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Thirty-two clinical isolates of Shiga-like toxin (SLT)-producing Escherichia coli associated with single cases
or outbreaks of bloody diarrhea, hemorrhagic colitis, the hemolytic uremic syndrome, or edema disease of
swine were examined for multiple copies of genes belonging to the slt-I or slt-II toxin families. Five of 19 strains
that were known to produce SLT-II or to hybridize to slt-II-specific probes by colony blot were found by
Southern hybridization to contain two copies of toxin genes related to slt-IH. The genes for two toxins closely
related to slt-II were cloned from one of the isolates, Escherichia coli 0157:H- strain E32511. One copy of the
operon was found to be essentially identical to slt-IH; it differed from sit-II by only one nucleotide base. This
single nucleotide difference did not affect the predicted amino acid sequence. The predicted amino acid
sequence of the A subunit of the second operon was identical to that of SLT-II, but the predicted amino acid
sequence of the B subunit was identical to that of the B2F1 toxin VT2ha. We designated this second operon
sit-IIc. Neutralization assays using several monoclonal antibodies and polyclonal antiserum prepared against
SLT-IH showed that SLT-IIc was antigenically related to but distinct from SLT-II.

Several studies have shown that Escherichia coli strains of
serotypes 0157:H7, 0157:H-, 026:H11 and others are as-
sociated with hemorrhagic colitis (lOa, 29b, 34) and hemo-
lytic-uremic syndrome (HUS) (lla, 38a, 44). These strains
produce Shiga-like toxins (SLT), also called Vero toxins
(VT) (14), that are cytotoxic for both Vero cells and HeLa
cells. There are two antigenically distinct groups of SLT:
SLT-I and SLT-II (for reviews, see references 11, 27, and
39). Members of the SLT-I group appear to be antigenically
homogeneous, but evidence ofa diverse but related family of
SLT-II toxins is growing. The nucleotide sequences of two
toxin operons closely related to SLT-II and found in an E.
coli 091:H21 strain isolated from a patient with HUS were
recently presented (9). This characterization of the vtx2ha
and vtx2hb genes from strain B2F1 was the first demonstra-
tion of multiple copies of toxin genes related to SLT-II
present within a single strain (9).

It has been proposed that the E. coli 0157:H- strain
E32511 produces yet another distinct toxin in the SLT-II
(VT2) family (5a). Two variants of SLT-II have been well
characterized (4, 46). The variants, designated SLT-IIv and
SLT-IIva, unlike SLT-II, are cytotoxic for Vero but not
HeLa cells. The difference in cytotoxicity for Vero and
HeLa cells between SLT-II and SLT-IIv may be due to
different receptor specificities (35). SLT-IIv is the causative
agent of edema disease in pigs (15, 22), while SLT-IIva has
been associated with diarrhea in a human infant (4).
Toxins produced by E. coli 933 and E32511 have been

studied for production of SLT-II and VT2, respectively (37a,
41). The terms SLT and VT are used interchangeably to
describe these toxins; however, it is not clear whether
SLT-II and VT2 are identical toxins. Both toxins are found
on and have been cloned from bacteriophages (25, 38a, 42,
48). The sequence of the slt-II operon from 933 is known
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(10). However, reports on the capacities of various anti-SLT
(VT) sera to neutralize toxin preparations from 933 and
E32511 have been somewhat contradictory. Two groups
concluded that SLT-II of 933 and VT2 of strain E32511 are
similar or identical by serological criteria (41, 49), while two
other groups indicated that SLT-II from strain 933 and VT2
from strain E32511 are antigenically distinct but related (2,
Sa). In this study, 32 clinical isolates were examined to
determine the prevalence of multiple copies of similar toxin
genes. In addition, we report the cloning, sequencing, and
antigenic characterization of two toxin operons from E. coli
0157:H- strain E32511. The nucleotide sequences of the
toxin genes were compared with those of other toxin genes
in the SLT-II family.

MATERIALS AND METHODS

Plasmids, phages, and strains. Plasmids, phages, and bac-
terial strains used in this study are listed and described in
Tables 1 and 3.

Media, enzymes, biochemicals, and radionuclides. Strains
were routinely grown in L broth (24) for 18 h at 37°C. When
necessary, antibiotics (Sigma Chemical Co., St. Louis, Mo.)
were added to the medium to the following final concentra-
tions: ampicillin (Ap), 100 jig/ml; tetracycline (Tc), 12.5
p,g/ml. Media were also supplemented with 5-bromo-4-
chloro-3-indolyl-I3-D-galactopyranoside (X-Gal) and isopro-
pyl-p-D-thiogalactopyranoside (Sigma Chemical Co.) as
needed. Restriction endonucleases and calf intestinal alka-
line phosphatase were purchased from Boehringer Mann-
heim, Indianapolis, Ind., and T4 DNA ligase was obtained
from Boehringer Mannhiem or U.S. Biochemicals Corpora-
tion, Cleveland, Ohio. Sequenase was purchased from U.S.
Biochemicals, and Gigapack II Gold Packaging Extract was
from Stratagene, La Jolla, Calif. Enzymes were used accord-
ing to the instructions of the suppliers. Radionuclides were
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TABLE 1. Plasmids, phages, and strains used in this study

Plasmid, phage, Charactenstic(s) Source or
or strain arcesl\,reference'

Plasmids
pHC79 Cosmid vector; Apr, Tcr 7
pCKS25 pHC79 clone of E32511; Apr This study
pCKS37 pHC79 clone of E32511; Apr This study
pRK415 Low copy vector; Tcr 12
pCKS109 pRK415 subclone from pCKS25; SLT-II+; Tcr This study
pCKS111 pRK415 subclone from pCKS37; SLT-IIc+; Tcr This study
pLP32 SLT-II+ 35
pJES101 SLT-IIv+ 35

Phages
M13mp18 and mpl9 Sequencing vectors 26

E. coli strains
XL1-Blue Host for M13 phage; Tcr Stratagene
DH5a Host strain for cloning BRL
E32511 Clinical isolate of E. coli associated with HUS CDC
C600(933W) C600 lysogenized with phage 933W; SLT-II+ H. W. Smith

S. dysenteriae type 1 60R Rough; noninvasive; Shiga toxin' S. Formal
a BRL, Bethesda Research Laboratories; CDC, Centers for Disease Control.

purchased from New England Nuclear Research Products,
Boston, Mass.
DNA manipulations. Large-scale preparation of total DNA

was by the method of Marmur (20). Small-scale preparation
of total DNA from 1.5-ml cultures of clinical isolates was
performed as described in Current Protocols in Molecular
Biology (1). Plasmid DNA was isolated by the method of
Holmes and Quigley (8). Host cells were made competent to
take up DNA by calcium chloride and heat shock (17).
Procedures for cosmid cloning and subcloning were those of
Maniatis et al. (18). Cosmids were packaged by using the
Stratagene Gigapack II Gold Packaging Extract.
DNA hybridization studies. Chromosomal and plasmid

DNAs were probed with slt-specific sequences by in situ gel
hybridization (12a) with the following modifications. Gels
were not prehybridized, and 20 mM sodium pyrophosphate
was included in the hybridization solution as a blocking
agent. Washing conditions were as follows. One wash was
done in 2x SSC (lx SSC is 0.15 M NaCl plus 0.015 M
sodium citrate, pH 7.0) at 65°C for 1 h, followed by one wash
in 0.1x SSC at 65°C for 1 h. DNA probes specific for slt-I
and slt-Il were labeled with [32P]dCTP by nick translation
(19). Clones containing complete or partial toxin genes were
identified by colony or plaque hybridization (18).

Nucleotide sequence analysis. DNA sequencing followed
the dideoxy-chain termination method of Sanger et al. (36) as
adapted for M13 vectors by Schreier and Cortese (37).
Specifically, the Sequenase kit from U.S. Biochemicals was
used for nucleotide sequencing. M13mpl8 and mpl9 vectors
were used for cloning and sequencing as described by
Messing and coworkers (26). In addition to the M13 univer-
sal sequencing primer, several slt-II-specific synthetic oligo-
nucleotides (Applied Biosystems Incorporated model 380A
synthesizer) (10) were used in sequencing.

Cytotoxicity assays. Cytotoxicity assays were done essen-
tially as described by Gentry and Dalrymple (5). Wild-type
E. coli and various E. coli clones and subclones were
cultured as described above and disrupted by sonic lysis as
described previously (28). The filter-sterilized bacterial ly-
sates were serially diluted in tissue culture medium (Dul-

becco modified Eagle medium containing 10% fetal calf
serum, 0.8 mM glutamine, 500 U of penicillin G per ml, and
500 mg of streptomycin per ml). One hundred microliters of
10-fold dilutions of the bacterial lysate was added to individ-
ual wells of a 96-well microtiter plate which contained
approximately 104 Vero or HeLa cells in 100 ,ul of medium.
The tissue culture cells were then incubated at 37°C in the
presence of 5% CO2 for 24 (HeLa cells) or 48 (Vero cells) h
and then fixed and stained with crystal violet (16). The
intensity of color of the fixed and stained cells was measured
with a Titertek Multiskan MC reader at 620 nm (Flow
Laboratories, Inc., McLean, Va.). Fixed and stained toxin-
treated tissue culture cells were compared with fixed and
stained untreated cells; stain intensity was proportional to
the number of viable, attached tissue culture cells present
before being fixed to the well. The 50% cytotoxic dose
represented the amount of toxin required to kill 50% of the
cells in a well.

Neutralization of cytotoxicity. The antibodies used are
listed and described in Table 2. All monoclonal antibodies

TABLE 2. Antibodies used in this study

MAb or rabbit Specificityb Isotypec reference

MAbs
llGlO SLT-II A subunit IgM(K) 32
2E1 SLT-II A subunit IgM(K) 32
BC5 BB12 SLT-II B subunit IgG(K) 3
13C4 SLT-I B subunit IgG 41

Sera
AJ65 SLT-II Polyclonal 42
F45 Shiga toxin Polyclonal 29
AD13 Normal rabbit serum Polyclonal This lab

a All monoclonal antibodies (MAbs) and sera were prepared in this labora-
tory, except BC5 BB12, which was kindly supplied by N. A. Strockbine.

b Shiga toxin and SLT-I are essentially identical and are immunologically
cross-reactive (40) (Fig. 4).

1IgM, immunoglobulin M.
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and sera were prepared in this laboratory except BC5 BB12,
which was kindly supplied by Nancy Strockbine, Centers for
Disease Control, Atlanta, Ga. The F45 antitoxin was pre-
pared against purified Shiga toxin from Shigella dysenteriae
type 1 60R; Shiga toxin and SLT-I are essentially the same
(40). AJ65 antitoxin was prepared by immunizing rabbits
with crude preparations of sonically disrupted E. coli
C600(933W), an SLT-II-producing lysogen. Antibodies BC5
BB12 (ascites fluid) and AJ65 (antiserum) were diluted
10-fold to prepare starting stocks. Starting stocks of hybrid-
oma supernatants (llGlO and 2E1) were not diluted, nor was
antiserum F45.
Monoclonal antibodies and polyclonal sera to be tested for

cytotoxin-neutralizing activity were serially diluted in tissue
culture medium. A sample (100 1.d) of diluted toxin (contain-
ing approximately 40 times the 50% cytotoxic dose) was
added to an equal volume of each antibody dilution and
incubated at 37°C for 2 h, followed by incubation at 4°C for
4 h. A sample (100 ,u) of each mixture was then transferred
to Vero cells, and the microtiter plates were incubated and
tissue culture cells were fixed and stained as described
above. Toxin in the absence of antibody killed between 60
and 90% of the tissue culture cells in a well, as determined
below. Percent neutralization was determined by the follow-
ing formula: {[A620(toxin + antibody) - A620(toxin)]/A620
(untreated cells)} x 100.
The experiments reported here were conducted according

to the principles set forth in the Guide for the Care and Use
of Laboratory Animals (24a).

Nucleotide sequence accession number. The nucleotide
sequence of slt-Ilc has been submitted to EMBL and as-
signed the accession number M59432.

RESULTS

Multiple toxin genes in clinical isolates. To determine the
prevalence of multiple copies of toxin genes in clinical
isolates, 32 clinical isolates were chosen to be probed with
slt-I- and/or slt-II-specific DNA sequences. Earlier studies
have shown that 7 of the 32 isolates expressed SLT-I, 1
expressed SLT-IIv, 19 expressed SLT-II, and 5 expressed
both SLT-I and SLT-II (21). Total DNA was isolated,
digested with EcoRI, and subjected to electrophoresis
through a 0.9% agarose gel. These gels were then probed
with toxin-specific probes by in situ gel hybridization. The
slt-I probe used was a 913-bp HincII fragment isolated from
a partial digest of the plasmid pNAS13 (40), which encodes
slt-I; this HincIl fragment spanned the A and B subunit
coding regions. The slt-IT probe used was the 841-bp SmaI-
PstI fragment of pLP32 (35), which contains only A subunit
gene sequences. Figure 1 shows an example of one gel
probed with the slt-IIA sequences. The SLT-I-expressing
strain H19 was included to show the specificity of the slt-IIA
probe (Fig. 1, lane 2). Table 3 summarizes results obtained
from probing restricted DNA of the 32 clinical isolates with
slt-specific fragments. Five strains were identified with two
EcoRI fragments that hybridized with the slt-IIA probe (Fig.
1; Table 3). In no case were multiple fragments found to
hybridize with the slt-I probe.

Cloning of toxin genes from E. coli E32511. Total DNAs
from E. coli E32511 and C600(933W) were digested with
several restriction endonucleases and subjected to electro-
phoresis through a 0.9% agarose gel. This gel was then
probed with the 841-bp SmaI-PstI fragment of pLP32 to
determine the sizes of fragments hybridizing with the A
subunit of SLT-II (slt-IIA). Each restriction enzyme used to

1 2 3 4 5 6 7 8 9 10 1112
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FIG. 1. In situ gel hybridization of DNA from clinical isolates.
Total DNAs were digested with EcoRI and hybridized with the
841-bp SmaI-Pstl slt-IIA probe. The clinical isolates from which
DNAs were obtained were J-2 (lane 1), H19 (lane 2), B2F1 (lane 3),
B2387 (lane 4), B1409-C1 (127) (lane 5), B1375-GSC15 (107) (lane 6),
E32511 (lane 7), CL8 (lane 8), A8959-C7 (lane 9), A9047-CS1 (lane
10), EDL933 (lane 11), and CL40 (lane 12). Numbers to the right are
marker DNA fragments in kilobase pairs.

digest total DNA from the control strain C600(933W) gener-
ated a unique fragment that hybridized with the probe (data
not shown). However, multiple bands hybridized when
E32511 DNA was probed (data not shown), suggesting that
more than one copy of a toxin gene may be present. DNA
from E32511 digested with EcoRI gave two bands of approx-
imately 4.8 and 5.5 kb which showed hybridization with the
slt-IIA probe (Fig. 1, lane 7).
To characterize the toxin(s) of E32511, a cosmid bank of a

Sau3A partial digest was created in the cosmid vector
pHC79. Cosmids were initially screened by colony hybrid-
ization with the slt-IIA probe and then by in situ gel
hybridization using EcoRI-digested cosmid DNA. Several
cosmids containing either a 4.8- or a 5.5-kb EcoRI fragment
that showed hybridization with the slt-IIA probe were ob-
tained; the two fragments were never found in a single
cosmid clone. Representative cosmids containing each frag-
ment were purified for further analysis. Bacterial lysates of
E. coli DH5a with cosmids that contained either fragment
were cytotoxic for Vero cells, which indicated that an entire
toxin operon was present on each clone (data not shown).
The two EcoRI fragments of interest were subcloned from
the cosmids into the vector pRK415, which yielded the
plasmids pCKS109, with the 4.8-kb EcoRI fragment, and
pCKS111, with the 5.5-kb EcoRI fragment.

Sequencing of toxin genes. Portions of the toxin genes of
E32511 were obtained by isolating the 4.8- or 5.5-kb frag-
ment either from the parent cosmids or from the pRK415
subclones and digesting these with HaeIII, HincIl, or PstI.
The products of these restriction digests were then ligated
into appropriate M13 vectors; digestion with HaeIII or
HincII and subsequent ligation generated a mixture of
clones. Clones were selected for sequencing following hy-
bridization with probes derived from pLP32, which covered
the slt-II coding region. The nucleotide sequence of approx-
imately 1.5 kb of DNA spanning each of the toxin operons
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TABLE 3. Clinical isolates of E. coli that contain DNA hybridizing with slt-I and slt-II probes or both

No. of probe-positive
Strain Serotypea SLT typeb Source or fragmentsdreference"

slt-I slt-II

B6550 MS1 0157:H7 I CDC 1 ND
A9167-1 0157:H7 I CDC 1 ND
H19 026:H11 I H. R. Smith 1 0
1557-77 026:H11 I M. M. Levine 1 ND
CL5 026:H11 I M. A. Karmali 1 ND
D276/1/1 0111:NM I D. Sherwood 1 ND
A9619-C2(29) 045:H2 I CDC 1 ND
S1191 0139:ND lIv S. Cryz ND 1
E32511 0157:NM II CDC ND 2
B1375-GSC15 (107) 0157:H7 II CDC ND 2
B1409-C1 0157:H7 II CDC ND 2
B1545 0157:H7 II CDC ND 1
B2387 0157:H7 II CDC ND 1
B2576 0157:H7 II CDC ND 1
001 0157:H7 II Dr. Dudevoir ND 1
B5329 0157:H7 II CDC ND 1
B5311-C1 0157:H7 II CDC ND 1
J-2 0157:H7 Il Y. Takeda ND 2
86-24 0157:H7 II P. I. Tarr ND 1
B6181 MS2-1 0157:H7 II CDC ND 1
B6270 MS1-1 0157:H7 II CDC ND 1
B6226 MS1-2 0157:H7 II CDC ND 1
B6612 MS1 0157:H7 II CDC ND 1
B2619/2/1 08:H9 II D. Sherwood ND 1
B1696/2/1 04:NM II D. Sherwood ND 1
B2F1 091:H21 II M. A. Karmali ND 2
B6232 MS1 ND:NM II CDC ND 1
EDL933 0157:H7 1+11 CDC 1 1
CL40 0157:H7 1+11 M. A. Karmali 1 1
A9047-CS1 0157:H7 I+II CDC 1 1
A8959-C7 0157:H7 1+11 CDC 1 1
CL8 0157:H7 1+11 M. A. Karmali 1 1

a ND, Not determined.
b SLT type was determined by bioassay and/or colony blot data (21).
CDC, Centers for Disease Control.

d Hybridization with slt-I- or slt-Il-specific probes was determined by using EcoRI-digested chromosomal DNA. The number of unique fragments hybridizing
with the probe(s) is presented.

was determined for both strands, except that the nucleotide
sequence of only one strand was determined for a small
portion of the extreme 5' end of each A subunit gene.
Because we had difficulty aligning the new toxin se-

quences with that of slt-II, the region of slt-II from pLP32
spanning positions 392 to 403 was resequenced. The plasmid
pLP32 was derived from pNN76; the DNA sequence of the
slt-IT operon was originally determined from pNN76 (10).
This region of slt-II was found to contain three additional
nucleotide bases not present in the previously published
sequence (10). The revised sequence is presented here.
These alterations result in the change of histidine (+45) to
proline (+45) and the insertion of an additional proline
(+46).

Figure 2 shows a comparison of the sequences of slt-IT
(top line) and the toxin genes from pCKS111. Several base
differences were found upstream of the promoter region and
between the -10 region and the Shine-Dalgarno sequence of
the A subunit gene. The first base of the -35 region, position
44, was a cytosine in slt-TI and an adenine in the toxin gene
from pCKS111. Four base differences were found within the
structural gene for the A subunit; none of these affected the
amino acid sequence. However, 11 differences were found in
the B subunit gene, which resulted in three amino acid
substitutions (Fig. 3); two of these were within the mature B

subunit. For reasons to be discussed below, this operon was
designated slt-lIc. The sequence of the toxin gene from
pCKS109 differed from that of slt-IT in only one base; the
guanine at position 325 was replaced by an adenine (data not
shown). This substitution does not affect the amino acid
sequence of the toxin; therefore, this operon was referred to
as slt-IT.
The nucleotide and predicted amino acid sequences of the

A and B subunits of slt-Ilc were compared with those of
others in the SLT-II family (Table 4). The slt-IIc A subunit
was found to be most similar to that of slt-Il at the nucleotide
level and was identical to SLT-IIA at the protein level.
However, the slt-Ilc B subunit is identical to the B subunit of
vtx2ha at both the nucleotide and protein level (Table 4; Fig.
3). Thus, in keeping with both the Shiga-like toxin-TI (10) and
the vtx2ha/vtx2hb (9) nomenclatures, we designated this
operon slt-lIc.

Cytotoxicity and neutralization of toxins. The toxin sub-
clones were tested for cytotoxicity for Vero and HeLa cells.
Controls included were Shiga toxin, which is essentially the
same as SLT-I (40), SLT-11, and SLT-ITv toxins. Toxins
from the parent, E32511, and E. coli DH5ot(pCKS109) gave
comparable 50% cytotoxic doses per milliliter on both cell
types, as did the controls SLT-TT and Shiga toxin (Table 5).
However, toxin from E. coli DH5cx(pCKS111) was about
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-35
TCGATGGCGGTCCATTATCTGCATTATGCGTTGTTAGCTCAGCCGGACAG
C--G ---T----------- G-T---C-----------------A------

-10
AGCAATTGCCTTCTG&GCAAZCGGTCACTGGTTCGAATCCAGTACAACGC

Ha

SD -22
GCCGGGTCTGGTGCTGATTACTTCAGCCAAAAGGAACACC+TGTATATGA

------------------- - T---------

AGTGTATATTATTTAAATGGGTACTGTGCCTGTTACTGGGTTTTTCTTCG
_---------------- C-

Sm +1
GTATCCTATTCCCGGGAGTTTACGATAGACTTTTCGACCCAACAAAGTTA

TGTCTCTTCGTTAAATAGTATACGGACAGAGATATCGACCCCTCTTGAAC
---A----------------------------------------------

ATATATCTCAGGGGACCACATCGGTGTCTGTTATTAACCACACCCCACCG

GGCAGTTATTTTGCTGTGGATATACGAGGGCTTGATGTCTATCAGGCGCG

Ha
TTTTGACCATCTTCGTCTGATTATTGAGCAAAATAATTTATATGTGGCCG

GGTTCGTTAATACGGCAACAAATACTTTCTACCGTTTTTCAGATTTTACA

TTATACCACTCTGCAACGTGTCGCAGCGCTGGAACGTTCCGGAATGCAAA

TCAGTCGTCACTCACTGGTTTCATCATATCTGGCGTTAATGGAGTTCAGT

GGTAATACAATGACCAGAGATGCATCCAGAGCAGTTCTGCGTTTTGTCAC

TGTCACAGCAGAAGCCTTACGCTTCAGGCAGATACAGAGAGAATTTCGTC

GACCTCACTCTGAACTGGGGGCGAATCAGCAATGTGCTTCCGGAGTATCG

GGGAGAGGATGGTGTCAGAGTGGGGAGAATATCCTTTAATAATATATCAG

Ha
CGATACTGGGGACTGTGGCCGTTATACTGAATTGCCATCATCAGGGGGCG

Hc
CGTTCTGTTCGCGCCGTGAATGAAGAGAGTCAACCAGAATGTCAGATAAC

Ha
TGGCGACAGGCCTGTTATAAAAATAAACAATACATTATGGGAAAGTAATA

Ps
CAGCTGCAGCGTTTCTGAACAGAAAGTCACAGTTTTTATATACAACGGGT

+297 SD. -19

AAAIA&AGSAGrTAAGCATGAAGAAGATGTTTATGGCGGTTTTATTTGCA

50

100

slt-II
slt-Hc
vtx2ha
vtx2hb
slt-IIv

MKKMFMAVLFALASVNAMA4-ADCAKGKIEFSKYNEDDTFTVKVDG

-----I

150

sit-H KEYWTSRWNLQPLLQSAQLTGMTVTIKSSTCESGSGFAEVQFNND
200 slt-Ilc ------------------------------------

vtx2ha ---------------------------------------------

vtx2hb ---------------------------------
250 slt-IIv R----N--------------------I-N--S------Q-K--++

300 FIG. 3. Comparison of the amino acid sequences of the Bsubunits of the slt-II, slt-IIc, vtx2ha, vtx2hb, and slt-IIv operons.
350 Hyphens (-) indicate residues identical to slt-lI. Plus signs (+)

indicate the absence of a residue. The arrow (4 ) shows the signal
sequence cleavage junction. Deduced amino acid sequences other

400 than that for SLT-IIc are from published reports (9, 10, 46).
450

500 10-fold less cytotoxic for HeLa cells than for Vero cells,
while SLT-IIv was about 10,000-fold less toxic for HeLa

550 cells than for Vero cells.
Several antibodies were tested for neutralizing capacity

600 against these toxins. Neutralization of sonically disrupted
cultures of wild-type E32511 (contains slt-IT and slt-IIc

650 genes) and E. coli DH5o(pCKS109) (expresses SLT-II
cloned from E32511) by the monoclonal antibodies specific

700 for the A (11G10, 2E1) or B (BC5 BB12) subunit of SLT-II
was comparable to that of the SLT-II control (Fig. 4A, B,750 and C). All three anti-SLT-II monoclonal antibodies were

800 able to neutralize the activity of the toxins produced bystrain DH5a(pCKS111) (expresses SLT-IIc), but at a much
850 reduced titer, compared with that of SLT-II toxin. This

panel of monoclonal antibodies did, however, neutralize
900 SLT-IIc toxin more efficiently than SLT-IIv toxin or Shiga

toxin. Polyclonal antiserum prepared against SLT-II (AJ65)
950 neutralized the toxicity of bacterial lysates of clones ex-

pressing SLT-IIc and SLT-IIv toxins less efficiently than it
1000 did those expressing SLT-II toxin or bacterial lysates of

strain E32511 (Fig. 4D). Neither a monoclonal antibody
1050 specific for the B subunit of SLT-I toxin (13C4) nor poly-

clonal antiserum prepared against Shiga toxin (F45) neutral-
1100 ized the toxicity of lysates of strains or clones that expressed

any member of the SLT-II family (data not shown). Further-
1150 more, normal rabbit serum had no effect on cytotoxicity of

any of the bacterial lysates (data not shown).
1200

+1
TTAGCTTCTGTTAATGCAATGGCGGCGGATTGTGCTAAAGGTAAAATTGA
----T---------------------------C-----------------

Hc
GTTTTCCAAGTATAATGAGGATGACACATTTACAGTGAAGGTTGACGGGA
-------------------A----T-----C-----A--A--G-C---A-

AAGAATACTGGACCAGTCGCTGGAATCTGCAACCGTTACTGCAAAGTGCT
----G------------------------------_-__-__________

CAGTTGACAGGAATGACTGTCACAATCAAATCCAGTACCTGTGAATCAGG

+70
CTCCGGATTTGCTGAAGTGCAGTTTAATAATGACTGAGGCATAACCTGAT

TCGTGGTATGTGGGTAACAAGTGTAATCTGTGTCACAATTCAGTCAGTT

1250

1300

1 350

1400

1450

1499

FIG. 2. Comparison of the nucleotide sequences of slt-II and the
toxin genes from pCKS111. DNA sequence extends from 43 bp 5' of
the promoter region of slt-II to 62 bp 3' of the B subunit termination
codon. The sequence and putative regulatory elements of slt-II, as
determined by others (10), are presented in the top line. The
sequence of the toxin from pCKS111 is shown below. Hyphens (-)
indicate nucleotide identity; plus signs (+) represent nucleotide
absence. Putative regulatory elements presented are transcriptional
initiation signals (-35 and -10 regions) and Shine-Dalgarno se-
quences (SD). The initiator codons of the A and B subunits are

DISCUSSION

In this study, 26% of the SLT-II-expressing enterohemor-
rhagic E. coli (EHEC) isolates examined contained two
EcoRI chromosomal fragments that hybridized to slt-IT-
specific DNA probes. Because none of the slt operons
sequenced to date have contained an EcoRI site within or
between the structural genes for the A and B polypeptides,
we concluded that any EHEC strain with two slt-Il-hybrid-
izing EcoRI fragments has two copies of slt-II-related genes.
Whether each copy encodes a functional toxin was not
determined, except for strain E32511. When the presence of
two (or more) copies of related but distinct toxin genes in a

designated -22 and -19, respectively, and the amino-terminal
residues of the processed A and B subunits are designated +1.
Restriction sites relevant to subcloning and slt-II-specific probe
generation are as follows: Ha, HaeIII; Hc, HinclI; Ps, PstI; Sm,
SmaI.
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TABLE 4. Comparison of the nucleotide and predicted amino acid sequences of the processed A and B subunits of the slt-IIc
genes with those of the SLT-II family

% Homology oft:

Operona Nucleotide sequence Predicted amino acid sequence

A subunit B subunit A subunit B subunit

slt-IIc 100 (100)b 100 (100) 100 (100) 100 (100)
vtx2ha 98.5 (98.5) 100 (100) 99.0 (99.1) 100 (100)
vtx2hb 98.7 (98.6) 98.6 (98.5) 99.0 (99.1) 100 (98.9)
slt-II 99.7 (99.6) 95.2 (94.8) 100 (100) 97.1 (96.6)
slt-IIv 94.6 (94.4) 79.0 (82.8) 94.2 (94.2) 82.9 (85.4)

a Sequences for vtx2ha and vtx2hb, slt-II, and slt-IIv were from references 9, 10, and 46, respectively.
b Values represent percent homology with the indicated sequences from the A and B subunits of slt-IIc. Numbers in parentheses are homologies comparing

unprocessed gene products.

clinical isolate goes unrecognized, any results obtained on
the genetic and immunological characteristics of that strain
may be erroneously interpreted. Furthermore, any toxin
isolated to homogeneity from such a strain is potentially
impure. Thus, the toxin prepared by Head et al. (6) from
strain E32511 probably consists of the two comparable but
not identical toxins, SLT-II and SLT-IIc. Similarly, the VT2
purified from EHEC B2F1 (30) is probably also impure
because Ito et al. recently reported that this strain contains
two closely related but distinct SLT-II-like toxins (9). Fur-
thermore, the VT2 isolated from EHEC strain J-2 (49) may
also contain two populations of similar but not absolutely
homologous toxins because our results suggest the possibil-
ity of two slt-II genes in that strain (Fig. 1). Finally, VT2 has
also been purified from strain E3657 (2), and it would be
prudent to analyze this strain for additional copies of slt-II.
The issue of two different types of SLTs in a preparation of
purified toxin arose in this laboratory when we became
aware through the finding of Scotland et al. (37a) that EHEC
933 expresses both SLT-I and SLT-II. The fact that the
SLT-I we isolated from strain 933 was apparently pure (29a)
was solely due to the facts that we used an antitoxin affinity
column in our purification scheme and SLT-I and SLT-II are
not immunologically cross-reactive (10) (Fig. 4). However,
the possibility of potentially contaminated toxin prepara-
tions prompted us to use toxin-converting phages (which to
date have not been found to harbor two slt genes) or cloned
toxin genes in E. coli K-12 strains for most purification
purposes. Although E. coli strains that contain multiple
copies of slt-I have not been identified (Table 3), the finding

TABLE 5. Cytotoxicity of bacterial lysates for HeLa
and Vero cells

Strain or CD5Wml for:Toxin Vero/HeLa6plasmida Vero cells HeLa cells

E32511 SLT-II+11c 105 104-_105 1-10
pCKS109 SLT-II 104 104 1
pCKS111 SLT-IIc 103 102 10
pLP32 SLT-II 105 105 1
pJES101 SLT-IIv 107 102 10,000
S. dysenteriae Shiga toxin 106 106 1

a The plasmids pCKS109 and pCKS111 contain toxin genes from E32511.
All plasmids were maintained in nontoxinogenic E. coli DH5a. Assays were
performed at least three times; data from a representative experiment are
presented.

b Ratio of 50%o cytotoxic dose per milliliter on Vero cells to that on HeLa
cells.

of multiple slt-Il-related genes in EHEC strains argues
strongly for the use of Southern analysis rather than colony
hybridization to examine the distribution and types of toxins
present in clinical isolates.
Our detailed characterization of the two closely related

toxin genes, slt-II and slt-IIc, from the E. coli 0157:H-
strain E32511 should clarify the literature concerning the
nature of the toxin produced by E32511. The sequence
homology between the two toxin operons in E32511 and
slt-Il was the basis for naming each operon slt-1I, and the
suffixes used to distinguish between genes for toxins that are
very closely related but slightly different at the level of
deduced amino acid sequence were consistent with Ito et al.
(9) and Gannon et al. (4).

It is likely that the toxin genes encoding slt-1I are present
on a temperate bacteriophage. Willshaw et al. (48) reported
the cloning of VT2 (E32511) from a 4.7-kb EcoRI fragment
derived from bacteriophage XE32511. We found that the
slt-II genes from E32511 were present on a 4.8-kb EcoRI
fragment, whereas the slt-IIc genes were on a 5.5-kb EcoRI
fragment. In addition, when we compared our restriction
mapping data with those presented by Willshaw et al. (47) for
4E32511, a HincIl site was present in slt-II but absent from
slt-IIc (Fig. 2, positions 1291 to 1296). The bacteriophages
4E32511 and +933W appear very similar morphologically,
and both phages showed hybridization of slt-Il-specific se-
quences to a 5-kb EcoRI fragment (33). It is possible that the
slt-Ilc genes are present on a bacteriophage that has not yet
been isolated.

Contradictory results from neutralization assays with anti-
SLT-II sera against crude extracts of strain E32511 have led
to confusion and the apparently erroneous conclusion that
SLT-II and VT2, which Scotland et al. defined as the toxin
encoded by 4)E32511 (37a), are different toxins (Sa). Dickie
et al. and Head et al. reported only partial neutralization of
E32511 toxin by anti-SLT-II (2, 5a). The presence of genes
for two related but distinct toxins in E32511 could explain
why Head et al. (5a) reported that antiserum directed against
E32511 completely neutralized SLT-II toxin, even though
anti-SLT-II only partially neutralized E32511 toxin. How-
ever, we and others have shown complete neutralization of
E32511 toxin with antibodies directed against SLT-II (41,
49). These differences in neutralization patterns could be due
either to variations in the strains used to generate anti-
SLT-II (or anti-VT2) or to differential expression of the toxin
genes under various growth conditions. Yutsudo et al. (49)
showed that the VT purified from strain J-2 was immunolog-
ically identical to both the cytotoxin produced by an E. coli
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FIG. 4. Neutralization of toxins derived from E32511. Percent neutralization by several antibodies was determined by using bacterial
lysates (see Materials and Methods for details). Antibodies used are as follows: SLT-II A subunit-specific antibodies llGlO (A) and 2E1 (B),
SLT-II B subunit-specific antibody BC5 BB12 (C), and SLT-II-specific polyclonal rabbit antiserum AJ65 (D). Assays were done at least three
times; data from a representative experiment are presented. The plasmids pCKS109 and pCKS111 express, respectively, SLT-II and SLT-IIc
cloned from E32511; the plasmids pLP32 and pJES101 express, respectively, SLT-II and SLT-IIv (35). All plasmids were maintained in
nontoxinogenic E. coli DH5a. Symbols: O, E32511; *, pCKS109; 0, pCKS111; A, pLP32; 0, pJES101; A, Shiga toxin.

K-12 strain lysogenized with (E32511 and SLT-II toxin,
which supports our conclusion that the toxin genes present
on 4E32511 are slt-II and not slt-Ilc.
Oku et al. (30) reported that purified toxin from B2F1 is

100-fold less cytotoxic for HeLa cells than for Vero cells.
Although SLT-IIc is highly homologous to VT2vha of B2F1,
we found that SLT-IIc was only slightly less cytotoxic for
HeLa cells than for Vero cells. There are at least four
possible explanations for this apparent discrepancy between
our results and those of Oku et al. First, the toxin purified
from B2F1 in 1989 (30) may have contained a mixture of
VT2vha and VT2vhb, because at the time it was not recog-
nized that B2F1 had two slightly different toxin operons.
Second, the A subunit of SLT-IIc, which is very similar to
but not identical to the A subunit of VT2vha, could be
responsible for differences in relative toxicity of SLT-IIc and
VT2vha for Vero and HeLa cells. Third, subtle changes
between the conformations of VT2vha and SLT-IIc could
alter the relative affinity or toxicity of the holotoxins for
Vero and/or HeLa cells. Indeed, we found that monoclonal
antibodies to either the A or B subunit of SLT-II could
distinguish between SLT-II and SLT-IIc. Since the A sub-
units of SLT-IIc and SLT-II are identical but the B subunits
vary, the B subunit amino acid differences between SLT-IIc
and SLT-II must have altered the conformation of SLT-IIc
sufficiently to affect reactivity with A subunit-specific mono-

clonal antibodies. A fourth explanation is that variations in
the sensitivities of different HeLa cell lines to toxins may
account for differences seen in relative cytotoxicities among
laboratories.

Neutralization assays showed that the cytotoxic activity in
sonically disrupted preparations of E32511 was phenotypi-
cally more like SLT-II than SLT-IIc. It is possible that slt-II
could be expressed better than slt-IIc by E32511, although
the only apparent difference in the regulatory regions of slt-IT
and slt-Ilc was the first nucleotide of the -35 region. SLT-II
could also be intrinsically more stable or have a higher
specific activity than SLT-IIc. Alternatively, a pool of both
types of B subunits, which is presumably present in E32511,
may form heterologous pentameric B subunits that can be
neutralized efficiently by antibodies directed against SLT-II.
The importance of multiple copies of slt-II in strains of E.

coli associated with disease remains to be determined.
However, it should be noted that Ostroff et al. (31) and Tarr
et al. (43) found that E. coli 0157:H7 strains that contained
only slt-II genes were more frequently associated with HUS
and thrombocytopenic purpura than strains containing slt-I
or both slt-I and slt-II. In a study of E. coli 0157 strains
isolated in Great Britain, Scotland et al. (38) also noted that
strains producing SLT-II alone were most frequently asso-
ciated with HUS. A 3-year detailed study ofHUS in children
in the British Isles also showed a strong correlation between
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SLT-II-producing strains and HUS (13, 23). Wadolkowski et
al. found that SLT-II- but not SLT-I-producing E. coli
strains were able to kill mice in the murine model system (45,
45a). Thus, a link has been established between the presence
of slt-IT genes and disease-causing E. coli 0157 strains.
Whether multiple copies of slt-TI operons are responsible for
enhanced virulence of an EHEC strain remains to be deter-
mined.
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