
3.97 d (3.0)	3.93 d (3.1)
2.77 m	2.76 m
1.24 d (7.1)	1.21 d (7.2)
3.19 m	3.20 m
1 21 (6 5)	1.18 d(7.5)
	3.19 m 8.26 d (8.1) 4.12 overlapped 4.12 overlapped 1.28 d (7.1) 7.79 d (6.4) 5.49 overlapped 5.50 overlapped 1.28 d (6.8) 8.70 d (9.1) 3.97 d (3.0) 2.77 m 1.24 d (7.1) 3.19 m 1.21 (6 5)